Problem sheet 2, solutions.

1(a). From the definition of covariance:

COV(X,Y) = E

1(b). SinceX andY are independent?(X,Y) = P(X)P(Y). Let X be the set
of all possible values oK and) the set of all possible values &f. Then:

E[XY] = Z Z ryP(X =x,Y =vy)

yeY zeX

= Y ) wyP(X =z)P(Y =y)
yeY xeX

= Za:P(X =1x) X ZyP(Y =)
TEX yey

= E[X]E[Y]

Substituting into (1) above, give&sOV (X,Y) = 0.

1(c). SinceY = X2, E[XY] = E[X?3] = 0. Also, we can see th&@[X] = 0 and
thereforeE[ X]E[Y] = 0. This givesCOV (X,Y) = E[XY] — E[X]E[Y] = 0.

2. Letp(x) represent the pdf of RX. Then:
(e}
E[X] = / xp(x)dx
0

- /Oaxp(x)dwr/aooxp(x)dﬂﬁ

Sincep(x) is a pdf, it is everywhere non-negative, so the first term erRRS
must be non-negative. This means:



Sincea is the lower bound on the integral above, we can write

/aooch(a:)dx > /aooap(x)d:c

which gives

E[X] > /ooap(a:)da:
= a/oop(a;) dz
= aP(X >a)

from which the required result follows.

3. First, note that
P(IX —pux|>a) = P((X—pux)*>a®

Here,(X — ux)? is a non-negative RV. Using the Markov inequality, we get:

PUX —px)t 2 a?) < B )]

as required.

4. If §, is unbiased, we can write
P10, —0>¢) = P(f,—E[f,] >¢)

Applying the Chebyshev inequality to the RHS, we get:

P(ln —E[d]| > ) < AR

€

From the RHS above we can see that if
lim VAR(6,) = 0

n—oo

the estimator converges in probability@pthat is, it is consistent.
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5. Let X,, denote the sample mean derived franobservations. This is easily
shown to be unbiased. Using the Chebyshev inequality:

_ VAR(X,,
P, x| 2 ) < )
But:
_ 1
VAR(X,) = VAR <E<X1+"'+X”)>
_ o
a n
Therefore
_ 03(
P(‘Xn—,UX| 26) < @
and

lim P(|X,, —ux| >¢€) =0

n—~o0

which means¥X,, converges in probability to the true meag, as required.

6(a). Log-likelihood:

n

L) = ~Flos(2m) — Dlog(B)) — 5 YK~ w) S Xi — )
=1

6(b). We proceed in two steps: we first tr@atas fixed, and maximiz€ to get
a value 1(X) which maximizesC for a given matrix parametet. Taking the
derivative of thel wrt vector u, we get:

d - n
d_uﬁ = (= 1;(Xi_ﬂ))T

Setting the derivative to zero, taking the transpose of biokss and pre-multiplying
by X, we get:



Solving for p:

A 1
pxE) = EZXZ
=1
= X

Since this solution does not depend BnX is the maximum likelihood esti-
mator of . for any 3. To obtainX we plug/(X) = X into the log-likelihood to
obtain

YE-XIEIX X))
=1

_dn
2

n 1
log(2m) — = log(|X]) — =
og(2m) — 3 log(|B)) —
and maximize this function wix.

We first introduce a sample covariance magigefined as follows:

s - Ly - X - X
=1

This allows us to re-write the quadratic form in (1) as a matace:

Zn:(xi—X)Tzfl(Xi—X) = nTr(Z7!S)
=1

whereTr(-) denotes the trace of its matrix argument.
This in turn allows us to write the derivative of (1) wit as follows:

n d n d 1
At this point we make use of two useful matrix derivativese@é can be found
in Appendix C of Bishop and the note “Matrix Identities” by Reis, available on
the course website):

O log(lA) = (AT

0 —1 _ —1AT~N—1
x X 'A) = —XT'ATX

This gives the derivative (2) in the following form (where wmke use of the
fact that bothx~! andS are symmetric):

n n
——yly —ylgy!
2 3
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Setting to zero and solving, we get:

¥ =S

S SE S ST Sl
i=1



