
CO902
Problem Set 4

1. Estimating “a priori” probabilities. This is Bishop Ex 4.9 in my own notation; see
B §4.2.2 for hints. Consider a generative classification model for K classes defined
by prior class probabilities P (Y = k) = πk and class-conditional densities pk(X) =
p(X|Y = k), where X ∈ Rd is the input feature vector and Y ∈ {1, 2, . . . , K} is
the true class1. For data {xi, yi}, i = 1, . . . , N , considering the joint likelihood for
π = (π1, . . . , πK) and the (unspecified) parameters of the data x; find the maximum
likelihood estimate of the class frequencies π. Hint: Express the class variable as
tik = δyik, where δyik is 1 if yi = k and 0 otherwise, so that ti is a K-vector with K − 1
zeros and 1 one, indicating the true class for observation i.

2. Optimal decision rule for continous data. Consider supervised learning based on
{Xi, Yi}, i = 1, . . . , n, for data Xi ∈ <d and a class membership Yi ∈ {1, 2, . . . , K}.
Show that the optimal decision rule Dx takes the form

Dx = argmax
k

P (Y = k|X = x)

3. Regression. Consider observations of the form {Xi, Yi}, i = 1, . . . , n, for predictors
Xi ∈ <d and response Yi ∈ <. Let X be a n × (d + 1) matrix, where each row
consists of [ 1 X>i ], and Y be the n-vector of responses. The linear regression model
approximates Y with

Ŷ = Xw

where w is a d + 1 vector of regression coefficients. The standard estimate of w is
ŵ = (X>X)−1X>Y.

(a) Derive ŵ as the minimizer of the residual sum of squares,

J(w) = (Y −Xw)>(Y −Xw).

(b) Derive ŵ on the assumption that Y ∼ Nn(Xw, Inσ
2), whereNn is a n-dimensional

multivariate Normal distribution, In is a n × n identity matrix, and σ2 is the
resdiual error variance.

4. Ridge Regression. Consider the same data matrix X and response Y as in the previous
question.

(a) The following cost function is the residual sum of squares penalized by the sum
of squares of the regression coefficients,

J(w) = (Y −Xw)>(Y −Xw) + λw>w.

1Here, capital Roman letters indicate (yet to be observed) random variables, while lower case Roman
letters indicate particular (observed) values of the random variables. Boldface font indicates a vector-valued
variable.
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Show that the ridge regression estimator ŵ = (X>X + λId+1)
−1X>Y minimizes

this J(w).

(b) Derive the ridge regression estimator as the maximum a postiori (MAP) estimator
of a Bayesian model with prior

w ∼ Nd+1(0, Id+1σ
2
0),

where Id+1 is the (d + 1) × (d + 1) identity matrix and σ2
0 is the prior variance.

Explain the relationship beteween λ, σ and σ0?
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