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Abstract 

The generalization of Kasteleyn and Fortuin clusters formalism is introduced in XY (or more 
generally O(n)) models. The clusters' geometrical structure may be linked to spin physical 
properties as correlation functions. To investigate percolative characteristics, the new cluster 
definition is analytically explored in one dimension and with Monte Carlo simulations in 2D and 
3D frustrated and unfrustrated n-clock models. 

I. Introduction 

The idea to describe long range correlations and coherency in spin systems from 
a geometrical point of view dates back to thirty years. In the late 1960s this project 
was accomplished for Ising models by Kasteleyn and Fortuin (KF), who developed 
a method to give intrinsic definitions of clusters of spins which might describe with 
their percolation characteristics the structure of correlations patterns. Cluster formal- 
ism and percolation tools [1,2], have proven extremely useful in the understanding of 
critical phenomena of Ising models [3, 4]. Among the many results, very interesting is 
the discovery of the possibility to describe spin correlations through percolative con- 
nectivity functions and the consequent link between thermodynamic critical behaviors 
and cluster fractal structures (see [5]). The individualization of "physical" clusters of 
spin introduced within this approach, has been also successfully exploited by Swendsen 
and Wang (SW) [6, 7] to develop fast Monte Carlo (MC) dynamics, for unfrustrated 
Ising models, based on cluster update and later on to drastically improve simulations 
in frustrated systems too [8, 9]. 

Nevertheless, the discussions about the extension of cluster formalism and percolation 
concepts to continuous spin systems as XY or O(n) models is still open, and the 
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equivalent of KF cluster in such systems is not known. Wolff [7] has proposed a cluster 
definition in XY models based on a smart application of KF rule to spin projections 
along random directions. The clusters so introduced have proven to have a percolative 
critical temperature exactly equal to the thermodynamic one in unfrustrated XY models, 
also if their ultimate connections with spin properties is not understood [11]. One of 
the successes of KF approach consists in the clarification of the links between the 
clusters and the physics of the spins. 

In this paper we try to address a possible generalization to XY and O(n) models 
of KF approach to Ising-like systems. This extension leads to new cluster definitions. 
In the spirit of the works of Kasteleyn-Fortuin and Coniglio-Klein (CK) we try to 
focus the relations between clusters and spins, disregarding, at the moment, applications 
to efficient MC algorithms. Specifically, we try to introduce concepts and tools to 
manipulate the structure of such clusters in this larger context, as done by KF and CK 
in Ising-like systems. In ferromagnetic models, the new clusters generally individualize 
regions of statistically coherent spins, i.e. almost parallel spins, and describe the physics 
of such aggregates. For the sake of clarity, before passing to such a generalization 
(presented in Sections 3 and 4), in Section 2 a fast outlook at the original KF approach 
to Ising systems is given, to define notations and concepts used in what follows. Later, 
the properties of these new clusters are analytically studied in one dimension and via 
MC simulations in n-clock models in 2D and 3D, where the thermodynamic transitions 
have different properties. 

2. Cluster formalism for Ising spin Hamiitonians 

Let us consider an Ising system of spins Si = ±1 with the Hamiltonian: 

f l ~ ( { S i } )  = - E ( J i j S i S j  - Ig,jl), (1) 
(i,j) 

where {Sj} is the spin configuration, the sum is over all interacting spin pairs and, 
as usual, fl = 1/kBT. The constants in the Hamiltonian have been chosen for future 
convenience and for simplicity we can consider Jij = J > 0 Vi, j ,  i.e. we take an Ising 
isotropic ferromagnet. 

The cluster formalism to describe "droplets" of Ising spin [3] was originally devel- 
oped by Kasteleyn and Fortuin [1], and later on in a different approach by Coniglio 
and Klein [2]. It is based on the mapping of the original model described by Hamilto- 
nian (1) into a new model in which spin couplings have infinite or zero strength. The 
mapping consists in stochastically changing the interactions Jij between spin pairs to 
new values J~ (to define clusters we are interested in the limit IJ/~l ~ o ~  or J~ ~ 0), 
in such a way that the two models, with new and old interactions, are statistically 
equivalent. 

Towards this aim, following KF, let us consider then each pair of interacting spins 
Si and Sj, and suppose J~ E {0, jr, _ j , }  with J '  > O. If the change of Jij to a new 
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interaction ,/~ = J '  occurs with a weight Po, to a J~ -- - J '  with p~ and to Ji~ = 0 
with q, then the sum of  statistical weights of  a spin configuration {&,Sj} in the new 

possible models is [1,2] 

W(Si, Sj) = q + poe J'(&s'-l) + p~e -J'(&&+l) . (2) 

It is to be noticed that we are slightly modifying the original KF-CK approach in 
which p~ was a priori set to zero. To impose the statistical equivalence of  the original 
and mapping models we must then require that a given spin configuration has the same 
weight: 

exp(-flov#({Si})) = 1--[ W(Si ,S j ) .  (3) 
(i,j) 

So for each pair of  interacting spins we must require: 

e J ( S ' & - l )  = q + po  e J ' ( & & - l )  -F- p ~ e  -J'(&S1+l),  (4) 

where the P0, P~ and q are unknown temperature functions. 
To introduce the definition of  clusters of  spins we must consider the limit j t  _._, c~. 

Two spins Si and S# connected in the new model by an infinite interaction must have 
then a definite reciprocal direction (i.e. parallel if J~ = + J '  and antiparallel if J~ = 
- J ' )  to have a nonzero weight, otherwise, if disconnected, they are completely inde- 
pendent. Thus in the new model the clusters are naturally defined as the maximal sets 
of  spins connected by oo interactions (called bonds). The deletion (J/~ = 0) or the 
freezing ([J~[ = oo) of  the original interactions leads to the contraction of  the spin 
lattice in independent fundamental units: the clusters. In the limit jr__.+ c~, Eq. (4) 

becomes: 

e J(S'SJ-I) = q + Po6s,.s, + p~6s,,-s, • (5) 

This is a linear system of  two equations with three unknowns q, p0 and p~, and so it is 
possible to introduce physical constraints to select some definite solution [9]. Towards 
this aim let us introduce the connectivity function 7,7, which is one if spin Si and S# 
belong to the same cluster and zero otherwise. It is possible to show that connectivity 
is always greater or equal to spin correlation [9,12]: 

{SiSj} = (3'I~) - (?i~)~< (71~) + (Y~) - (Yij} , (6) 

where Yl~ (Vi~) is one if Si and S# belong to the same cluster and are parallel (anti- 
parallel). A criterion which proved to be extremely important to select the definitions 
of  interacting clusters (i.e. the relative value of  q, p0 and p~) is to make connectivity 
as close as possible to correlation, i.e. to minimize connectivity as a function of  q, p0 
and p~ [9,14]: 

(Yij) ~ minimum. (7) 

This natural condition, which corresponds essentially to selecting clusters whose struc- 
ture resembles the correlation patterns in the system, has given excellent results in 
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frustrated and unfrustrated Ising spin systems [9,14]. In the case of  the simplest ap- 

proximation in which we consider just a single couple of  interacting spins Si and 
Sj ,  the mean connectivity is (Tij) = (P0 + p~)/(1 + e - 2 J ) ,  and to impose condition 

(7), with constraints O<<.q, po, p~,  naturally leads to p ~ = O  (or analogously p0 = 0 
if J < 0). In the present case, this result also may be simply obtained by directly 

imposing (SiSj) = (Tij). The solution: 

p~ = 0; P0 = 1 - q = 1 - e - 2 J  ( 8 )  

is the well known result of  Kasteleyn-Fortuin [1] and Coniglio-Klein [2]. Within this 

context it is possible to show that the partition function of  a Q-Potts model [4] may 
be written as (Q = 2 corresponds to Ising model)  [1,2]: 

ZQ(J)  = Z qlAI p~ClQUlC) , (9) 

C 

where Po = 1 - e  -QJ = 1 - q ,  N ( C )  is the number of  clusters in the configuration 

of  bonds C (i.e. the set o f  ~ interactions), ]C I (resp. IA]) is the total number of  
bonds in C (resp. of  absent bonds or zero interactions), and ~ c  is the sum over all 
bonds configurations. Eq. (9) gives the Ising partition function in terms of  the partition 

function of  a correlated-percolation model [13]. Moreover, with KF solution, for an 
Ising ferromagnet, Eq. (6) becomes: 

(SiSj) = (Tij) • (10) 

3. Cluster formalism for X Y  spin Hamiltonians 

Let us examine now the problem of  cluster definitions in continuous spin systems. 
We consider an XY model, but the same arguments may be extended to O ( n )  models. 
Specifically, we consider a system of  planar spins, Si, with pair Hamiltonian: 

flHij :- - (Jij cos(0i - Oj ) - }Jijl) , ( 11 ) 

where Oi is the phase of  spin Si, as before we take /3 = 1/kBT and for clarity Jij = 

J > 0. The constant in the Hamiltonian has been chosen for convenience so that two 
ferromagnetically interacting spins have zero energy when they are parallel. 

Following the idea proposed by KF, we map the original model described by Hamil- 
tonian (11) into a new model in which the pair Hamiltonian between interacting spins 
is stochastically changed to new functional values H~., in such a way that the two 
models are statistically equivalent. As above, to individuate clusters we are interested 

in the limit H i ~ ~ or H i ~ 0. The main difference with the previous section con- 
sists in the fact that many choices for H '  are necessary, but the arguments will be the 
same. Let us therefore define new pair Hamiltonians characterized by a new variable 
q ;j: 

I 
/3H(Si,  Ss; (oij) =- - ( J / j  cos(0i - OJ - ~ l j )  - IJ/jl) + C(J / j )  , (12) 
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where the parameter is qS~j E [0,2zt], J~ = J '  > 0 and C ( J ' )  is an adjustable regular- 

ization function in the limit j t  __+ oo. 
To impose the statistical equivalence of the original and the mapping models, we then 

require that spin configurations have the same weight in both of them, so if we define 
p(~b') as the statistical weight to map the pair Hamiltonian (1 1) into H(Si ,  Sj; c~'), and 
q the weight to map it into a zero energy interaction, then Eq. (4) becomes 

2n 

e--flHo(S,,Si ) = q + / p( (o ' )e  -13H~s''s';4/) dg?' .  (13) 
J 

0 

As above, to define clusters we consider the limit J '  ~ exp. Two spins Si and Sj 

connected in the new model H ( S i ,  " ' Sj, ~bij) by an infinite interaction, must have a definite 
reciprocal direction (i.e. Oi - Oj = 49~j) to have a nonzero weight; otherwise, if not 
connected, they are completely independent. Thus in the new model the clusters are 
naturally defined as the maximal sets of spins connected by ~x~ interactions (bonds).  

In contrast to the Ising case we now have much more than just two kinds of bonds 
(between parallel spins P0, or antiparallel spins, p~). Following this method it is then 
possible to generalize the procedure of deletion (J/5 = 0) and f r ee z in9  (J,~. = oo) of 
the original interactions. Also in this case different clusters are independent (if q is 
a function of 0i - 0j or if the infinite limit is not systematically taken, then one has 
interacting clusters). In the infinite limit jl__+ oo, Eq. (13) becomes 

2n 

e -flH"(s''sj) = q + / p(c~l)6(Oi - Oj - c~')ddp' = q + p(Oi - Oj ) ,  (14) 
, J  

0 

where the function C ( J ' )  has been absorbed to regularize the definition of the a- 
function in the interval [0,2re] with argument defined modulus 2n. Eq. (14) is a linear 
functional equation in the unknown functions P ( ~ t , J i j )  and q(J i j ) .  

A solution of Eq. (14) is suggested by the reasonable limit behavior p(~b') --+ 0 if 
J --~ 0, or alternatively by the condition of local minimal connectivity (see below): 

q = e-2J;  p ( c y )  = e J(c°s(#)-l) - q .  (15) 

This solution reproduces in the Ising case the results by Kasteleyn and Fortuin given 

in Eq. (8). 
The clusters are operatively individualized by the conditioned probabilities: 

p(qb'lOi -- Oj) = p(qb')a(Oi -- Oj -- 49')e~N(s"s'); 

q( Oi -- Oj ) = q . e l~14{s''g ) (16) 

which may be interpreted as the conditioned probability to substitute the original in- 
teraction in the mapping model with a bond of the kind q~' or with a zero interaction, 
given the spin configuration {S/,Sj} (note that these probabilities are completely in- 
dependent of the choice of the constants for the energy of the ground state). These 
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conditioned probabilities may be used to implement MC cluster algorithms because 
they contain the necessary information to build clusters from spin configurations and 
it may be proved that algorithms based on these probabilities satisfy detailed balance 
principle [8,9]. They are the generalization to XY of KF bond conditional probabilities 
in Ising systems. 

Eq. (14) may also be considered directly as the starting point to define clusters of 
bond variables {~b~j}, avoiding completely to introduce the procedures of Hamiltonian 
mapping and definitions (12). In this perspective Eq. (14) is just a way to introduce 
a statistical system of variables of spin and bonds ({0i}, {~blj}) with the following 
peculiar properties [15]: the marginal distribution of the {Oi} is exactly equal to the 
Boltzman weight e-~H((°'}); the conditional distribution of {~b~j}, given {Oi}  , is exactly 
expressed by Eqs. (16); the conditional distribution of {Oi}, given {~b~j}, corresponds 
to the above given definition of clusters, i.e. two interacting spin Si and Sj belonging 
to the same cluster must have a definite reciprocal direction 0i - Oj = ~b~j; otherwise, 
if disconnected, they are completely independent. Note that only the sets {~b~j}, such 

that given any two sites h and k the quantity A O = ~ (~j is independent of the 
"integration" path, are allowed. 

4. Relations between thermodynamics and percolation 

The previous section was devoted to introduce a simple generalization of Kasteleyn- 
Fortuin and Coniglio-Klein clusters in XY models. Now we face the problem of work- 
ing out some main relations between percolative and thermodynamic quantities. Easy 
extensions may be given for general O(n) models. 

The partition function of the XY model, from Eq. (14), may be written as 

2n 

Z=-- ~i ./dOie-11~'<'.'>11~s'sJ)= ZqlAIp(c)(2n)u'<~), (17) 

0 

where [A[ is the number of bonds absent on the fixed lattice configuration (~, N((~) 
( ,  is the total number of clusters in C, and by definition P((~) = l-I<ij>cc p ~ij). The 

sum, )-~c, is intended over all possible bond configurations, C (note that two bond 
configurations are distinguished by their geometry and by the kind of bonds {~b;j} they 
have), and specifically 

Z =- ~ d J  H d~)iJ 6(C',{~b~j}) (18) 
C <~j>EC 

with H(ij)CC the product over all bonds present in the configuration C, {~b~j} the 

set of indexes of such bonds present and 6(C', {qS;j}) a function nonzero only if the 

configuration C and the set {~b~j} are compatible (i.e. if the sum of ~b~j between 
whatever fixed extrema h and k along a chain of present bonds, is independent of 
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the path, i.e. clusters are welt defined because such a quantity is exactly the phase 
difference between Sh and Sk). 

The percolative quantity to be compared to the thermodynamic two point correlation 
function is the pair connectivity c(i , j) ,  defined as 

2n 

c(i , j)  = / c ( i , j ,  49)d49 , (19) 
[ *  

. 1  

o 

where c(i,j,  49) = (~ij(49)) and 7ij(49) = 7ij • 6(Oi - Oj - 49) which is zero if the spins 
Si and Sj do not belong to the same cluster or have a phase difference Oi - O; ~ 49. 
c(i,j,  49) is therefore the probability of spin i and j to belong to the same cluster with 
a phase difference 49. 

It is possible to show that the pair correlation function g(i , j )  = (Si. Sj) is given by 

2n 

g(i , j )  = / cos(49)c(i,j, 
g ,  

49) d49 . (20) 

0 

Eqs. (19) and (20) imply 9(i,j)<~c(i,j) ,  analogously to Ising systems where Eq. (6) 
holds. A consequence of this proven inequality is that Tc <<. Tp, where Tc and Tp are 
defined as the temperatures where the magnetic susceptivity Z and the mean cluster 

! t 

size S = )--~s n~ s2 [13] (n~ is the number of clusters of size s and ~ s  is the sum over 
just finite clusters) become singular, respectively. These relations naturally suggest, in 
analogy with the Ising spin case, the criterion of minimal connectivity to select cluster 
definitions, i.e. to impose the condition: 

c(i , j )  --~ minimum, (21) 

where c(i , j)  has to be minimized respect to p(49). As anticipated above, imposing 
Eq. (21) just for each pair of interacting spins Si and Sj, directly leads to select the 
solution given in Eq. (15) for Eq. (14). It is to be noticed that this solution is however 
just the simplest extensions of the KF result. In fact more general solutions must be 
found as shown below, but the general tools introduced to link percolative and spin 
properties, allows to exploit, for XY models, the many techniques to individualize and 
manipulate clusters known in the literature for Ising systems (see [1,2,9,14]). In what 
follows we will restrict, however, to consider the simple solution given in Eq. (15). 

The relations reported above indicate that thermodynamic spin quantities may be 
generally expressed in terms of cluster properties. For example it is possible to link 
the mean energy E with geometrical quantities. In the case of an isotropic ferromagnetic 
XY model it gives 

E/N = - (7018/~ ln(p(49g 1 )/q)) + ~[~ In(q), (22) 

where 0 and 1 are two of the N interacting pairs of spin in the system. As Eq. (17) is 
the natural generalization of Eq. (9), so is Eq. (22) the extension of the corresponding 
energy-bond relation in Ising systems [9,16]. 
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5. Clusters in a one-dimensional X Y  model 

To understand the properties of  the above defined clusters it may be interesting 

to analyze the question in some details. In a one-dimensional XY model of  nearest 
neighbor interacting spins [17], the geometry of  the above defined clusters corresponds 

to chains of  bonds, and the problem is extremely simplified. So it is possible to prove 

that, adopting solution (15), the partition function, Eq. (17), in the case of  an isotropic 
XY ferromagnetic chain, is 

Z1D(J) = Z qlAIpICI(21t)N(C) ' (23) 
C 

where ~--~c is just the sum over all graphs of  bonds on the chain, P = 2zce-J(Io(J)  - 

e - J )  (In(X) is the imaginary argument Bessel function of  order n). From Eq. (23) it 

is possible to see that the partition function of  an XY chain may be written as that of  

a Q-Potts linear model, ZQ (see Eq. (9)), times a simple factor. Specifically, 

Z1D(J )  = K .  ZQ(JQ) , (24) 

where N is the total number of  interactions, Q = 2n, Q .JQ(J )  = ln(1 + P / q )  (JQ ~ J 
i f J  ~ oo or J ~ 0), and K ( N , J )  = e -N(2J-QJ°). 

We are concerned with clusters and spin properties, and in the context o f  the linear 

model it is possible to prove a definite relation between correlation 9 and connectivity c: 

g( i , j )  = e-r /~c( i , j )  , (25) 

where r = li - J l  is the number of  spins between S,. and Sj plus one, and 

~ - l ( j )  = l n [ ( I 0 ( J )  - e - J ) / l l  ( J ) ] .  (26) 

Moreover the connectivity c ( i , j )  at temperature T = 1/J for the XY model, is equal to 
the connectivity cQ(i , j )  of  the KF (or CK) clusters introduced above in the Q-Potts 
model with T = 1/JQ(J) and Q = 2~: 

c ( i , j ) l j  = cQ(i,j)]jt~(j) . (27) 

These results should shed some light on the connections between cluster connectivity 
and spin correlation in one-dimensional XY models. A trivial consequence of  all these 
relations in 1D is that Tp = T,. = 0 (it would be hard to find clusters with a bit of  
randomness with Tp > 0 in one dimension), but this coincidence does not hold for the 
critical behavior. Defining ~x~f as the correlation length in the XY model and ~Q eotts as 
the mean cluster radius in its Q-Potts equivalent, Eq. (25) imposes ~ = ~p-Potts-1 q_ ~-1  , 

but, in 1D, at low temperature ~xr ~ T - I  while ~Q-Potts ~ e A(Q)/r [13,17], and so clus- 
ters quite loosely express spin-spin correlations. 
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6. MC results for the X Y  model in higher dimensions 

The analytical problem concerning the structure of  clusters in XY models in higher 

dimensions, is, worthless to say, much more difficult. We present then some Monte 

Carlo results about clusters properties (defined from solution (15)), in two and three 
dimensions. 

MC simulations were done using a standard Metropolis spin flip algorithm [18] on 
n-clock models on a square or cubic lattice described by Hamiltonian (11) (in the 

following if not specified we will consider the isotropic case Ji] = J ~>0), whose spin 

Si has a phase Oi = 2~zm/n with m 6 {0 . . . . .  n - 1 }. 
Let us briefly examine our MC results in two dimensions. In the case n = 2 we 

exactly recover the 2D ferromagnetic Ising model. Our MC simulation indicates the 

well known result o f  equal critical temperatures T¢ = Tp = 2.269 (all temperatures are 
measured in units of  J )  and a percolative critical phenomena characterized by Ising 
exponents. Moreover, the MC dynamics based on the above defined clusters is just 

the Swendsen-Wang dynamics and the phenomena of  critical slowing down drastically 

reduced [6,7]. 
For n > 4 such correspondence is no longer verified. Such a result may be expected 

because in these cases connectivity and correlation are not coinciding as shown by 

the simple example of  just two interacting spins with n = 5 (the cases n = 3, 4 may be 
successfully faced with some tricks, in resemblance of  the possibility to map n = 3, 4 

clock-models in an equivalent Q-Potts [4]). 
The percolation critical temperature decreases for increasing n, and approaches a 

plateau in the large n limit. In actual facts, via MC simulations, for n = 36, we find 

that the percolation point is at 

Tp = 1.69 + 0.03 

to be compared with the 2D XY critical temperature at Tc ~ 0.89 [7,11]. We find that 

the percolation critical exponents are in the universality class of  random percolation 
as expected because there is no thermodynamic transition underlying the percolative 
one: the critical exponents, measured via a finite size scaling analysis [18] (reported in 
Fig. 1), are v ---- 1.33+0.05 and 7/v = 1.79+0.05 in perfect agreement with 2D random 
percolation exact values v = 4/3 and 7/v = 43/24. These exponents, in percolation, 
characterize, respectively, the divergence of  mean cluster radius ¢ and mean cluster 

size S: ~ ~ [T - Tpl -v  and S ,~ [ T - Tp[ -~' [13]. 
This behavior is observed, as may be easily suspected, in frustrated or disordered 

systems too. We tested, via MC, the fully frustrated XY model (FF) and the + J  XY 
spin glass (SG) (see references in [19]), where we found the same percolative critical 

exponents and (see the scaling analysis in Figs. 2 and 3): 

T F F =  1.61 4- 0.03 and Tp sC = 1 . 6 4 ± 0 . 0 3 .  

This value for the percolation transition in the FF model is above the critical region 
located around T ~ 0.4-0.5 (see [19]). Also Wolf f ' s  clusters show a percolation point 
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well above the critical region [11], but it is possible to introduce their direct general- 
izations whose Tp may be pushed closer and closer to it [20]. 

The same kind of results are found in three dimensions. For n = 2 we recover the 
well known properties of KF or SW clusters in the 3D Ising model Tp = Tc ~ 4.5 and 
v ~ 0.62, 7/v ~ 1.97 (see [21]). Our MC runs show, for n = 36, Tp = 3.75 ± 0.05 and 
3D random percolation critical behavior with v -- 0.87 ± 0.05 and 7/v -- 2.00 ± 0.05 
(see Fig. 4). These values are to be compared to the results of 3D XY Tc ~ 2.2 and 
v ~ 0.66, 7/v ~ 1.98 (see [22]). Essentially the same values are found for the 3D ± J  
XY spin glass. 

It is interesting to note that, as expected and discussed above (see also [9,14]), 
whenever the gap between Tp and T~. becomes finite, SW like cluster algorithms for 
MC simulations are not able to reduce the critical slowing down. 

After these MC results, the panorama we get illustrates that the straight generalization 
to XY models of KF clusters, given in Eq. (15), does not have the peculiar properties of 
KF clusters in Ising like systems: the thermodynamic and percolative transitions are no 
longer coincident. In Ising models, more complex procedures have been introduced to 
individualize physical clusters, as those proposed in [8,9,14]. It would be interesting to 
verify if the extensions to XY of such procedures along the lines proposed above, have 
the same percolation properties found here or new interesting results can be obtained. 

7. Summary and conclusions 

In analogy to the works of Kasteleyn and Fortuin and Coniglio and Klein, clusters of 
nearest neighbor spin in XY models may be defined as sets of spin connected by bonds 
according definite rules. The clusters divide the original lattice into independent regions 
of statistically coherent spins. Kasteleyn and Fortuin's concepts and tools to link clusters 
and spin properties, which proved to be so useful in Ising systems, can be extended 
to XY models. In these models, at a first simple level, KF clusters may be defined by 
separately looking at just each single couple of interacting spins. Consequently, bonds 
are introduced between them according to the definite probability distribution given in 
Eq. (15) (as a matter of fact, this is for XY models, but the analog for general O(n) 

is absolutely similar). 
Nevertheless, at the simple level here explored, many differences appear with Ising 

systems. It is known that in the Ising model these clusters have a percolation point 
which, imposing condition (21 ), may be pushed to coincide with the critical one To, and 
has percolative exponents in the Ising universality class [ 1,2]. The properties of the new 
clusters may be studied analytically for continuous spin systems in one dimension. Here 
Eq. (25) implies that the mean square radius of clusters different from the Ising KF case, 
is no longer coincident with the correlation length in the system. Numerical results show 
the same behavior in higher dimensions, where moreover cluster percolation point Tp is 
different from To. Phenomenologically, the temperature Tp is the point where regions of 
almost parallel spin (in ferromagnetic models), i.e. regions of coherent spins, percolate 
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in the system. The transition corresponding to this point, for clusters defined by Eq. 
(15), is in the random percolation universality class. 

The occurrence of a finite gap between Tp and Tc is found in Ising spin systems 
when frustration is present. In this case a general criterion to close such a gap has 
been proposed [8,9,14]. Exploiting the results presented here, it is possible to apply 
such a criterion to frustrated and unfrustrated O(n) models too, and in perspective give 
a percolative description of their critical behaviors in analogy to the known results 
for Ising like models. This approach would lead to a change of the bond probability 
distribution given in Eq. (15). In unfrustrated and frustrated Ising models a definite 
physical origin has been associated to the percolation point Tp [23]. It is then natural 
to speculate on it in continuous spin models too. 

The criterion introduced in [8,9,14] is actually suited to develop efficient MC cluster 
algorithms in Ising systems. The perspective to go further in such a direction also for 
O(n) models, is very appealing. 
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