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Outline 
§  Estimation 

–  Parameterized families 

–  Data, estimators 

–  Likelihood function, Maximum likelihood 

§  (In)dependence 
–  The role of structure in probabilistic models 

–  Dependent RVs, Markov assumptions 

–  Markov chains as structural models 

§  Properties of estimators 
–  Bias  

–  Consistency 

–  Law of large numbers 



Cumulative distribution function 

§  For RV X, the cumulative 
distribution function or CDF is a 
function which gives the probability 
that the RV is less than or equal to its 
argument: 



Probability density functions 

§  Let X  be a continuous RV (i.e. X can take any value in a finite or 
infinite interval) 

§  Let FX be the cdf of X 
§  Then for a<b: 



Probability density functions 

§  Assume cdf differentiable: 

§  This gives: 



Probability density functions 

§  The function fx is called the probability 
density function or pdf of RV X 

§  For small dx, probability that X lies 
between x and x+dx is fx (x)dx 

§  Intuitively, shape of pdf tells us which 
regions the RV is more likely to fall into 

§  We will use: 
–  p(x) to refer to a pdf 

–  P(x) for either a pmf or a direct 
probability statement 



PDFs: properties 

§  Note that the density at x, p(x) is not a probability: it can exceed 1 
§  The pdf has to integrate to one, because the RV must take some value 
§  The pdf has to be everywhere non-negative because of the 

monotonicity of the cdf 
§  pdf value is not a probability! 

 
 
For a continuous r.v., probability that it takes on value exactly x is 0 

§  Easy to confuse pdf and pmf; be careful! 

P (X = x) != p(x)



Expectation 

is the expectation or expected value or mean of continuous RV X 
§  More generally, if g(X) is a function of RV X, g(X) is also an RV, with 

expected value: 

§  Similarly, we get the variance and standard deviation of X 



Uniform pdf 

§  Intuitively: description of a RV all of whose values over some range are 
equally likely 



Normal or Gaussian pdf 

§  Arguably single most important PDF 
§  Parameters are the mean and variance 
§  Many interesting properties: CLT, maximum entropy etc. 
§  Note that this is a family of pdfs 



Normal or Gaussian pdf 

§  Exponent is square of #of std deviations distance from the mean 
§  This makes it fall off quickly away from the mean: the density has 

“light tails” 
§  68% of mass lies within 1 std dev either side of the mean, 95% within 

2 and 98% within 3 
 
§  We'll encounter other pdfs as we need them 



Covariance 

§  For two RVs X and Y, the covariance COV(X,Y) is defined as: 

§  Q: What is COV(X,X)? 
§  Q: If X,Y are independent, what is COV(X,Y) ? 



Random vectors 

§  A random vector is a vector whose components are RVs: 

§  The mean vector is a vector whose components are the means of the 
components of X: 



Covariance matrix 

§  The covariance matrix      of a random vector is a matrix whose 
components are the covariances of pairs of vector components: 

§  Q: what are the entries along the diagonal? 



Multivariate normal pdf 

§  Multivariate is statistics-speak for multi-dimensional 
§  To get the probability that the RV lies in some region, we have to 

integrate the pdf over that region 
§  Exponent is a weighted distance between x and µ, and is sometimes 

called the Mahalanobis distance 



Sum, product and Bayes rules for 
pdfs 

(sum) 

(sum; support) 

(product) 

(Bayes) 



Bayesian inference 

§  Bayesian inference is a different approach to characterizing 
unknown parameters which uses the rules of probability to get a 
probability distribution over the unknown parameter 
–  The distribution before we see any data is called the prior 

–  The distribution after we see the data is called the posterior 

§  The prior brings a non-likelihood element into inference 
 
§  Today: 

–  Intro to Bayesian inference and  

–  Application to the Bernoulli model 



Bernoulli MLE 

§  We've seen that the Bernoulli MLE has some nice properties: 
–  Intuitively appealing 

–  Unbiased 

–  Consistent 

§  These kinds of properties are nice, but in modelling what we're really 
after is predictive power 

 
§  Suppose we get the following sequence of coin tosses: 
 

H, H, H 
 
§  What's the Bernoulli MLE's prediction for the next toss? 



Overfitting 

§  What's going on is a kind of “overfitting” 
§  The model has tuned itself too closely to the data 
§  Another example: curve-fitting... 
§  These are toy examples but overfitting is a serious concern in real-life 

models in many areas: 
–  Biology (e.g. large gene networks) 

–  Finance (recent events?) 

–  Climate models 

§  In these cases models can have 100s or 1000s of parameters, maybe 
more if you consider model uncertainty: for sufficiently complicated 
models overfitting remains a concern even when there seems to be 
“lots” of data 

§  Likelihood is important, but it's entirely data-driven 
§  In practice, with finite data, can be helpful to have a non-data term... 



Bayesian inference 

§  Bayesian inference is an approach to statistical problems in which 
-  Uncertainty about the parameter of interest is captured by a 

probability distribution over the parameter, and 

–  The rules of probability are used to characterize this distribution, 
with Bayes' rule front and centre (hence the name) 

§  The idea of having a distribution for the parameter may seem a bit odd 
§  But if probability distributions are meant to capture uncertainty, it's 

actually pretty natural: we are uncertain about the value of the 
parameter, and want to say capture our state of knowledge about it 

 



Posterior distribution 

§  Distribution over parameter, given the data we've observed: 

§  This is a posterior distribution, because it comes after the data 
§  In this case the parameter is continuous, so it's going to be a density 
 
§  But our original data model gives us  
§  Not  
 
... use Bayes' rule to “flip around” 



Prior distribution 

§  Using Bayes' rule: 

§  What does         represent? 
§  This is the distribution over the parameter before seeing any data 
§  It's therefore called the prior distribution 



Bayesian inference for the Bernoulli 

§  Data: n tosses 

§  Likelihood: 

§  In the Bayesian approach we aim to get a distribution over the 
parameter, given the data we've observed... 



Prior for Bernoulli model: desiderata 

§  We need a prior distribution 
§  This should be: 

–  A density over the range [0,1] 

–  Tunable, to give us flexibility in different situations (e.g. expect 
nothing in particular, expect coin to be nearly fair, expect coin to be 
grossly unfair etc.) 



Beta pdf 

§  PDF for RVs taking values in the unit interval 
§  Parameters can be adjusted to give bell-shaped, u-shaped, or skewed 

densities 
§  Much used in Bayesian inference, as a prior density for probability 

parameters 
§  We'll use the Beta a great deal 



Beta prior 

§  We'll use a Beta pdf as a prior for the Bernoulli parameter: 

§  Parameters of the prior are then called hyperparameters 
§  Consider two options: 

–  Most typically a fair coin, but sometimes weighted towards H’s or 
T’s with diminishing probability.  E.g. Beta(2,2) 

–  Or, if we want to start off completely uninformed, we could make 
the prior uniform over [0,1]. This corresponds to Beta(1,1) 



Posterior 

§  Using the Beta prior and Bernoulli likelihood, let's work out the 
posterior density: 

§  Q: Does this look familiar? 
§  Q: What is the normalizing factor? 



Posterior 

§  Recognizing the Beta “kernel”, we can see that the posterior 
distribution is                                   : 

§  What does the posterior look like? 



Posterior 



Posterior 

Prior Posterior 

Data 

Inference 



Posterior 

§  This looks reasonable, no? 
§  This object is the key element of any Bayesian analysis, because it 

describes our current state of knowledge about the unknown 
parameter 

§  We can therefore use it to say something about other quantities which 
depend on the parameter 

Posterior 



Conjugate priors 

§  The posterior ended up being of the same form as the prior 
§  This helped us to characterize the posterior distribution, in this case by 

recognizing the Beta kernel 
§  This property – of a posterior having the same form as a prior - is 

called conjugacy 
§  In this case the Beta is a conjugate prior for the Bernoulli 

Prior 

Posterior 



MAP estimators 

§  The posterior distribution is not a (point) estimate, in the sense that it 
doesn't give a single “answer” 
§  Prior – Belief about different possible values of the parameter before seeing the data 
§  Posterior – Belief about possible values of the parameter after seeing the data 

§  The following point estimator is often derived from the posterior: 

§  This is called a maximum a posteriori or MAP estimator 
§  Q: Using the posterior distribution we have derived, write 

down the Bernoulli MAP estimate 



MAP estimate for the Bernoulli 

§  Log-posterior: 

§  For our dataset of three heads, and the Beta(2,2) prior, what is 
the MAP estimate? 

§  Does this feel more or less reasonable than the MLE? 
§  What is the MAP estimate with the flat prior Beta(1,1)? 

§  Setting derivative to zero and solving, we get: 

log(p(θ|X1, . . . , Xn)) ∝ (n1 + α− 1) log(θ) + (n− n1 + β − 1) log(1− θ)



Properties of the MAP estimator 

§  The MAP estimator is just another estimator, so we can look into it's 
properties, like bias and consistency 

§  This would proceed along the same lines as we saw for the MLE 
§  i.e., in practice, we use numerical simulation 

§  Generally, Bayesian approaches tend to agree with ML in the limit of 
lots of data, because the effect of the prior gets “wiped out” by the 
likelihood, which makes sense 

§  But for sample sizes which are small-to-moderate in relation to the 
complexity of the model (and this can mean pretty large for a complex 
model) the answers can be very different, as we've seen 



Bayesian computation 

§  In practice, relevant computations (characterizing posteriors, 
intergrating out things you're not interested in) are rarely as “nice” as 
our Bernoulli example 

§  This has meant that approximate, computational approaches like 
Markov chain Monte Carlo are important in Bayesian inference 

§  This is one reason Bayesian methods are now vastly more popular than 
a few decades ago: today you can perform pretty “heavy-duty” 
approximate inference on a desktop PC... 



Bayesian inference generally 

§  So this is how Bayesian inference works, no matter how complicated 
the situation: 

 
 

 
§  As we've seen, the prior is not data-dependent 
§  This is one thing which has, over the years, made Bayesian inference 

somewhat controversial 
§  Some people feel uncomfortable specifying a prior because it seems 

too subjective 



Bayesian inference generally 

§  However, nowadays Bayesian approaches are popular in many practical 
applications, including: 
–  Engineering (e.g. robotics) 

–  CS (e.g. language, AI) 

–  Biology (e.g. gene networks) etc. 

§  One appealing feature is the ability to incorporate background 
knowledge in a principled manner 
–  Often, it's natural enough to say something about the system of 

interest, a priori  

–  Bayes then tells us how to combine our possibly vague prior 
knowledge with data 

§  Equally, using “uninformative” priors, Bayes is a nice way (but certainly 
not the only way) to “regularize” problems 

§  Finally, opens up a principled way of doing model comparison 



Bayes Conclusions 

§  In conclusion: shouldn't accept any method uncritically, but both Bayes 
and ML are important ideas to have in your conceptual toolbox 



Outline of course 

A. Basics: Probability, random variables (RVs), common distributions, 
introduction to statistical inference 

B. Supervised learning: Classification, regression; including 
issues of over-fitting; penalized likelihood & Bayesian 
approaches 

C. Unsupervised learning: Dimensionality reduction, clustering and mixture 
models 

D. Networks: Probabilistic graphical models, learning in graphical models, 
inferring network structure 



Outline 

(1) Introduction to supervised learning 
(2) Classification 
(3) Generic classifier based on generative model and class-

conditional distributions 
(4) Discrete “Naive Bayes” classifier 



Supervised learning 

§  Supervised learning: prediction problems where you start with a dataset 
in which the “right” answers are given 

§  Supervised in the sense of “learning with a teacher” 
 
§  This is a topic with a huge range of applications... 



Predicting drug response 

§  Cancer drugs don't work equally well for everyone 
§  Response comes about via complex interplay between drug and individual 

genetics, gene expression, protein levels etc. (not to mention social and 
psychological factors...) 

§  Individual differences in genetic and molecular factors can lead to very 
different outcomes – e.g. Herceptin 

§  Much interest in understanding the factors which contribute to such 
heterogeneity and how to personalize therapy to individuals 

??? 



Predicting drug response 

§  Genomic data can tell us about the individual's gene code 
§  Equally,  technologies like microarrays & protein chips allow us to capture 

the molecular state of an individual: that is, extent to which each of 
10000s of genes are “switched on”, which proteins are present etc. 

§  Such data offer possibility of molecular prediction of drug response 
§  A (good) predictor could play a clinical role and also point to molecular 

mechanisms underlying heterogeneity in drug response 

??? 



Predicting drug response 

§  Suppose we collect data of the following kind: 
–  For each of n patients, we get a tumour sample, and using a 

microarray obtain expression measurements for d=10k genes 

–  Also, we administer the drug to each of the n patients, and record a 
numerical measure of drug response 

§  This gives us data of the following kind: 



Class of cancer 

§  Many subtly different forms of cancer 
§  These can be hard to distinguish by examination or under the 

microscope 
§  Instead, we can use high-throughput data to try to recognize molecular 

signatures which are predictive of the type of cancer 
§  Here, the thing being predicted is a “class” rather than a number 
§  Data: 

Histology 



Spam prediction 

§  Drowning in spam – One statistic: of the 4 
billion emails Hotmail receive each day, they 
only deliver 600 million 

§  We can recognize spam when we see it 
§  Doing this automatically involves 

introspection and hand-coding of the 
heuristics we use, and/or learning from 
examples what the difference is  

§  That is, given n email messages, each flagged 
as spam/non-spam, we seek to learn a rule 
which will tell the two apart 

§  Emails might be described by the presence/
absence of each of d words 

§  Then, data: 

??? 



Object recognition 
§  Object recognition: recognizing the class of an object from an image 
§  Our facility with this belies the fact that this is very hard problem 
§  Applications in image processing, image search, but also interest from 

cognitive psychology 

§  Here again the thing being predicted is discrete 
§  Data would look like: 

“duck” “tiger” Output Y 

Input X 



Supervised learning 

§  In general terms: 
–  we have  

–  want to predict Y from X 

§  We can learn a predictor from the data              
§  This is called supervised learning, because it's like learning with a 

teacher: you get told the right answer for the examples you learn from 
 
§  In contrast, unsupervised learning is about finding interesting 

regularities or patterns in data without a labelled dataset: 
–  Examples: clustering, or finding interesting groups in data, 

dimensionality reduction, or finding informative low-dimensional 
data representations 

 
§  Today, classification 



Classification 

??? 

Classification 

All these problems share 
a common structure 



Classification 

§  These are all examples of classification problems 
§  Classification: supervised learning problem in which the output is a 

(finite) set of classes or categories (rather than real-valued, as in 
regression, e.g. drug response) 

 
 
 
 
§  This is a very general class of problems 



Generative model 

§  Question: given vector-valued input data, with each datapoint 
belonging to one of two classes, can we learn a probability model to 
automatically classify such observations? 

 
§  Data: 

§  One way to approach this sort of problem is to 
–  think of a model which could have generated the data, and 

–  then use it to both make predictions and answer questions about 
features of interest 

§  This is called a generative model 



Class-conditional generative model 

§  Data: 

§  What kind of model do we want? 
§  There are two distinct classes, so we certainly don't expect all of the 

data to come from the same distribution 
§  We can instead use two distributions, one for each class... 

§  These are called class-conditional distributions 
§  Idea is very intuitive: consider M/F by height 

(same family, different parameters) 



Class posterior 

§  We want to classify a data-vector, i.e. determine it's class 
§  Using Bayes' rule: 

§  If we  
–  Assume some prior on class membership and 

–  Can estimate the two class-conditional pdfs/pmfs 

then we can classify data-points 



Inference 

§  Intuitively 
–  We have two groups, labelled by Y=0, Y=1 

–  We want the parameters for each group 

–  We can just estimate the parameters for all datapoints having Y = k 

§  This can be described more formally in likelihood terms 

§  We'll start with a discrete classifier 


