PERCOLATION

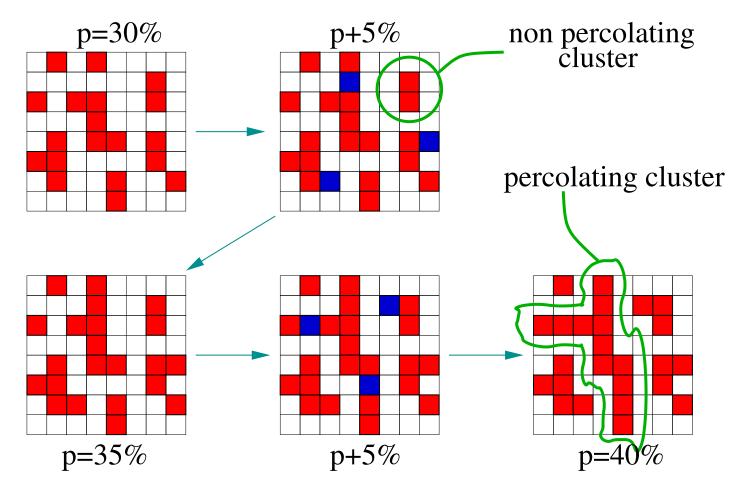
Mario Nicodemi

Complexity Science & Theor. Phys., University of Warwick"

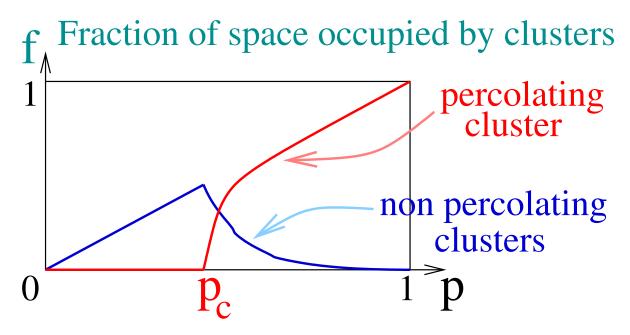
Topic:

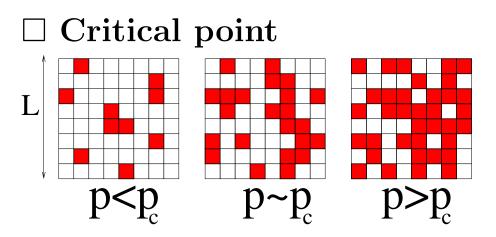
• Basic concepts in **percolation theory**;

\Box Percolation



\Box Normal and percolanting clusters





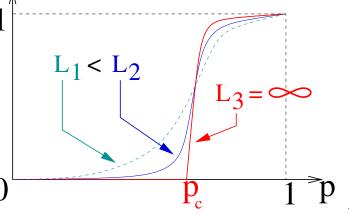
The fraction of filled sites is named p.

The *percolation probability*, P(p), is defined as the probability that a "cluster" of filled sites spans the whole lattice.

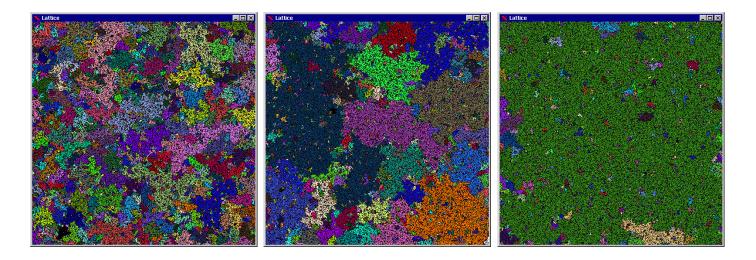
P(p)

If
$$L \to \infty$$
, $P(p) = 0 \ \forall p < p_c$.

The critical threshold p_c is known as **percolation point**.



\Box Percolation threshold



p=0.57

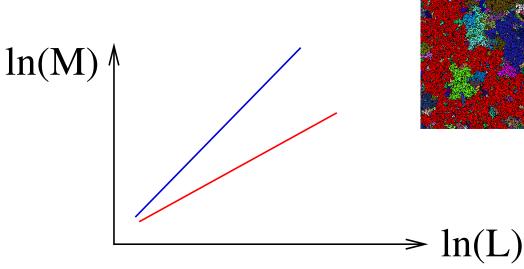
p=0.59

p=0.61

\Box Percolanting cluster

The "mass", M, of percolantion cluster is defined as the total number of sites belonging to it, or, equiv., its area. M scales as:

- if $p > p_c$: $M \sim L^2$
- if $p = p_c$: $M \sim L^D$ (e.g. $D \simeq 1.89$ in d = 2)
- if $p < p_c$: M = 0



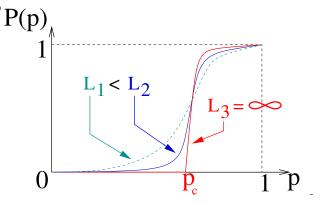
□ Summarising

• The percolation probability P(p) is

- for
$$p < p_c$$
: $P(p) = 0$

- for
$$p \ge p_c$$
: $P(p) = (p - p_c)^{\beta}$

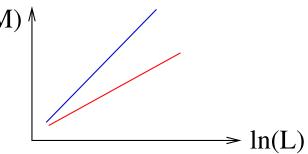
E.g., in d = 2 we have $\beta \simeq 0.14$, and on a square lattice $p_c \simeq 0.593$.



• The number of sites, M(L) (Mass), of the largest cluster (which for $p \ge p_c$ is the percolating one), in the limit $L \to \infty$ is:

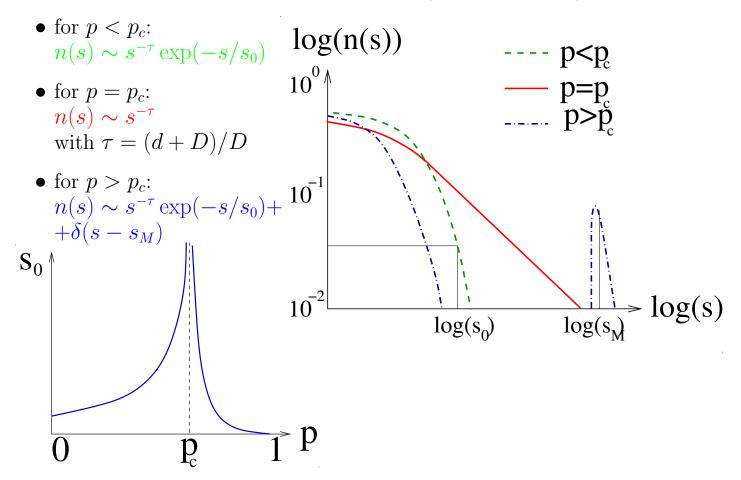
- per
$$p < p_c$$
: $M(L) \sim \ln L$
- per $p = p_c$: $M(L) \sim L^D$ ln(N
- per $p > p_c$: $M(L) \sim L^d$

Note that for $p = p_c$, the percolating cluster is a *fractal*. E.g., in d = 2 it is $D \simeq 1.89$.



\Box Cluster size distribution

The probability, to find a cluster with size s (i.e., with s sites) is:



\Box Scale properties

• Percolating cluster is characterised at p_c by a very important feature, named *scale invariance*:

if you take a subset, S', of the percolating cluster S, and blow up with a scale factor r (i.e., multiply its points coordinates by the factor r) you get a set rS which is statistically congruent ("equal") to the original set S.

For such a reason, the percolating cluster is named **self similar**.

