Self-Organized Criticality and Landslide Models

Mario Nicodemi

Complexity \& Theor. Phys., Univ. of Warwick

Outlook:

- Empirical landslides size distribution
- Models of Self-Organized Criticality (SOC)

\square Landslides and the "Factor of Safety"

- The Mohr-Coulomb criterion states that a landslide occurs if the shear stress is higher than a maximal threshold. The "Factor of Safety" is: $F S=\tau_{\max } / \tau$ if $F S>1$ the system is stable if $F S<1$ the system is unstable

- Empirically, we see that the scale of a landslide can span a range from micro up to macroscopic scales: broad size distribution.

\square Size distribution

Empirical data show power law distributions
\Longrightarrow underestimation of extreme events
(Turcotte et al. PNAS 2002).

\square A schematic model

- The surface of the region is divided in cells, where we define:
$e(i)=1 / F S(i)$
- The system evolves (e.g., under rainfal)

Cella "i"
 with a given 'velocity', ν (driving rate):

$$
t \longrightarrow t+\Delta t \quad \Longrightarrow \quad e(i) \longrightarrow e(i)+\nu
$$

- If cell " i " goes above threshold $(e(i)>1)$ an "avalanche" starts:

$$
\begin{array}{ll}
e(j) \longrightarrow e(j)+f \cdot e(i) & \text { where " } j " \text { is a n.n. of " } i " \\
e(i) \longrightarrow 0 & f=\text { fraction of " } i " \longrightarrow " j "
\end{array}
$$

- If there are more cells where $e>1$ repeat previous step

\square Example

Here, for simplicity, the threshold value is set to 4 , and the driving rate $\nu=1$

\square 'Landslide’ distribution

Size distribution of 'avalanches', $\mathbf{P}(\mathbf{s})$ (for the shown driving rates, ν)

\square Critical exponents

- Exponents as a function of the "conservation level", $C=z \cdot f$, in the critical region.

\square Space structure of $F S$

- Landslide shape

- Factor of Safety

Critical region

Non critical region
start
end
Time scale

FS scale
\square

\square The distribution of $P(F S)$

Even in the critical region the PDF of the Factor of Safety, $P(F S)$, is Gaussian and no signs of 'danger' appear from it. In the critical region, though, catastrophic events are very likely.

