CO902

Supporting Lecture Notes:

Bernouli, Time-invariant, 1st Order Markov Chain
 Lecture 2 - 14 Jan 2012

Let $X_{1}, X_{2}, \ldots, X_{N}$ be dependent Bernoulli random variables, such that

$$
\begin{equation*}
P\left(X_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right)=P\left(X_{i} \mid X_{i-1}\right) \tag{1}
\end{equation*}
$$

This is the 1st order Markov property, also know as a "memoryless" property, and we say $\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ is a "Markov Chain". If we further assume that

$$
\begin{aligned}
& P\left(X_{i}=1 \mid X_{i-1}=0\right)=p_{01} \\
& P\left(X_{i}=1 \mid X_{i-1}=1\right)=p_{11}
\end{aligned}
$$

for all $i=2,3, \ldots, N$, then the Markov Chain is time-invariant, with p_{01} being the probabilty of a success following a failure and p_{11} being the probabilty of a success following a success. Specifying the initial success probability

$$
P\left(X_{1}=1\right)=p_{0}
$$

completes the specification of the process.
The (1st order) Markov property allows the joint likelihood to factor into a concise form:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)= & P\left(X_{N} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right) \times \\
& P\left(X_{N-1} \mid X_{1}, X_{2}, \ldots, X_{N-2}\right) \times \\
& \vdots \\
& P\left(X_{2} \mid X_{1}\right) \times \\
& P\left(X_{1}\right) \\
= & P\left(X_{N} \mid X_{N-1}\right) \times \\
& P\left(X_{N-1} \mid X_{N-2}\right) \times \\
& \vdots \\
& P\left(X_{2} \mid X_{1}\right) \times \\
& P\left(X_{1}\right) \\
= & P\left(X_{1}\right) \prod_{i=1}^{N} P\left(X_{i} \mid X_{i-1}\right)
\end{aligned}
$$

At the risk of incurring confusion, please realize that the above notation with "big" X is just shorthand for

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{N}=x_{N}\right)=P\left(X_{1}=x_{1}\right) \prod_{i=1}^{N} P\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right)
$$

that is, this expression is the joint probability mass function that tells you the probability (mass) associated with one particular set of realized values $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.)

The log-likelihood can be written

$$
\mathcal{L}\left(p_{0}, p_{01}, p_{11}\right)=\sum_{i: 2 \leq i \leq N, x_{i-1}=0}\left(x_{1} \log \left(p_{0}\right)+\left(1-x_{1}\right) \log \left(1-p_{0}\right)+\right.
$$

There are three components, one for the initial condition, one for the successes preceeded by failure, and one for successes preceeded by successes. (Note I have switched to lower case x, as is often done, reflecting how the likelihood is a function of the parameters for a particular value of the observed data.)

Taking derivatives with respect to the parameters, setting to zero and solving gives the Maximum Likelihood Estimators (MLE's). I leave the algrebra to your memory of the chalkboard (make sure you can do it!). The MLE's are

$$
\begin{aligned}
\hat{p}_{0} & =x_{1} \\
\hat{p}_{01} & =n_{01} / n_{0} \\
\hat{p}_{11} & =n_{11} / n_{1}
\end{aligned}
$$

where

$$
\begin{array}{lll}
n_{0}=\sum_{i: 2 \leq i \leq N, x_{i-1}=0} 1 & \text { \# failures } 1, \ldots, N-1 \\
n_{1}=\sum_{i: 2 \leq i \leq N, x_{i-1}=1} 1 & \text { \# successes } 1, \ldots, N-1 \\
n_{01}=\sum_{i: 2 \leq i \leq N, x_{i-1}=0} x_{i} & \text { \# successes following failures } \\
n_{11}=\sum_{i: 2 \leq i \leq N, x_{i-1}=1} & \text { \# successes following successes }
\end{array}
$$

These results will be handy for the lab exercise.

