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� Network architectures

a Ring of ten nodes linked to nearest neighbours. b Fully connected network.
c Random graph with N nodes, joined in pairs with m links. A single giant
component appear if m > N/2 (here N = 200, m = 193). No dominant
hubs. The degree distribution is Poisson. d Scale-free graph, grown by at-
taching new nodes at random to existing nodes (probability of attachment
proportional to the degree of the target node). Hubs form & the degree dis-
tribution has a heavy tail. Colours indicate the three nodes with most links.



� Random v.s. Scale free nets

e In this random-graph N nodes are
linked in pairs with a probability p,
so they have approx. the same
number of links.
f The majority of nodes in a scale-free
network have 1 or 2 links, but a few
nodes have a large number; this
guarantees that the system is fully
connected. More than 60% of nodes
(green) are reached from the 5 most
connected nodes (red) compared with
only 27% in the random network.
This shows the key role that hubs
play in the scale-free network.
c The network connectivity is characterized by the probability P (k) that a
node has k links. For random graphs P (k) is peaked at k =< k > and
decays approx. as P (k) ∼ exp(−k) for large k.
d In a scale-free network P (k) has a power law P (k) ∼ k−γ tail.



� Random v.s. Scale free nets

Main network features: hubs absence/presence; degree distribution.



� Example: WWW

a The nodes of the WWW are web
documents, identified by an unique
uniform resource locator (URL).
Outgoing links to other pages are
shown as blue arrows, incoming
links are green arrows.
b The Internet is a net of routers
connected by physical or wireless
links and are grouped into domains.
c The probability that a Web page
has kin (blue) or kout (red) links
follows a power law.
d The degree distribution of the
Internet is power law, where k (green)
denotes the number of links a router
has to other routers.



�

Top right Yeast protein interaction network:
largest cluster shown (∼ 78% of all proteins).
Node colour ⇔ phenotypic effect of removing
that protein (lethal, non-lethal, slow growth,
unknown): approx. linear correl. between
lethality&connectivity (*?!*).
Bottom right This Internet map (Feb. ‘03)
traces the shortest routes from a test Web
site to about 105 others, using like colors
for similar Web addresses.



� Basic concepts
Degree (or connectivity), k, of a node is the number
of its links. F.ex., in the figure, node A has k = 5.
Degree distribution, P (k), is the probability that
a node has k links.
Path lenght, a measure of node distance, is the path
with the smallest number of links between 2 nodes
(in directed networks, the distance from A to B can
be different from the one from B to A). Its average
over the nodes is the mean path length, < l >,
a measure of a network overall navigability.
Clustering coefficient In a networks, if node A is
connected to B, and B is connected to C, A may also
have a direct link to C. This is quantified by the clus-
stering coefficient CI = 2nI/kI(kI − 1), where nI is the
number of links connecting the kI neighbours of node
I to each other. So, CI is the num. of ‘triangles’
through node I (kI(kI − 1)/2 is the max possible
num. of triangles through I). F.ex., only one pair of
node A five neighbours in the figure are linked
together (B and C), which gives nA = 1 and CA = 2/20; none of node F neighbours link to each
other, giving CF = 0. The average clustering coefficient, < C >, characterizes the overall
tendency of nodes to form clusters or groups.
An important measure of the net structure is C(k), the average clustering coefficient of nodes
with k links. For many real networks C(k) k−1, which is an indication of a network hierarchical
character. P (k) and C(k), capturing generic features, are used to classify networks, as < k >,
< l > and < C > characterize a specific network.



� Network structures
Random networks The Erdös-Rényi net has
N nodes connected in pairs with probability p,
which creates a graph with approximately
pN(N − 1)/2 random links. P (k) is Poisson
(Fig. Ab), with a typical < k >; C(k) is
independent on k (Fig. Ac); the mean path
length is l ∼ ln N (‘small-world’).
Scale-free networks have P (k) ∼ k−γ. Few
nodes are highly connected (hubs, blue nodes
in Ba). The Barabasi-Albert grown net (shown)
does not have an inherent modularity, so its
C(k) is indep. of k (Fig. Bc). Scale-free nets
with degree exponents 2 < γ < 3 are observed
in most nets. l ∼ ln ln N , shorter than Random
Nets.
Hierarchical networks have coexistence of
modularity, local clustering and scale-free
topology. They are formed by clusters
combined in an iterative manner, with
hierarchical hubs and C(k) ∼ k−1.



� Motifs
Subgraph is a subset of nodes
connected to each other in a
specific wiring diagram. F.ex., in
the figure four nodes that form a
square (yellow) represent a
subgraph of a square lattice.
The number of distinct subgraphs
grows exponentially with N .
Motifs are subgraphs over
represented as compared to a
randomized version of the same
network (keeping the number of
nodes, links and P (k) unchanged).
Motif clusters Clustering of
motifs into motif clusters seems to
be a general property
of all real networks.



� Metabolic nets
A simple pathway (catalysed by
Mg2+-dependant enzymes) is
illustrated (a). In the most abstract
approach (b) all interacting
metabolites are considered equally.
The links between nodes represent
reactions that interconvert one
substrate into another. For many
applications it is useful to ignore
co-factors, such as ATP, which
results in (c) a graph with only
the main source metabolites to
the main products.
P (k) of metabolic networks (d)
and clustering coefficient C(k) (e).
(data shown in d and e are averages
over 43 organisms, Barabasi Nat.Bio.).
The flux distribution in the central
metabolism of Escherichia coli
follows a power law, which indicates
that most reactions have small
metabolic flux, whereas a few
reactions, with high fluxes, carry
most of the metabolic activity (f).



� Preferential attachment growth

• Example of SFN incremental growth from 2 to 11 nodes. When decid-
ing where to establish a link, a new node (green) prefers to attach to
an existing node (red) that already has many connections. These basic
mechanisms - growth and preferential attachment - lead to the system’s
being dominated by hubs, and power law degree distribution (γ = 3).

• Variant I: if the attachm. prob., pi, to node i is not linear in ki, only one
single major hub emerges (“winner take all”, no scale free).

• Variant II: if pi ∼ ηiki, with ηi rnd from P(η), the γ depends on P .



� Nets vulnerability

Accidental failure of nodes in a random network (top panels) can fracture the system into non-
communicating islands. Scale-free networks are more robust to such failures (middle panels).
But they are highly vulnerable to attacks against hubs (bottom panels).



� Robustness to failure

Top Removing just 3 (i.e., 14%, circled)
nodes breaks the network into several
smaller clusters.
Bot.Left Percolation theory predicts
that a random network (red) breaks into
tiny clusters if a critical fraction, fc,
of nodes is removed. In scale-free nets
the cluster size only falls to zero when
all the nodes have been disconnected
(green). However, if the most-connected
nodes are removed then the scale-free net
break at a small fc.
Bot.right By randomly removing
domains from the Internet, more than 80%
of the nodes have to fail before the network
fragments (green). However, the same effect is achieved by removing just a
small fraction of the most connected nodes are targeted (red).



� ‘Small World’

Left Random rewiring of a ring of N vertices linked to k nearest neighbours. Choose a vertex
and an edge to its n.n.. With probability p, reconnect this edge to a random vertex (duplicates
forbidden). Repeat clockwise around the ring until one lap is completed. Next, consider edges
to 2nd n.n., etc... (as there are Nk/2 edges in the graph, rewiring stops after k/2 laps.) For
intermediate p, the graph is a small-world network: highly clustered like a regular graph,
yet with a small path length, like a random graph.

Right The path length L(p) is the averaged number of edges in the shortest path between
two vertices. The clustering coefficient C(p) is the average number of ‘triangles’ in the graph.
As p increases, L(p) rapidly drops, corresponding to the onset of the small-world phenomenon.
Meanwhile, C(p) is almost constant at its value for the regular lattice, indicating that the
transition to ’small world’ is almost undetectable at the local level.


