Problem sheet 2

1. Let X and Y be two random variables (RVs). Their covariance $\operatorname{COV}(X, Y)$ is defined as:

$$
\operatorname{COV}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

(a) Show that $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
(b) Show that if X and Y are independent $\operatorname{COV}(X, Y)=0$.
(c) Consider a $\mathrm{RV} X \in\{-1,0,1\}$, which takes on each of its three possible values with equal probability. Let a second RV Y be defined by $Y=X^{2}$. Calculate the covariance of X and Y. Interpret your result. (4 marks)
2. (Markov inequality) Let X be a continuous, non-negative random variable (RV) and a a positive constant. Show that:

$$
P(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

(Hint: write down the expectation of X as an integral, and split the integral at a.)
3. (Chebyshev inequality) Let X be any RV with mean μ_{X} and whose variance σ_{X}^{2} exists. Show that for any positive constant a :

$$
P\left(\left|X-\mu_{X}\right| \geq a\right) \leq \frac{\sigma_{X}^{2}}{a^{2}}
$$

4. An estimator $\hat{\theta}_{n}$ of a parameter is said to be consistent if it converges in probability to the true parameter value θ, that is if:

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|\hat{\theta}_{n}-\theta\right| \geq \epsilon\right)=0
$$

Using the Chebyshev inequality, show (informally) that the conditions

$$
\begin{aligned}
\mathbb{E}\left[\hat{\theta}_{n}\right] & =\theta \\
\lim _{n \rightarrow \infty} \operatorname{VAR}\left(\hat{\theta}_{n}\right) & =0
\end{aligned}
$$

are sufficient to establish consistency.
5. (Law of Large Numbers) Let $X_{1}, X_{2} \ldots X_{n}$ be a set of independently and identically distributed RVs (a random sample) with $\mathbb{E}\left[X_{i}\right]=\mu_{X}$ and $\operatorname{VAR}\left(X_{i}\right)=$ $\sigma_{X}^{2}<\infty$. Show that the sample mean

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

converges in probability to the mean μ_{X}.
6. $\mathbf{X}_{1} \ldots \mathbf{X}_{n}, \mathbf{X}_{i} \in \mathbb{R}^{d}$ are independently and identically distributed multivariate Normal random vectors, each having pdf:

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

(a) Write down the log-likelihood function for this model.
(b) Derive maximum likelihood estimators for the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. (The easiest way to solve this problem is using matrix derivatives. See Appendix C in Bishop for an introduction. You may also find the note "Matrix Identities" by Roweis useful; this is available on the course website. The derivatives

$$
\begin{aligned}
& \partial \\
& \partial^{\partial \mathbf{A}} \log (|\mathbf{A}|)=\left(\mathbf{A}^{-1}\right)^{T} \\
& \underline{\partial \mathbf{X}} \underline{\operatorname{Tr}}\left(\mathbf{X}^{-1} \mathbf{A}\right)=-\mathbf{X}^{-1} \mathbf{A}^{T} \mathbf{X}^{-1}
\end{aligned}
$$

may prove particularly useful. Here, $\operatorname{Tr}(\cdot)$ denotes the trace of its matrix argument.)

