
Problem sheet 2, solutions.

1(a). From the definition of covariance:

COV(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY − XE[Y ] − E[X]Y + E[X]E[Y ]]

= E[XY ] − E[X]E[Y ] − E[X]E[Y ] + E[X]E[Y ]

= E[XY ] − E[X]E[Y ]

1(b). SinceX andY are independent,P (X,Y ) = P (X)P (Y ). LetX be the set
of all possible values ofX andY the set of all possible values ofY . Then:

E[XY ] =
∑

y∈Y

∑

x∈X

xyP (X = x, Y = y)

=
∑

y∈Y

∑

x∈X

xyP (X = x)P (Y = y)

=
∑

x∈X

xP (X = x) ×
∑

y∈Y

yP (Y = y)

= E[X]E[Y ]

Substituting into (1) above, givesCOV(X,Y ) = 0.

1(c). SinceY = X2, E[XY ] = E[X3] = 0. Also, we can see thatE[X] = 0 and
thereforeE[X]E[Y ] = 0. This givesCOV(X,Y ) = E[XY ] − E[X]E[Y ] = 0.

2. Letp(x) represent the pdf of RVX. Then:

E[X] =

∫ ∞

0

x p(x) dx

=

∫ a

0

x p(x) dx +

∫ ∞

a

x p(x) dx

Sincep(x) is a pdf, it is everywhere non-negative, so the first term on the RHS
must be non-negative. This means:

E[X] ≥

∫ ∞

a

x p(x) dx
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Sincea is the lower bound on the integral above, we can write
∫ ∞

a

x p(x) dx ≥

∫ ∞

a

a p(x) dx

which gives

E[X] ≥

∫ ∞

a

a p(x) dx

= a

∫ ∞

a

p(x) dx

= aP (X ≥ a)

from which the required result follows.

3. First, note that

P (|X − µX | ≥ a) = P ((X − µX)2 ≥ a2)

Here,(X − µX)2 is a non-negative RV. Using the Markov inequality, we get:

P ((X − µX)2 ≥ a2) ≤
E[(X − µX)2]

a2

=
σ2

X

a2

as required.

4. If θ̂n is unbiased, we can write

P (|θ̂n − θ| ≥ ε) = P (|θ̂n − E[θ̂n]| ≥ ε)

Applying the Chebyshev inequality to the RHS, we get:

P (|θ̂n − E[θ̂n]| ≥ ε) ≤
VAR(θ̂n)

ε2

From the RHS above we can see that if

lim
n→∞

VAR(θ̂n) = 0

the estimator converges in probability toθ, that is, it is consistent.
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5. Let X̄n denote the sample mean derived fromn observations. This is easily
shown to be unbiased. Using the Chebyshev inequality:

P (|X̄n − µX | ≥ ε) ≤
VAR(X̄n)

ε2

But:

VAR(X̄n) = VAR

(

1

n
(X1 + . . . + Xn)

)

=
σ2

X

n

Therefore

P (|X̄n − µX | ≥ ε) ≤
σ2

X

nε2

and

lim
n→∞

P (|X̄n − µX | ≥ ε) = 0

which meansX̄n converges in probability to the true meanµX , as required.

6(a). Log-likelihood:

L(µ,Σ) = −
dn

2
log(2π) −

n

2
log(|Σ|) −

1

2

n
∑

i=1

(Xi − µ)T Σ
−1(Xi − µ)

6(b). We proceed in two steps: we first treatΣ as fixed, and maximizeL to get
a valueµ̂(Σ) which maximizesL for a given matrix parameterΣ. Taking the
derivative of theL wrt vectorµ, we get:

d

dµ
L = (Σ−1

n
∑

i=1

(Xi − µ))T

Setting the derivative to zero, taking the transpose of bothsides and pre-multiplying
by Σ, we get:

0 =

n
∑

i=1

(Xi − µ)
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Solving forµ:

µ̂(Σ) =
1

n

n
∑

i=1

Xi

= X̄

Since this solution does not depend onΣ, X̄ is the maximum likelihood esti-
mator ofµ for anyΣ. To obtainΣ̂ we plugµ̂(Σ) = X̄ into the log-likelihood to
obtain

−
dn

2
log(2π) −

n

2
log(|Σ|) −

1

2

n
∑

i=1

(Xi − X̄)TΣ
−1(Xi − X̄) (1)

and maximize this function wrtΣ.
We first introduce a sample covariance matrixS defined as follows:

S =
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)T

This allows us to re-write the quadratic form in (1) as a matrix trace:

n
∑

i=1

(Xi − X̄)T Σ
−1(Xi − X̄) = n Tr(Σ−1

S)

whereTr(·) denotes the trace of its matrix argument.
This in turn allows us to write the derivative of (1) wrtΣ as follows:

−
n

2

d

dΣ
log(|Σ|) −

n

2

d

dΣ
Tr(Σ−1

S)

At this point we make use of two useful matrix derivatives (these can be found
in Appendix C of Bishop and the note “Matrix Identities” by Roweis, available on
the course website):

∂

∂A
log(|A|) = (A−1)T

∂

∂X
Tr(X−1

A) = −X
−1

A
T
X

−1

This gives the derivative (2) in the following form (where wemake use of the
fact that bothΣ−1 andS are symmetric):

−
n

2
Σ

−1 +
n

2
Σ

−1
SΣ

−1

4



Setting to zero and solving, we get:

Σ̂ = S

=
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)T
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