
CO902
Solutions to Problem Set 4

1. Estimating “a priori” probabilities. Using the suggested representation {xi, ti}, the ti
are samples from a multinomial distribution with success probability parameter vector
π = (π1, . . . , πK) and sample size of 1 (the counts

∑n
i=1 ti are multinomial with sample

size of n, but we’ll stick with the individual ti’s).

The joint likelihood of the predictor and responses is

p(x1, . . . ,xn, t1, . . . , tn) = p(x, t) (1)

= p(x|t)p(t) (2)

=

(
n∏

i=1

K∏
k=1

pk(xi)
tik

)(
n∏

i=1

K∏
k=1

πtik
k

)
(3)

where pk(xi) is the class k conditional distribution. To find the maximum likelihood
estimator of π, we must account for the constraint that

∑K
k=1 πk = 1, and so consider

optimizing log joint likelihood plus a Lagrangian term

n∑
i=1

K∑
k=1

tik log(pk(xi)) +
n∑

i=1

K∑
k=1

tik log(πk) + λ(
K∑
k=1

πk − 1), (4)

and then taking derivative w.r.t. πk and λ, equating to zero and solving...

0 =
∂

∂πk
log p(x, t) = 0 +

n∑
i=1

tik/πk + λ, (5)

⇒ π̂k = −1

λ

n∑
i=1

tik; (6)

now, note that the Langrangian gives us

1 =
K∑
k=1

π̂k = −1

λ

K∑
k=1

n∑
i=1

tik (7)

= −1

λ
n, (8)

⇒ λ̂ = −n, (9)

because
∑K

k=1 tik = 1, and this gives the final result that π̂k = 1
n

∑n
i=1 tik.

In summary, the key result here is that the estimated incidence of class k is simply
the proportion of samples in that class, and this estimate is the same regardless of the
class conditional distribution.
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2. Optimal decision rule for continous data. Follows identically to the class notes “Deci-
sion Theory Background of Classification”, but with continuous random variables.

We seek optimal decision rule Dx maximizes the probability

P (Dx = Y ) =
K∑
k=1

P (Dx = k, Y = k)

=
K∑
k=1

P (x ∈ Rk, Y = k)

=
K∑
k=1

∫
x∈Rk

P (x, Y = k)dx

=
K∑
k=1

∫
x∈Rk

P (Y = k|x)p(x)dx

where Rk ⊂ <d are the values of x for which decision k is to be made. The challenge,
then, is to construct Rk by choosing, for each x, which Rk it should belong to so as to
maximize this expression.

The key here is to see that, for a given x, p(x) is the same for all k, and so to maximise
this expression we need to see P (Y = k|x) as a function of x, and we need to choose
the k that maximises P (Y = k|x). Thus

Rk = {x : P (Y = k|x) ≥ P (Y = k′|x) for k′ 6= k} ,

or, equilvalently the optimal decision rule is

Dx = Ŷ (x) = arg maxk P (Y = k|x).

Of course, in practice we usually rely on Bayes Rule to express P (Y = k|x) in terms
of the class-conditional distributions p(x|Y = k), and of course (of course) these dis-
tributions must be estimated in order to make a real live working classifier.

3. Regression.

If you avail yourself of matrix-mode calculations, these are very consise results.

(a) Algebraic derivation of OLS estimates.

0 =
∂

∂w
J(w) =

∂

∂w

(
Y>Y − 2(Xw)>Y + (Xw)>(Xw)

)
(10)

= 0− 2
∂

∂w
w>X>Y +

∂

∂w
w>(X>X)w (11)

= −2X>Y + 2X>Xw (12)

⇒ X>Y = X>Xw (13)
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The last expression represents the Normal Equations, and any w that satisfies
this expression is a minimizer of the residual sum of squares. Assuming X is of
full rank, the solution is ŵ = (X>X)−1X>Y; if X is not of full rank, the Moore-
Penrose pseudo inverse of X can produce one of the infinite number of solutions,
ŵ = X−Y.

(b) Maximum Likelihood derivation of OLS estimates based on Normality.

The likelihood of the data is

p(Y|w, σ2) =
1

(2π)n/2σn
exp

(
−1

2
(Y −Xw)>(Y −Xw)/σ2

)
and the log likelihood, dropping additive constants that don’t depend on w, is

−1

2
(Y −Xw)>(Y −Xw)/σ2 = −1

2
J(w)/σ2

i.e. J(w) from the previous part; thus the value of w that minimized J(w) will
maximize the log liklihood, and hence the MLE is again ŵ = (X>X)−1X>Y for
full-rank X and ŵ = X−Y otherwise.

4. Ridge Regression. For clarity, refer to the Ridge objective function as JR(w).

(a) Algebraic derivation of Ridge Regression estimator

0 =
∂

∂w
JR(w) =

∂

∂w

(
Y>Y − 2(Xw)>Y + (Xw)>(Xw) + λw>w

)
(14)

= 0− 2
∂

∂w
w>X>Y +

∂

∂w
w>(X>X)w + λ

∂

∂w
w>w (15)

= −2X>Y + 2X>Xw + 2λw (16)

⇒ X>Y = (X>X + λI)w (17)

Again, if X>X+ λI is invertable (and for large enough λ, it always will be), then
ŵ = (X>X + λI)−1X>Y. In this case, the “trick” of using the Moore Penrose
inverse directly with X doesn’t work, but should X>X + λI be rank-deficient
then one could compute ŵ = (X>X + λI)−X>Y; however, but it would defeat
the purpose of Ridge Regression, which is increasing λ until stable estimates are
obtained when the pseudoinverse won’t be needed.

(b) Maximum Likelihood derivation of OLS estimates based on Normality.

The posterior of w given the data Y is (regarding σ2 as fixed)

p(w|Y) =
1

(2π)n/2σn
exp

(
−1

2
(Y −Xw)>(Y −Xw)/σ2

)
× (18)

1

(2π)1/2σ0
exp

(
−1

2
(w − 0)>(w − 0)/σ2

0

)
(19)
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and the log posterior, dropping additive constants that don’t depend on w, is

− 1

2
(Y −Xw)>(Y −Xw)/σ2 +

1

2
w>w/σ2

0

∝ (Y −Xw)>(Y −Xw) +
σ2

σ2
0

w>w. (20)

This is of course JR(w), with λ = σ2/σ2
0. The interpretation is that when our

prior belief on w is vague relative to the residual noise, i.e. σ0 � σ, then we need
to trust the data, the w>w penality is diminshed and we should get estimates
close to OLS; if we have strong prior belief that w should close to zero, then
σ0 � σ, λ will be large, then w>w penality is active and w estimates will be
shunk towards 0 relative to OLS’s estimates.
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