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Last Time 
 •  Law of total probability, aka “sum rule” 

•  Random Variable 
•  Probability Mass Function (PMF) 
•  Expectation, Variance 
•  Joint distribution of 2 or more random variables 
•  Conditional probability 
•  Product rule 
•  Bayes theorem 
•  Independence 
•  Parameterized distributions 



Outline 
§  Estimation 

–  Parameterized families 

–  Data, estimators 

–  Likelihood function, Maximum likelihood 

§  (In)dependence 
–  The role of structure in probabilistic models 

–  Dependent RVs, Markov assumptions 

–  Markov chains as structural models 

§  Properties of estimators 
–  Bias  

–  Consistency 

–  Law of large numbers 



Inference: from data to prediction 
and understanding 

§  Today we'll talk about problem of 
inferring parameters from data 

 
§  First, what's a parameter? 

Underlying 
system Data 

Observation / experiment / simulation 

Inference / learning 



Parameterized distributions 

§  We saw in L1 that a function P called the pmf gives the probability of 
every possible value of an RV 

§  And we introduced the idea of parameterized families of pmfs 

§  This is a distribution for x, which depends on a (fixed) theta. 
§  That is, P is a function which 

–  maps all possible values of x to [0,1] 

–  And sums to one 



Parameterized distributions 

§  Parametrized pmfs 
–  Simple parameterized distributions, when combined in various ways 

can lead to interesting, powerful models 

 
§  So we start by looking at the problem of learning parameters from data 

generated by a parametric pmf 



Underlying 
system Data 

Observation / experiment / simulation 

Inference / learning 

Inference... 



...with a model 

§  In the simplest case, we assume a parameterized distribution is a 
reasonable description of the data-generating process 

§  We use the data to say something about the unobserved parameters 

(Assumed) 
data-generating process 

Inference / learning 

§  Often, we combine simple parametric models together in various ways, 
to build up powerful models for tough, real-world problems 

§  E.g. BNs or MCs are built up from simple elements 
§  But the basic theory and concepts of estimation we'll learn today are 

very relevant, no matter how complicated the model 

Parametric 
model Data 



Bernoulli distribution 

§  X has two possible outcomes, one is “success” (X=1) other 
“failure” (X=0). PMF (one free parameter): 

§  Q: what does data 
generated from a 
Bernoulli look like? 



PMF as a data-generating model 

§  Using a computer, how would you generate or simulate data from the 
Bernoulli? 

§  Notice we're assuming the RVs Xi are independent, and all have the 
exact same Bernoulli PMF 

§  In a certain sense, there are two aspects to the overall model: the 
pmf(s) involved, and some assumptions about how RVs are related 



i.i.d. data 

§  Data: the results of N completed tosses 

§  That is, we assume: (i) Each toss has the same probability of success, 
(ii) the tosses are independent 

§  This means the probability of the next toss coming up heads is simply  
§  Prediction is related to estimation, here very closely... 

§  Model: “i.i.d” Bernoulli 

H, H, T, H, T, H  



Estimators 

§  An estimator is a function of random data (“a statistic”) which 
provides an estimate of a parameter: 

§  Several ways of estimating parameters, we will look at: 
–  Maximum likelihood estimator or MLE 

–  Bayesian inference 

–  Maximum A Posteriori (MAP) estimator 

§  Note terminology/notation: parameter, estimate and estimator 



Likelihood function 

§  When we think of “fitting” a model to data (curve-fitting, say), we're 
thinking of adjusting free parameters to make the model and data 
match as closely as possible 

§  Let's take this approach to our probabilistic models 
§  Joint probability of all of the data given the parameter(s): 

§  Now, write this as a function of the unknown parameter(s): 

§  This is the likelihood function 



Likelihood function 

§  Likelihood function: 

§  NOT a probability distribution over possible values of parameter 
§  Rather, simply a function which for any value of parameter gives a 

measure of how well the model specified by that value fits the data 
§  The key link between a probability model and data 

  
§  For N Bernoulli trials…  

L(θ) =
N∏

i=1

θ
xi(1− θ)1−xi

P (X1, X2, ..., XN ; θ) =
N∏

i=1

θxi(1− θ)1−xiProbability Mass Function 
Domain: {0,1}N   Range: R+ 
For a particular θ, probability of the data 

Likelihood function 
Domain: [0,1]  Range: R+ 
For this particular data, how “likely” are different θ’s 



Maximum likelihood estimator (MLE) 

§  Loosely speaking, the likelihood function tells us how well models 
specified by various values of the parameter fit the data 

§  A natural idea then is to construct an estimator in the following way: 

§  This would then be a sort of “best fit” estimate 
§  This estimator is called the Maximum likelihood estimator or MLE 



Example: coin tosses 

§  Let's go back to the coin tossing example 
§  This will be very simple, but will illustrate the steps involved in getting 

a MLE, which are essentially the same in more complicated situations 

H, H, T, H, T, H ... ? 



Example: coin tosses 

§  Data: the results of N completed tosses 

§  Q: Write down the likelihood function for this model. Write 
down the log-likelihood. Using differential calculus, maximise 
the likelihood function to obtain the MLE. 

§  Model: i.i.d Bernoulli 



(         will denote likelihood or log-likelihood, will be obvious from context, 
though some authors use         only for likelihood,        for log-likelihood) 

Example: coin tosses 

§  Likelihood function for our i.i.d. Bernoulli model: 

§  Often easier to deal with the log-likelihood 
§  Log-likelihood: 

L(θ) l(θ)



MLE 

§  Log-likelihood function for i.i.d. Bernoulli model: 

§  Set derivative wrt    to zero and simplifying: 

§  That is, the estimate is simply the proportion of successes, which 
accords with intuition 

Note the “hat” 
 
True, unknown parameter 
(Fixed. Influences data) 
 
Estimated parameter 
(Random.  A function of the data) 

θ

θ̂



Dependent RVs 

§  Introduce a new, graphical notation 
–  Vertices represent RVs 

–  Edges represent dependencies 

§  i.i.d. structure... 

H, H, T, H, T, H  



Dependent RVs 

§  Let's stick to binary RVs for now  
§  Binary RVs don't have to be i.i.d.  - even though so far we've assumed 

this.  
§  Independence has pros and cons... 
§  Cons: Independence not a good model for, say: 

–  Sequence of results (win/lose) of football matches 

–  Status of proteins in a pathway 

–  Time series 

§  Pros: simplicity! Allowed us to write down the joint distribution and 
likelihood function as a very simple product - the full joint is a big 
thing, with many parameters 

 
§  Compromise: permit a restricted departure from complete 

independence... 



Football results 

§  Sequence of results 
§  Let each result depend on the one before, but not directly on the 

previous ones 
§  We can draw this using the graphical notation... 
 
§  Q: Suppose we wanted to generate data from this model – 

what would we need to do, what do we need to specify? How 
many free parameters do we end up with? 



Samples from Football Markov Chain 

Three parameter settings (not in order; 0.5 for initial state)… 

P (Xi|Xi−1 = 0) = 0.6
P (Xi|Xi−1 = 1) = 0.4

P (Xi|Xi−1 = 0) = 0.5
P (Xi|Xi−1 = 1) = 0.5

P (Xi|Xi−1 = 0) = 0.4
P (Xi|Xi−1 = 1) = 0.6

Q: Which is which!? 



Markov chains 

§  We've built a (discrete-index, time-invariant) Markov chain and 
you've generated data or sampled from  it using ancestral sampling 

§  More formally, the elements are: 
–  An initial distribution P0 

–  A transition matrix T 

§  MCs are interesting mathematical objects, with many fun properties, 
you'll encounter them in that form during stochastic processes 

§  But they can also be viewed as special case of something called a 
probabilistic graphical model, which is a model with a graph which 
allows some dependence structure, but is still parsimonious 

§  Applications abound: DNA sequences, speech, language, protein 
pathways etc. etc. 

§  We'll encounter probabilistic graphical models later 



Conditional distribution 

§  The RVs in our MC are all binary, and the transition matrix T is fixed 
 
 
§  The (1st order) Markov assumption underlying our chain is 

P(Xi | past) = P(Xi | Xi-1) 
 
§  In our case these conditionals are simply Bernoulli 
§  In other words, the MC we've constructed is built from a one-step 

conditional probability idea and a humble Bernoulli distribution 
 
§  Finally, what's the joint distribution over X_1 ... X_T? 
§  That is, global joint can be expressed in terms of local conditionals 



Likelihood 
§  Finally, what's the joint distribution of n datapoints sampled from the 

chain?  
§  That is, global joint can be expressed in terms of local conditionals 
 
 
 
 
 
 
 
 
 
 
§  This is the joint distribution of 

the data given the parameters,  
leading to a very compact  
likelihood function 

§  Let’s find the MLE’s of our 
binary Markov chain… 

P (X1, X2, ..., XN ) = P (XN |X1, X2, ..., XN−1) ×
P (XN−1|X1, X2, ..., XN−2) ×
· · ·
P (X2|X1) ×
P (X1)

= P (XN |XN−1) ×
P (XN−1|XN−2) ×
· · ·
P (X2|X1) ×
P (X1)

= P (X1)
∏N

i=2
P (Xi|Xi−1)

always true, for 
any ordering 

Based on 1st 
order Markov 
property 



Estimators 

§  Estimator is function of random data (“a statistic”) which provides an 
estimate of a parameter: 

§  Estimation is how we go from real-world data to saying something 
about underlying parameters 

§  We've seen a simple example of building up a more complicated model 
using a simple pmf, so even in complex settings, the ability to estimate 
properly is crucial 

§  This is why it's worth looking at properties of estimators 



Properties of estimators 

§  The estimator is a function of RVs, so is itself a RV: 
 
 
 
 
 
 
§  Two key properties: 

–  Bias 

–  Consistency 



Estimators 

§  Estimator is an RV. 
§  Let's use subscript n to indicate the number of datapoints (“sample 

size”): 

§  Then      is a RV whose distribution is the distribution of values you'd 
obtain if you 
–  repeatedly sampled n datapoints 

–  applied the estimator 

–  and noted down the estimate 



Random variation in estimators 

§  Estimator is a RV, itself subject to random variation 
 
–  Easy to forget that when dealing with randomness, even the 

“answer” is subject to variation 

–  Have to be careful to see that what we think are “good” methods 
are consistently useful, and that a good result isn't just a fluke 



Bias 

§  A natural question then is this: how different is the average of the 
estimator from the true value of the parameter? 

§  The quantity 

captures this idea and is called the bias of the estimator 

§  An estimator with zero bias for all possible values of the parameter, 
i.e.: 

 
 
is said to be unbiased 

§  Estimator is a RV, itself subject to random variation 



Consistency 

§  Notion of bias is tied to sample size n 
§  What if we had lots of data? 
§  You'd hope that with enough data  

you'd pretty much definitely  
get the right answer… 
§  Remember the lab? 
§  More simulations allowed us to 

accurate estimate the variance of  
X2 (X was roll of a die) 

–  We we don’t get the “right” answer 
with lots of data, we should worry 

–  So, we're interested in the behaviour 
of the estimator as n grows large 



Convergence in probability 

§  RVs don't converge deterministically: there's always some chance, even 
for large n, that we don't get the right answer 

§  Instead we will use a probabilistic notion of convergence 
 
 
 
§  We say that a sequence                of RVs converges in probability 

to a constant k, if 



Consistency 

§  We can now say something about how an estimator behaves as n 
grows large 

 
§  We say that an estimator is consistent if it converges in probability to 

the true value of the parameter. That is, if: 

§  Sufficient conditions for consistency: 

§  … asymptotically unbiased, zero variance 

lim
n→∞

E[θ̂n − θ] = 0

lim
n→∞

V[θ̂n] = 0



Example: Bernoulli MLE 

§  The estimator: 

§  Q: can you write down the expectation of the estimator? (Just 
apply the E operator...) 



Example: Bernoulli MLE 

§  The estimator: 

§  Expectation of estimator: 

§  That is, unbiased 



Example: Bernoulli MLE 

§  Consistency: we've shown the estimator is unbiased, so all we need is 
to show that 

§  Variance of estimator: 

§  Result follows 
§  Of course, we can verify these properties computationally 



Example: Bernoulli MLE 

§  Consistency: we've shown the estimator is unbiased, so all we need is 
to show that 

§  Variance of estimator: 

§  Result follows 
§  Of course, we can verify these properties computationally 



Weak Law of Large Numbers 

§  A very general and intuitive result 
 
§  If                     are i.i.d. RVs with: 

Then the sample mean: 

converges in probability to the true mean: 



Properties of estimators 

§  Theory is interesting, but what is really important are the concepts 

–  The estimator itself is subject to variation 

–  How much of a difference this makes depends on interplay between 
how many parameters, how much data etc. 

–  Sometimes theory can tell us what problems to expect, but failing 
neat closed-form expressions, theory at least guides us towards 
what we should simulate to understand what's going on 


