1. Estimating "a priori" probabilities. This is Bishop Ex 4.9 in my own notation; see B §4.2.2 for hints. Consider a generative classification model for K classes defined by prior class probabilities $P(Y=k)=\pi_{k}$ and class-conditional densities $p_{k}(\mathbf{X})=$ $p(\mathbf{X} \mid Y=k)$, where $\mathbf{X} \in R^{d}$ is the input feature vector and $Y \in\{1,2, \ldots, K\}$ is the true class ${ }^{1}$. For data $\left\{\mathbf{x}_{i}, y_{i}\right\}, i=1, \ldots, N$, considering the joint likelihood for $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right)$ and the (unspecified) parameters of the data \mathbf{x}; find the maximum likelihood estimate of the class frequencies $\boldsymbol{\pi}$. Hint: Express the class variable as $t_{i k}=\delta_{y_{i} k}$, where $\delta_{y_{i} k}$ is 1 if $y_{i}=k$ and 0 otherwise, so that \mathbf{t}_{i} is a K-vector with $K-1$ zeros and 1 one, indicating the true class for observation i.
2. Optimal decision rule for continous data. Consider supervised learning based on $\left\{\mathbf{X}_{i}, Y_{i}\right\}, i=1, \ldots, n$, for data $\mathbf{X}_{i} \in \Re^{d}$ and a class membership $Y_{i} \in\{1,2, \ldots, K\}$. Show that the optimal decision rule $D_{\mathbf{x}}$ takes the form

$$
D_{\mathbf{x}}=\underset{k}{\operatorname{argmax}} P(Y=k \mid \mathbf{X}=\mathbf{x})
$$

3. Regression. Consider observations of the form $\left\{\mathbf{X}_{i}, Y_{i}\right\}, i=1, \ldots, n$, for predictors $\mathbf{X}_{i} \in \Re^{d}$ and response $Y_{i} \in \Re$. Let \mathbf{X} be a $n \times(d+1)$ matrix, where each row consists of $\left[1 \mathbf{X}_{i}^{\top}\right]$, and \mathbf{Y} be the n-vector of responses. The linear regression model approximates \mathbf{Y} with

$$
\hat{\mathbf{Y}}=\mathbf{X w}
$$

where \mathbf{w} is a $d+1$ vector of regression coefficients. The standard estimate of \mathbf{w} is $\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$.
(a) Derive $\hat{\mathbf{w}}$ as the minimizer of the residual sum of squares,

$$
J(\mathbf{w})=(\mathbf{Y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{Y}-\mathbf{X} \mathbf{w}) .
$$

(b) Derive $\hat{\mathbf{w}}$ on the assumption that $\mathbf{Y} \sim \mathcal{N}_{n}\left(\mathbf{X w}, \mathbf{I}_{n} \sigma^{2}\right)$, where \mathcal{N}_{n} is a n-dimensional multivariate Normal distribution, \mathbf{I}_{n} is a $n \times n$ identity matrix, and σ^{2} is the resdiual error variance.
4. Ridge Regression. Consider the same data matrix \mathbf{X} and response \mathbf{Y} as in the previous question.
(a) The following cost function is the residual sum of squares penalized by the sum of squares of the regression coefficients,

$$
J(\mathbf{w})=(\mathbf{Y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{\top} \mathbf{w}
$$

[^0]Show that the ridge regression estimator $\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{d+1}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$ minimizes this $J(\mathbf{w})$.
(b) Derive the ridge regression estimator as the maximum a postiori (MAP) estimator of a Bayesian model with prior

$$
\mathbf{w} \sim \mathcal{N}_{d+1}\left(\mathbf{0}, \mathbf{I}_{d+1} \sigma_{0}^{2}\right)
$$

where \mathbf{I}_{d+1} is the $(d+1) \times(d+1)$ identity matrix and σ_{0}^{2} is the prior variance. Explain the relationship beteween λ, σ and σ_{0} ?

[^0]: ${ }^{1}$ Here, capital Roman letters indicate (yet to be observed) random variables, while lower case Roman letters indicate particular (observed) values of the random variables. Boldface font indicates a vector-valued variable.

