## Problem sheet 2, solutions.

1(a). From the definition of covariance:

$$
\begin{aligned}
\operatorname{COV}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y-X \mathbb{E}[Y]-\mathbb{E}[X] Y+\mathbb{E}[X] \mathbb{E}[Y]] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]-\mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[X] \mathbb{E}[Y] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

1(b). Since $X$ and $Y$ are independent, $P(X, Y)=P(X) P(Y)$. Let $\mathcal{X}$ be the set of all possible values of $X$ and $\mathcal{Y}$ the set of all possible values of $Y$. Then:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} x y P(X=x, Y=y) \\
& =\sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} x y P(X=x) P(Y=y) \\
& =\sum_{x \in \mathcal{X}} x P(X=x) \times \sum_{y \in \mathcal{Y}} y P(Y=y) \\
& =\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Substituting into (1) above, gives $\operatorname{COV}(X, Y)=0$.

1(c). Since $Y=X^{2}, \mathbb{E}[X Y]=\mathbb{E}\left[X^{3}\right]=0$. Also, we can see that $\mathbb{E}[X]=0$ and therefore $\mathbb{E}[X] \mathbb{E}[Y]=0$. This gives $\operatorname{COV}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0$.
2. Let $p(x)$ represent the pdf of $\mathrm{RV} X$. Then:

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x p(x) \mathrm{d} x \\
& =\int_{0}^{a} x p(x) \mathrm{d} x+\int_{a}^{\infty} x p(x) \mathrm{d} x
\end{aligned}
$$

Since $p(x)$ is a pdf, it is everywhere non-negative, so the first term on the RHS must be non-negative. This means:

$$
\mathbb{E}[X] \geq \int_{a}^{\infty} x p(x) \mathrm{d} x
$$

Since $a$ is the lower bound on the integral above, we can write

$$
\int_{a}^{\infty} x p(x) \mathrm{d} x \geq \int_{a}^{\infty} a p(x) \mathrm{d} x
$$

which gives

$$
\begin{aligned}
\mathbb{E}[X] & \geq \int_{a}^{\infty} a p(x) \mathrm{d} x \\
& =a \int_{a}^{\infty} p(x) \mathrm{d} x \\
& =a P(X \geq a)
\end{aligned}
$$

from which the required result follows.
3. First, note that

$$
P\left(\left|X-\mu_{X}\right| \geq a\right)=P\left(\left(X-\mu_{X}\right)^{2} \geq a^{2}\right)
$$

Here, $\left(X-\mu_{X}\right)^{2}$ is a non-negative RV. Using the Markov inequality, we get:

$$
\begin{aligned}
P\left(\left(X-\mu_{X}\right)^{2} \geq a^{2}\right) & \leq \frac{\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]}{a^{2}} \\
& =\frac{\sigma_{X}^{2}}{a^{2}}
\end{aligned}
$$

as required.
4. If $\hat{\theta}_{n}$ is unbiased, we can write

$$
P\left(\left|\hat{\theta}_{n}-\theta\right| \geq \epsilon\right)=P\left(\left|\hat{\theta}_{n}-\mathbb{E}\left[\hat{\theta}_{n}\right]\right| \geq \epsilon\right)
$$

Applying the Chebyshev inequality to the RHS, we get:

$$
P\left(\left|\hat{\theta}_{n}-\mathbb{E}\left[\hat{\theta}_{n}\right]\right| \geq \epsilon\right) \leq \frac{\operatorname{VAR}\left(\hat{\theta}_{n}\right)}{\epsilon^{2}}
$$

From the RHS above we can see that if

$$
\lim _{n \rightarrow \infty} \operatorname{VAR}\left(\hat{\theta}_{n}\right)=0
$$

the estimator converges in probability to $\theta$, that is, it is consistent.
5. Let $\bar{X}_{n}$ denote the sample mean derived from $n$ observations. This is easily shown to be unbiased. Using the Chebyshev inequality:

$$
P\left(\left|\bar{X}_{n}-\mu_{X}\right| \geq \epsilon\right) \leq \frac{\operatorname{VAR}\left(\bar{X}_{n}\right)}{\epsilon^{2}}
$$

But:

$$
\begin{aligned}
\operatorname{VAR}\left(\bar{X}_{n}\right) & =\operatorname{VAR}\left(\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)\right) \\
& =\frac{\sigma_{X}^{2}}{n}
\end{aligned}
$$

Therefore

$$
P\left(\left|\bar{X}_{n}-\mu_{X}\right| \geq \epsilon\right) \leq \frac{\sigma_{X}^{2}}{n \epsilon^{2}}
$$

and

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu_{X}\right| \geq \epsilon\right)=0
$$

which means $\bar{X}_{n}$ converges in probability to the true mean $\mu_{X}$, as required.

6(a). Log-likelihood:

$$
\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{d n}{2} \log (2 \pi)-\frac{n}{2} \log (|\boldsymbol{\Sigma}|)-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)
$$

6(b). We proceed in two steps: we first treat $\boldsymbol{\Sigma}$ as fixed, and maximize $\mathcal{L}$ to get a value $\hat{\boldsymbol{\mu}}(\boldsymbol{\Sigma})$ which maximizes $\mathcal{L}$ for a given matrix parameter $\boldsymbol{\Sigma}$. Taking the derivative of the $\mathcal{L}$ wrt vector $\boldsymbol{\mu}$, we get:

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{\mu}} \mathcal{L}=\left(\Sigma^{-1} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)\right)^{T}
$$

Setting the derivative to zero, taking the transpose of both sides and pre-multiplying by $\boldsymbol{\Sigma}$, we get:

$$
\mathbf{0}=\sum_{i=1}^{n}\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)
$$

Solving for $\boldsymbol{\mu}$ :

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}(\boldsymbol{\Sigma}) & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \\
& =\overline{\mathbf{X}}
\end{aligned}
$$

Since this solution does not depend on $\boldsymbol{\Sigma}, \overline{\mathbf{X}}$ is the maximum likelihood estimator of $\boldsymbol{\mu}$ for any $\boldsymbol{\Sigma}$. To obtain $\hat{\boldsymbol{\Sigma}}$ we plug $\hat{\boldsymbol{\mu}}(\boldsymbol{\Sigma})=\overline{\mathbf{X}}$ into the log-likelihood to obtain

$$
\begin{equation*}
-\frac{d n}{2} \log (2 \pi)-\frac{n}{2} \log (|\boldsymbol{\Sigma}|)-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \tag{1}
\end{equation*}
$$

and maximize this function wrt $\boldsymbol{\Sigma}$.
We first introduce a sample covariance matrix $\mathbf{S}$ defined as follows:

$$
\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T}
$$

This allows us to re-write the quadratic form in (1) as a matrix trace:

$$
\sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)=n \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{S}\right)
$$

where $\operatorname{Tr}(\cdot)$ denotes the trace of its matrix argument.
This in turn allows us to write the derivative of (1) wrt $\boldsymbol{\Sigma}$ as follows:

$$
-\frac{n}{2} \frac{\mathrm{~d}}{\mathrm{~d} \boldsymbol{\Sigma}} \log (|\boldsymbol{\Sigma}|)-\frac{n}{2} \frac{\mathrm{~d}}{\mathrm{~d} \boldsymbol{\Sigma}} \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{S}\right)
$$

At this point we make use of two useful matrix derivatives (these can be found in Appendix C of Bishop and the note "Matrix Identities" by Roweis, available on the course website):

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{A}} \log (|\mathbf{A}|) & =\left(\mathbf{A}^{-1}\right)^{T} \\
\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}\left(\mathbf{X}^{-1} \mathbf{A}\right) & =-\mathbf{X}^{-1} \mathbf{A}^{T} \mathbf{X}^{-1}
\end{aligned}
$$

This gives the derivative (2) in the following form (where we make use of the fact that both $\boldsymbol{\Sigma}^{-1}$ and $\mathbf{S}$ are symmetric):

$$
-\frac{n}{2} \boldsymbol{\Sigma}^{-1}+\frac{n}{2} \boldsymbol{\Sigma}^{-1} \mathbf{S} \boldsymbol{\Sigma}^{-1}
$$

Setting to zero and solving, we get:

$$
\begin{aligned}
\hat{\boldsymbol{\Sigma}} & =\mathbf{S} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T}
\end{aligned}
$$

