## Problem sheet 1

1. If $X$ is a random variable (RV) and $a$ and $b$ are constants, show that:
(a) $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$
(b) $\operatorname{VAR}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$
(c) $\operatorname{VAR}(a X+b)=a^{2} \operatorname{VAR}(X)$
where $\mathbb{E}[\cdot]$ denotes the expectation of its argument and $\operatorname{VAR}(\cdot)$ the variance.
2. (Conditional sum and product rules) For three RVs $X, Y$ and $Z$ show that:
(a) $P(Y \mid Z)=\sum_{X \in \mathcal{X}} P(X, Y \mid Z)$ (where $\mathcal{X}$ is the range of $X$ )
(b) $P(X, Y \mid Z)=P(X \mid Y, Z) P(Y \mid Z)$
3. Bayes' rule is often written in the form

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Show that Bayes' rule can also be written as

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{\sum_{X \in \mathcal{X}} P(Y \mid X) P(X)}
$$

where $\mathcal{X}$ is the range of $X$.
4. Let $X_{1}, X_{2} \ldots X_{n}$ be any set of RVs. Show that:

$$
\begin{aligned}
& P\left(X_{1}, X_{2} \ldots X_{n}\right) \\
& \quad=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{n} \mid X_{1}, X_{2} \ldots X_{n-1}\right)
\end{aligned}
$$

where $P\left(X_{1}, X_{2} \ldots X_{n}\right)$ is the joint distribution over all $n$ RVs and $P(\cdot \mid \cdot)$ are conditionals.
(Hint: use the product rule)
5. Bill works at the marketing firm Arbitrary Promotions Plc. One morning, his boss calls him into her office and invites him to pick one from a set of three small boxes lying on her desk. Exactly one of the three boxes contains
the key to the executive suite: if Bill ends up with the correct box, he will win a promotion. Bill picks a box, say $\# 1$, and his boss (who knows which box contains the key) opens another box, say $\# 3$, and reveals it to be empty. She then offers Bill the chance to change his choice to box $\# 2$. Use Bayes’ rule to decide whether or not Bill should accept the offer and switch. (Note that an intuitive answer alone is not sufficient: you should work from first principles to obtain your result, making clear any assumptions you are mak-
 P XVKEHILEGIMKIIRP DOIMKRZ IMKHFRUFFWUHXCWT

