CO902
 Probabilistic and statistical inference

Lecture 2

Tom Nichols
Department of Statistics \&
Warwick Manufacturing Group
t.e.nichols@warwick.ac.uk

Last Time

- Law of total probability, aka "sum rule"
- Random Variable
- Probability Mass Function (PMF)
- Expectation, Variance
- Joint distribution of 2 or more random variables
- Conditional probability
- Product rule
- Bayes theorem
- Independence
- Parameterized distributions

Outline

- Estimation
- Parameterized families
- Data, estimators
- Likelihood function, Maximum likelihood
- (In)dependence
- The role of structure in probabilistic models
- Dependent RVs, Markov assumptions
- Markov chains as structural models
- Properties of estimators
- Bias
- Consistency
- Law of large numbers

Inference: from data to prediction and understanding

- Today we'll talk about problem of inferring parameters from data
- First, what's a parameter?

Parameterized distributions

- We saw in L1 that a function P called the pmf gives the probability of every possible value of an RV
- And we introduced the idea of parameterized families of pmfs

$$
P(X=x \mid \theta)=f(x ; \theta)
$$

- This is a distribution for x, which depends on a (fixed) theta.
- That is, P is a function which
- maps all possible values of x to $[0,1]$
- And sums to one

Parameterized distributions

$$
P(X=x \mid \theta)=f(x ; \theta)
$$

- Parametrized pmfs
- Simple parameterized distributions, when combined in various ways can lead to interesting, powerful models
- So we start by looking at the problem of learning parameters from data generated by a parametric pmf

Inference...

...with a model

- In the simplest case, we assume a parameterized distribution is a reasonable description of the data-generating process
- We use the data to say something about the unobserved parameters
(Assumed)
data-generating process

Inference / learning

- Often, we combine simple parametric models together in various ways, to build up powerful models for tough, real-world problems
- E.g. BNs or MCs are built up from simple elements
- But the basic theory and concepts of estimation we'll learn today are very relevant, no matter how complicated the model

Bernoulli distribution

- X has two possible outcomes, one is "success" $(X=1)$ other "failure" (X=0). PMF (one free parameter):

$$
\begin{aligned}
P(X=x \mid \theta) & =\left\{\begin{array}{cl}
\theta & \text { if } x=1 \\
1-\theta & \text { if } x=0
\end{array}\right. \\
X & \in\{0,1\} \\
\theta & \in[0,1]
\end{aligned}
$$

- Q: what does data generated from a Bernoulli look like?

PMF as a data-generating model

- Using a computer, how would you generate or simulate data from the Bernoulli?
- Notice we're assuming the RVs Xi are independent, and all have the exact same Bernoulli PMF
- In a certain sense, there are two aspects to the overall model: the pmf(s) involved, and some assumptions about how RVs are related

i.i.d. data

- Data: the results of N completed tosses

$$
\mathrm{H}, \mathrm{H}, \mathrm{~T}, \mathrm{H}, \mathrm{~T}, \mathrm{H}
$$

$$
X_{1}, X_{2} \ldots X_{n}
$$

- Model: "i.i.d" Bernoulli

$$
\begin{aligned}
X_{i} & \stackrel{i i d}{\sim} \text { Bernoulli }(\theta) \\
P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \\
& =\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

- That is, we assume: (i) Each toss has the same probability of success, (ii) the tosses are independent
- This means the probability of the next toss coming up heads is simply θ
- Prediction is related to estimation, here very closely...

Estimators

- An estimator is a function of random data ("a statistic") which provides an estimate of a parameter:

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, X_{2} \ldots X_{n}\right)
$$

- Note terminology/notation: parameter, estimate and estimator
- Several ways of estimating parameters, we will look at:
- Maximum likelihood estimator or MLE
- Bayesian inference
- Maximum A Posteriori (MAP) estimator

Likelihood function

- When we think of "fitting" a model to data (curve-fitting, say), we're thinking of adjusting free parameters to make the model and data match as closely as possible
- Let's take this approach to our probabilistic models
- Joint probability of all of the data given the parameter(s):

$$
P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right)
$$

- Now, write this as a function of the unknown parameter(s):

$$
\mathcal{L}(\theta)=P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right)
$$

- This is the likelihood function

Likelihood function

- Likelihood function:

$$
\mathcal{L}(\theta)=P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right)
$$

- NOT a probability distribution over possible values of parameter
- Rather, simply a function which for any value of parameter gives a measure of how well the model specified by that value fits the data
- The key link between a probability model and data
- For N Bernoulli trials...

Probability Mass Function
Domain: $\{0,1\}^{\mathrm{N}}$ Range: R^{+}
For a particular θ, probability of the data

$$
P\left(X_{1}, X_{2}, \ldots, X_{N} ; \theta\right)=\prod_{i=1}^{N} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

Likelihood function
Domain: [0,1] Range: R^{+}
For this particular data, how "likely" are different θ 's

$$
\mathcal{L}(\theta)=\prod_{i=1}^{N} \theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

Maximum likelihood estimator (MLE)

- Loosely speaking, the likelihood function tells us how well models specified by various values of the parameter fit the data
- A natural idea then is to construct an estimator in the following way:

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta) \\
& =\underset{\theta}{\operatorname{argmax}} P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right)
\end{aligned}
$$

- This would then be a sort of "best fit" estimate
- This estimator is called the Maximum likelihood estimator or MLE

Example: coin tosses

- Let's go back to the coin tossing example
- This will be very simple, but will illustrate the steps involved in getting a MLE, which are essentially the same in more complicated situations

$\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{H} .$. ?

Example: coin tosses

- Data: the results of N completed tosses

$$
X_{1}, X_{2} \ldots X_{n}
$$

- Model: i.i.d Bernoulli

$$
\begin{aligned}
X_{i} & \stackrel{i i d}{\sim} \operatorname{Bernoulli}(\theta) \\
P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \\
& =\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

- Q: Write down the likelihood function for this model. Write down the log-likelihood. Using differential calculus, maximise the likelihood function to obtain the MLE.

Example: coin tosses

- Likelihood function for our i.i.d. Bernoulli model:

$$
\begin{aligned}
P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) \\
& =\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

- Often easier to deal with the log-likelihood
- Log-likelihood:

$$
\begin{aligned}
\log \left(P\left(X_{1}, X_{2} \ldots X_{n} \mid \theta\right)\right) & =\sum_{i=1}^{n} x_{i} \log (\theta)+\left(1-x_{i}\right) \log (1-\theta) \\
& =\mathcal{L}(\theta)
\end{aligned}
$$

($\mathcal{L}(\theta)$ will denote likelihood or log-likelihood, will be obvious from context, though some authors use $\mathcal{L}(\theta)$ only for likelihood, $l(\theta)$ for log-likelihood)

MLE

- Log-likelihood function for i.i.d. Bernoulli model:

$$
\mathcal{L}(\theta)=\sum_{i=1}^{n} x_{i} \log (\theta)+\left(1-x_{i}\right) \log (1-\theta)
$$

- Set derivative wrt θ to zero and simplifying:

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\frac{n_{1}}{n} \\
n_{1} & =\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Note the "hat"
θ True, unknown parameter (Fixed. Influences data)
$\hat{\theta}$ Estimated parameter
(Random. A function of the data)

- That is, the estimate is simply the proportion of successes, which accords with intuition

Dependent RVs

- Introduce a new, graphical notation
- Vertices represent RVs
- Edges represent dependencies
- i.i.d. structure...

H, H, T, H, T, H
$X_{1}, X_{2} \ldots X_{n}$

Dependent RVs

- Let's stick to binary RVs for now
- Binary RVs don't have to be i.i.d. - even though so far we've assumed this.
- Independence has pros and cons...
- Cons: Independence not a good model for, say:
- Sequence of results (win/lose) of football matches
- Status of proteins in a pathway
- Time series
- Pros: simplicity! Allowed us to write down the joint distribution and likelihood function as a very simple product - the full joint is a big thing, with many parameters
- Compromise: permit a restricted departure from complete independence...

Football results

- Sequence of results
- Let each result depend on the one before, but not directly on the previous ones
- We can draw this using the graphical notation...
- Q: Suppose we wanted to generate data from this model what would we need to do, what do we need to specify? How many free parameters do we end up with?

Samples from Football Markov Chain

Simulation 5

Three parameter settings (not in order; 0.5 for initial state)...

$$
\begin{array}{lll}
P\left(X_{i} \mid X_{i-1}=0\right)=0.4 & P\left(X_{i} \mid X_{i-1}=0\right)=0.6 & P\left(X_{i} \mid X_{i-1}=0\right)=0.5 \\
P\left(X_{i} \mid X_{i-1}=1\right)=0.6 & P\left(X_{i} \mid X_{i-1}=1\right)=0.4 & P\left(X_{i} \mid X_{i-1}=1\right)=0.5
\end{array}
$$

Q: Which is which!?

Markov chains

- We've built a (discrete-index, time-invariant) Markov chain and you've generated data or sampled from it using ancestral sampling
- More formally, the elements are:
- An initial distribution Po
- A transition matrix \boldsymbol{T}
- MCs are interesting mathematical objects, with many fun properties, you'll encounter them in that form during stochastic processes
- But they can also be viewed as special case of something called a probabilistic graphical model, which is a model with a graph which allows some dependence structure, but is still parsimonious
- Applications abound: DNA sequences, speech, language, protein pathways etc. etc.
- We'll encounter probabilistic graphical models later

Conditional distribution

- The RVs in our MC are all binary, and the transition matrix \boldsymbol{T} is fixed
- The ($1^{\text {st }}$ order) Markov assumption underlying our chain is

$$
P\left(X_{i} \mid \text { past }\right)=P\left(X_{i} \mid X_{i-1}\right)
$$

- In our case these conditionals are simply Bernoulli
- In other words, the MC we've constructed is built from a one-step conditional probability idea and a humble Bernoulli distribution
- Finally, what's the joint distribution over X_1 ... X_T?
- That is, global joint can be expressed in terms of local conditionals

Likelihood

- Finally, what's the joint distribution of n datapoints sampled from the chain?
- That is, global joint can be expressed in terms of local conditionals

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)= & P\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right) \times \\
& P\left(X_{N-1} \mid X_{1}, X_{2}, \ldots, X_{N-2}\right) \times \\
& \ldots \\
& P\left(X_{2} \mid X_{1}\right) \times \quad \text { always true, for } \\
& P\left(X_{1}\right) \quad \text { any ordering } \\
= & P\left(X_{N} \mid X_{N-1}\right) \times \\
& P\left(X_{N-1} \mid X_{N-2}\right) \times
\end{aligned}
$$

- This is the joint distribution of the data given the parameters, leading to a very compact likelihood function

$$
\begin{array}{rl}
& P\left(X_{2} \mid X_{1}\right) \times \\
P\left(X_{1}\right) & \begin{array}{l}
\text { Based on 1st } \\
\text { order Markov } \\
\text { property }
\end{array} \\
P & P\left(X_{1}\right) \prod_{i=2}^{N} P\left(X_{i} \mid X_{i-1}\right)
\end{array}
$$

- Let's find the MLE's of our binary Markov chain...

Estimators

- Estimator is function of random data ("a statistic") which provides an estimate of a parameter:

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, X_{2} \ldots X_{n}\right)
$$

- Estimation is how we go from real-world data to saying something about underlying parameters
- We've seen a simple example of building up a more complicated model using a simple pmf, so even in complex settings, the ability to estimate properly is crucial
- This is why it's worth looking at properties of estimators

Properties of estimators

- The estimator is a function of RVs, so is itself a RV:

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, X_{2} \ldots X_{n}\right)
$$

- Two key properties:
- Bias
- Consistency

Estimators

- Estimator is an RV.
- Let's use subscript n to indicate the number of datapoints ("sample size"):

$$
\hat{\theta}_{n}=\hat{\theta}\left(X_{1}, X_{2} \ldots X_{n}\right)
$$

- Then $\hat{\theta}_{n}$ is a RV whose distribution is the distribution of values you'd obtain if you
- repeatedly sampled n datapoints
- applied the estimator
- and noted down the estimate

Random variation in estimators

- Estimator is a RV, itself subject to random variation
- Easy to forget that when dealing with randomness, even the "answer" is subject to variation
- Have to be careful to see that what we think are "good" methods are consistently useful, and that a good result isn't just a fluke

Bias

- Estimator is a RV, itself subject to random variation
- A natural question then is this: how different is the average of the estimator from the true value of the parameter?
- The quantity

$$
\mathbb{E}\left[\hat{\theta}_{n}\right]-\theta
$$

captures this idea and is called the bias of the estimator

- An estimator with zero bias for all possible values of the parameter, i.e.:

$$
\forall \theta \cdot \mathbb{E}\left[\hat{\theta}_{n}\right]=\theta
$$

is said to be unbiased

Consistency

- Notion of bias is tied to sample size n
- What if we had lots of data?
- You'd hope that with enough data you'd pretty much definitely get the right answer...
- Remember the lab?
- More simulations allowed us to accurate estimate the variance of X^{2} (X was roll of a die)
- We we don't get the "right" answer with lots of data, we should worry
- So, we're interested in the behaviour of the estimator as n grows large

Convergence in probability

- RVs don't converge deterministically: there's always some chance, even for large n, that we don't get the right answer
- Instead we will use a probabilistic notion of convergence
- We say that a sequence $X_{1}, X_{2} \ldots$ of RVs converges in probability to a constant k, if

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|X_{n}-k\right| \geq \epsilon\right)=0
$$

Consistency

- We can now say something about how an estimator behaves as n grows large
- We say that an estimator is consistent if it converges in probability to the true value of the parameter. That is, if:

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|\hat{\theta}_{n}-\theta\right| \geq \epsilon\right)=0
$$

- Sufficient conditions for consistency:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\hat{\theta}_{n}-\theta\right]=0 \\
\lim _{n \rightarrow \infty} \mathbb{V}\left[\hat{\theta}_{n}\right]=0
\end{array}
$$

- ... asymptotically unbiased, zero variance

Example: Bernoulli MLE

- The estimator:

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\frac{n_{1}}{n} \\
n_{1} & =\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

- Q: can you write down the expectation of the estimator? (Just apply the E operator...)

Example: Bernoulli MLE

- The estimator:

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\frac{n_{1}}{n} \\
n_{1} & =\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

- Expectation of estimator:

$$
\begin{aligned}
\mathbb{E}\left[\hat{\theta}_{n}\right] & =\mathbb{E}\left[n_{1} / n\right] \\
& =\frac{n \theta}{n}=\theta
\end{aligned}
$$

- That is, unbiased

Example: Bernoulli MLE

- Consistency: we've shown the estimator is unbiased, so all we need is to show that

$$
\lim _{n \rightarrow \infty} V A R\left(\hat{\theta}_{n}\right)=0
$$

- Variance of estimator:

$$
V A R\left(\hat{\theta}_{n}\right)=\frac{V A R\left(n_{1}\right)}{n^{2}}
$$

- Result follows
- Of course, we can verify these properties computationally

Example: Bernoulli MLE

- Consistency: we've shown the estimator is unbiased, so all we need is to show that

$$
\lim _{n \rightarrow \infty} \operatorname{VAR}\left(\hat{\theta}_{n}\right)=0
$$

- Variance of estimator:

$$
\begin{aligned}
\operatorname{VAR}\left(\hat{\theta}_{n}\right) & =\frac{V A R\left(n_{1}\right)}{n^{2}} \\
& =\frac{n \theta(1-\theta)}{n^{2}}=\frac{\theta(1-\theta)}{n}
\end{aligned}
$$

- Result follows
- Of course, we can verify these properties computationally

Weak Law of Large Numbers

- A very general and intuitive result
- If $X_{1}, X_{2} \ldots X_{n}$ are i.i.d. RVs with:

$$
\begin{aligned}
\mathbb{E}\left[X_{i}\right] & =\mu_{X} \\
\operatorname{VAR}\left(X_{i}\right) & =\sigma_{X}^{2}<\infty
\end{aligned}
$$

Then the sample mean:

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

converges in probability to the true mean:

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu_{X}\right| \geq \epsilon\right)=0
$$

Properties of estimators

- Theory is interesting, but what is really important are the concepts
- The estimator itself is subject to variation
- How much of a difference this makes depends on interplay between how many parameters, how much data etc.
- Sometimes theory can tell us what problems to expect, but failing neat closed-form expressions, theory at least guides us towards what we should simulate to understand what's going on

