
CO902
Solutions to Problem Set 3

1. Bounding a classification error rate. Note, this problem was inconsistent: It defined
Xi in terms of correct classifications but then asked for the error rate. It is much easier
(and what I intended) to have Xi = 1 correspond to an misclassification, so E(Xi) = θ
is the error rate.

(a) To use Chebyshev’s inequality we need the mean and variance of the random
variable of interest, here, θ̂MLE. From lecture, we know that the MLE of a sample
of n iid Bernoulli’s is θ̂MLE = n1/n where n1 is the number of successes, and (from
lecture and the next problem) E(θ̂MLE) = θ and V(θ̂MLE) = θ(1− θ)/n.

Of course, since the “true error rate” is θ, we’re Chebyshev’s inequality immedi-
ately gives the result we want:

P (|θ̂MLE − θ| ≥ a) ≤ θ(1− θ)/n
a2

(b) For θ = 0.85 and a = 0.085, the table below gives the bounds on the prediction
error accuracy.

n 10 100 1000

P (|θ̂MLE − θ| ≥ 0.085) ≤ · · · 1.765 0.176 0.017

The bound is useless for n = 10 (probability bounded above one!), but for 100 says
the probability of the error being more than 10% away from 0.85 is 0.176. Not
great, but OK; with 1000, we can be fairly confident that the estimated accuracy
is close to the true accuracy (though see next part).

(c) The independence assumption is dodgy. Leave one out cross validation (LOOCV)
or k-fold cross validation both produce predictions for held out data. However, the
estimator for each held-out observation is highly dependent with other held-out
predictions. To see this, consider LOOCV: For observation i = 1, the predictor
is (reverting back to usual {Xi, Yi} notation) Ŷ−1(X1) = f(X1, {Xi, Yi}i=2,3,...,n),

while for i = 2 the predictor is Ŷ−2(X2) = f(X2, {Xi, Yi}i=1,3,...,n), and thus there

is a huge overlap in the information in Ŷ−1(X1) and Ŷ−1(X1) and thus correlated.

Note this correlation doesn’t corrupt the unbiasedness, because the expectation
of a sum of predictions is the sum of expected predictions, regardless of correla-
tion. Variance computations, on the other hand, are made hugely difficult by this
correlation. In fact, getting good estimated variability of accuracy estimates is
notriously hard if not impossible1.

1See Bengio & Grandvalet. (2004). No Unbiased Estimator of the Variance of K-Fold Cross-Validation.
J Mach Learn Res, 5, 1089-1105.)
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2. Bernoulli MAP properties. If Xi ∼ Ber(θ), iid, i = 1, . . . , n, then the MLE is θ̂MLE =
n1/n, where n1 =

∑n
i=1Xi. If θ ∼ Beta(α, β) a priori, then

θ̂MAP =
n1 + α− 1

n+ α + β − 2
.

(a)

E(θ̂MLE) = E(n1/n)

=
1

n
E(

(
n∑

i=1

Xi

)

=
1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

θ = θ

That is, θ̂MLE is unbiased.

(b) The bias of the MAP2 is

E(θ̂MAP) = E
(

n1 + α− 1

n+ α + β − 2

)
=

E(n1) + α− 1

n+ α + β − 2

=
nθ + α− 1

n+ α + β − 2

because E(n1) = E(
∑

iXk) = nθ. But this is not equal to θ in general and hence

θ̂MAP is biased. Sufficient conditions for consistency3 are bias and variance that
converges to zero with n.

First, it is easy to show the bias of the MAP goes to zero as n grows

lim
n→∞

E(θ̂MAP − θ) = lim
n→∞

θ + (α− 1)/n

1 + (α + β − 2)/n
− θ = 0.

2To be precise, bias is a frequentist computation based on conditioning on a specific value of the random
parameter (i.e. like we always do in a frequentist setting). So I write E(θ̂MAP) but a Bayesian would insist

on writing E(θ̂MAP|θ) and you find some authors write Eθ(θ̂MAP), all in attempts to make it clear that we’re
not taking expectation w.r.t. the joint density of (X, θ), but just X for a fixed value of θ.

3The statement in the class notes, requiring finite sample unbiasesedness, was unnecessarily restrictive;
see Casella & Berger, Theorem 10.1.3.
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For the variance,

V(θ̂MAP) = V
(

n1 + α− 1

n+ α + β − 2

)
=

V(n1)

(n+ α + β − 2)2

=
nθ(1− θ)

(n+ α + β − 2)2
.

The derivative of the numerator w.r.t. n is constant and the derivative of the
denominator is linear in n, and hence limn→∞V(θ̂MAP) = 0 as well. Hence, the
MAP is consistent.

3. Bayes for Gaussian random variables. The posterior is

p(θ|X1, . . . , Xn) ∝ p(X1, . . . , Xn|θ)p(θ)

=
1

(2π)n/2σn
exp

(
−1

2

n∑
i=1

(Xi − θ)2/σ2

)
×

1

(2π)1/2b
exp

(
−1

2
(θ − a)2/b2

)

Now, dropping further constants and using the notation provided in the answer, we
write

p(θ|X1, . . . , Xn) ∝ exp

(
−1

2

[
1

nse2

n∑
i=1

(Xi − θ)2 +
1

b2
(θ − a)2

])

= exp

(
−1

2

[
1

nse2

n∑
i=1

Xi −
2

nse2
θ

n∑
i=1

Xi +
n

nse2
θ2 +

1

b2
θ2 − 2

b2
θa+

1

b2
a2

])

∝ exp

(
−1

2

[
− 2

se2
θX̄ +

1

se2
θ2 +

1

b2
θ2 − 2

b2
θa

])
= exp

(
−1

2

[(
1

se2
+

1

b2

)
θ2 − 2

(
X̄

se2
+
a

b2

)
θ

])
where we’ve continued to drop constants and collect in terms of a polynomial in θ.
Completing the square says that a polynomial of form Ax2 +Bx+C can be converted
to one in the form of A(x−H)2 +K, if you choose H = −B/(2A). So, here, “H” is

−
−2
(

X̄
se2

+ a
b2

)
2
(

1
se2

+ 1
b2

) = wX̄ + (1− w)a = θ̄.
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Again, as we can freely add and lose constants that don’t dependend on θ, we have

p(θ|X1, . . . , Xn) ∝ exp

(
−1

2

[
1

τ 2
(θ − θ̄)2

])
.

Seeing that this is the kernel of a Gaussian distribution, we then know that it must be
that the posterior of θ is N(θ̄, τ 2).

The crucial observation is that 0 ≤ w ≤ 1 and so the posterior mean is a convex
combination of the data mean X̄ and prior mean a; the greater precision of the prior,
the close the posterior mean is to a, the more data (or smaller σ) the closer the posterior
mean is to X̄.

4. Iterated Expectation & Variance.

EY

(
EX|Y (X|Y )

)
=

∫
E(X|Y )pY (y)dy

=

∫ (∫
xpX|Y (x|y)dx

)
pY (y)dy

=

∫ ∫
xpX,Y (x, y)dxdy

=

∫
x

(∫
pX,Y (x, y)dy

)
dx

=

∫
xpX(x)dx

= E(X)

The result for variance is easier to see in the other direction

VX(X) = EX

[
(X − E(X))2]

= EXY

[
(X − E(X))2]

= EXY

[
(X − E(X|Y ) + E(X|Y )− E(X))2]

= EXY

[
(X − E(X|Y ))2

]
+ EXY

[
(E(X|Y )− E(X))2

]
+ 2EXY [(X − E(X|Y )(E(X|Y )− E(X))] , (1)

where replacing EX with EXY is an application of the law of total probability (“sum
rule”):

EX(f(X)) =

∫
f(x)pX(x)dx =

∫
f(x)

∫
pXY (x, y)dxdy = EXY (f(X)).

For the first term of Eqn. (1), the definition of conditional probability allows us to
replace EXY with EYEX|Y ,

EXY

[
(X − E(X|Y ))2

]
= EY

[
EX|Y (X − E(X|Y ))2

]
= EY [V(X|Y )]
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For the second term of Eqn. (1), apply the result for iterated expectation and note
that E(X|Y ) does not depend on X,

EXY

[
(E(X|Y )− E(X))2

]
= EXY

[
(E(X|Y )− E(E(X|Y )))2

]
= EY

[
(E(X|Y )− E(E(X|Y )))2

]
= VY [E(X|Y )]

Now, note that the last term of Eqn. (1),

EXY [(X − E(X|Y )(E(X|Y )− E(X))] = EXY [(X − E(X|Y )E(X|Y )]

− EXY [(X − E(X|Y ))E(X))]

is zero, seen by taking each summand in turn:

EXY [(X − E(X|Y )E(X|Y )] = EY

[
EX|Y [(X − E(X|Y ))E(X|Y )]

]
= EY

[(
EX|Y [X|Y ]− E(X|Y )

)
E(X|Y )

]
= EY [(0)E(X|Y )] = 0

For the second term

EXY [(X − E(X|Y ))E(X))] = EY

[
EX|Y [(X − E(X|Y ))E(X))]

]
= EY

[(
EX|Y [X|Y ]− E(X|Y )

)
E(X))

]
= EY [(0)E(X))] = 0.
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