C0902
Solutions to Problem Set 3

1. Bounding a classification error rate. Note, this problem was inconsistent: It defined
X in terms of correct classifications but then asked for the error rate. It is much easier
(and what I intended) to have X; = 1 correspond to an misclassification, so E(X;) =0
is the error rate.

(a) To use Chebyshev’s inequality we need the mean and variance of the random
variable of interest, here, Orig. From lecture, we know that the MLE of a sample
of n iid Bernoulli’s is fyrg = ny /m where ny is the number of successes, and (from
lecture and the next problem) E(fyrg) = 0 and V(Oyrg) = 0(1 — 60) /n.

Of course, since the “true error rate” is 0, we're Chebyshev’s inequality immedi-
ately gives the result we want:
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(b) For # = 0.85 and a = 0.085, the table below gives the bounds on the prediction

€rror accuracy.

n 10 100 1000
P(|fyie — 6] > 0.085) < --- 1.765 0.176 0.017

The bound is useless for n = 10 (probability bounded above one!), but for 100 says
the probability of the error being more than 10% away from 0.85 is 0.176. Not
great, but OK; with 1000, we can be fairly confident that the estimated accuracy
is close to the true accuracy (though see next part).

(¢) The independence assumption is dodgy. Leave one out cross validation (LOOCV)
or k-fold cross validation both produce predictions for held out data. However, the
estimator for each held-out observation is highly dependent with other held-out
predictions. To see this, consider LOOCV: For observation ¢ = 1, the predictor
is (reverting back to usual {Xj,Y;} notation) )7,1(X1) = f(X1,{Xi,Yi}icos. n)s
while for ¢ = 2 the predictor is ?,Q(XQ) = f(X2,{X;,Y:}ic13. n), and thus there
is a huge overlap in the information in Y_;(X;) and Y_1(X;) and thus correlated.

Note this correlation doesn’t corrupt the unbiasedness, because the expectation
of a sum of predictions is the sum of expected predictions, regardless of correla-
tion. Variance computations, on the other hand, are made hugely difficult by this
correlation. In fact, getting good estimated variability of accuracy estimates is
notriously hard if not impossible!.

1See Bengio & Grandvalet. (2004). No Unbiased Estimator of the Variance of K-Fold Cross-Validation.
J Mach Learn Res, 5, 1089-1105.)



2. Bernoulli MAP properties. If X; ~ Ber(0), iid, i = 1,...,n, then the MLE is O =
ni/n, where ny = > | X;. If 6 ~ Beta(e, ) a priori, then
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That is, éMLE is unbiased.

(b) The bias of the MAP? is
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because E(n,) = E()_, X)) = nf. But this is not equal to # in general and hence
Oyiap is biased. Sufficient conditions for consistency® are bias and variance that
converges to zero with n.

First, it is easy to show the bias of the MAP goes to zero as n grows

6 = 0.
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2To be precise, bias is a frequentist computation based on conditioning on a specific value of the random
parameter (i.e. like we always do in a frequentist setting). So I write E(éMAP) but a Bayesian would insist
on writing E(6yap|f) and you find some authors write Eg(yap), all in attempts to make it clear that we're
not taking expectation w.r.t. the joint density of (X, ), but just X for a fixed value of 6.

3The statement in the class notes, requiring finite sample unbiasesedness, was unnecessarily restrictive;
see Casella & Berger, Theorem 10.1.3.



For the variance,
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The derivative of the numerator w.r.t. n is constant and the derivative of the
denominator is linear in n, and hence lim,,_,, V(0yap) = 0 as well. Hence, the
MAP is consistent.

. Bayes for Gaussian random variables. The posterior is

P01 X1, ..., Xp) o< p(Xi, ..., X, |0)p(0)
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Now, dropping further constants and using the notation provided in the answer, we

write
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where we’'ve continued to drop constants and collect in terms of a polynomial in 6.
Completing the square says that a polynomial of form Axz? + Bz + C can be converted
to one in the form of A(z — H)? + K, if you choose H = —B/(2A). So, here, “H” is

=wX + (1 —w)a = 0.



Again, as we can freely add and lose constants that don’t dependend on 6, we have
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Seeing that this is the kernel of a Gaussian distribution, we then know that it must be
that the posterior of 6 is N (6, 72).

The crucial observation is that 0 < w < 1 and so the posterior mean is a convex
combination of the data mean X and prior mean a; the greater precision of the prior,
the close the posterior mean is to a, the more data (or smaller o) the closer the posterior
mean is to X.

. Iterated Expectation & Variance.
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The result for variance is easier to see in the other direction
Vx(X) =Ex [(X - E(X))*]

=Exy [(X - E(X))?]
= Exy [(X — E(X|Y) + E(X]Y) - E(X))*]
— Exy [(X —E(X|Y))Y] + Exy [(B(X]Y) — E(X))?]

+ 2By [(X — E(X|Y)(E(X]Y) - E(X))], (1)

where replacing Ex with Exy is an application of the law of total probability (“sum
rule”):

/f T)px (z dx—/f /pXY z,y)dzdy = Exy (f(X)).

For the first term of Eqn. (1), the definition of conditional probability allows us to
replace Exy with EyEx)y,
Exy [(X — E(X|Y))’] =Ey [Exy (X — E(X[Y))?]
= Ey [V(X|Y)]



For the second term of Eqn. (1), apply the result for iterated expectation and note
that E(X|Y) does not depend on X,

Exy [(E(X]Y) —E(X))?] = Exy [(E(X|Y) — E(E(X|Y)))?]
=Ey [(E(X|Y) — E(E(X|Y)))?]
= Vy [E(X|Y)]

Now, note that the last term of Eqn. (1),
Exy [(X = E(X[Y)(E(X]Y) — E(X))] = Exy [(X — E(X|Y)E(X[Y)]
—Exy [(X - E(X|Y))E(X))]
is zero, seen by taking each summand in turn:
Exy [(X — E(X[Y)E(X[Y)] = Ey [Exy [(X — E(X|Y)) E(X[Y)]]

=By [(Exy[X[Y] - E(X]Y)) E(X]Y)]
= Ey [(0)E(X[Y)] =

For the second term

Exy [(X — E(X[Y)E(X))] = Ey [Exy [(X — E(X[Y))E(X))]]
=Ey [(Exy[X] ] (X|Y)) E(X))]
=Ey [(0) E(X))] =
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