CO902 Problem Set 4

- 1. Estimating "a priori" probabilities. This is Bishop Ex 4.9 in my own notation; see B §4.2.2 for hints. Consider a generative classification model for K classes defined by prior class probabilities $P(Y = k) = \pi_k$ and class-conditional densities $p_k(\mathbf{X}) =$ $p(\mathbf{X}|Y = k)$, where $\mathbf{X} \in \mathbb{R}^d$ is the input feature vector and $Y \in \{1, 2, \ldots, K\}$ is the true class¹. For data $\{\mathbf{x}_i, y_i\}$, $i = 1, \ldots, N$, considering the joint likelihood for $\boldsymbol{\pi} = (\pi_1, \ldots, \pi_K)$ and the (unspecified) parameters of the data \mathbf{x} ; find the maximum likelihood estimate of the class frequencies $\boldsymbol{\pi}$. Hint: Express the class variable as $t_{ik} = \delta_{y_ik}$, where δ_{y_ik} is 1 if $y_i = k$ and 0 otherwise, so that \mathbf{t}_i is a K-vector with K-1zeros and 1 one, indicating the true class for observation i.
- 2. Optimal decision rule for continuous data. Consider supervised learning based on $\{\mathbf{X}_i, Y_i\}, i = 1, ..., n$, for data $\mathbf{X}_i \in \Re^d$ and a class membership $Y_i \in \{1, 2, ..., K\}$. Show that the optimal decision rule $D_{\mathbf{x}}$ takes the form

$$D_{\mathbf{x}} = \operatorname*{argmax}_{k} P(Y = k | \mathbf{X} = \mathbf{x})$$

3. Regression. Consider observations of the form $\{\mathbf{X}_i, Y_i\}$, i = 1, ..., n, for predictors $\mathbf{X}_i \in \mathbb{R}^d$ and response $Y_i \in \mathbb{R}$. Let \mathbf{X} be a $n \times (d+1)$ matrix, where each row consists of $[1 \mathbf{X}_i^{\top}]$, and \mathbf{Y} be the *n*-vector of responses. The linear regression model approximates \mathbf{Y} with

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{w}$$

where \mathbf{w} is a d + 1 vector of regression coefficients. The standard estimate of \mathbf{w} is $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$.

(a) Derive $\hat{\mathbf{w}}$ as the minimizer of the residual sum of squares,

$$J(\mathbf{w}) = (\mathbf{Y} - \mathbf{X}\mathbf{w})^{\top} (\mathbf{Y} - \mathbf{X}\mathbf{w}).$$

- (b) Derive $\hat{\mathbf{w}}$ on the assumption that $\mathbf{Y} \sim \mathcal{N}_n(\mathbf{X}\mathbf{w}, \mathbf{I}_n\sigma^2)$, where \mathcal{N}_n is a *n*-dimensional multivariate Normal distribution, \mathbf{I}_n is a $n \times n$ identity matrix, and σ^2 is the resdiual error variance.
- 4. *Ridge Regression.* Consider the same data matrix \mathbf{X} and response \mathbf{Y} as in the previous question.
 - (a) The following cost function is the residual sum of squares penalized by the sum of squares of the regression coefficients,

$$J(\mathbf{w}) = (\mathbf{Y} - \mathbf{X}\mathbf{w})^{\top} (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^{\top} \mathbf{w}.$$

¹Here, capital Roman letters indicate (yet to be observed) random variables, while lower case Roman letters indicate particular (observed) values of the random variables. Boldface font indicates a vector-valued variable.

Show that the ridge regression estimator $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{d+1})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ minimizes this $J(\mathbf{w})$.

(b) Derive the ridge regression estimator as the maximum a postiori (MAP) estimator of a Bayesian model with prior

$$\mathbf{w} \sim \mathcal{N}_{d+1}(\mathbf{0}, \mathbf{I}_{d+1}\sigma_0^2),$$

where \mathbf{I}_{d+1} is the $(d+1) \times (d+1)$ identity matrix and σ_0^2 is the prior variance. Explain the relationship between λ , σ and σ_0 ?

TEN / March 4, 2013