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Outline for Today 
§  Review / Lab Catch Up 

–  Beta-Bernoulli MAP estimator, properties 

–  Decision-Theory approach to prediction 

§  Supervised Learning (con’t) 
–  Class Conditional Models 

–  Cross validation 

–  Decision boundary 



Bayesian Inference Review 

§  No matter how complicated the problem, 
Bayesian inference reduces to  

§  Prior – beliefs before seeing data 
§  Likelihood – same as frequentist inference 
§  Posterior – beliefs after seeing data 

§  MAP – Maximum A Posteriori estimate 
§  Parameter value that maximizes posterior 

§  Conjugate prior for a likelihood 
§  When posterior is in same parametric family as prior 



Bernoulli Inference with Beta Prior 

§  Beta is conjugate for Bernoulli/binomial 

§  α & β are fixed; i.e. are tuning parameters 
§  Although, could have “hyperpriors”, priors on α & β(!) 

§  MAP – Maximum A Posteriori estimate 

§  For (α, β)=(1,1) MAP is MLE; (α, β)=(2,2) is our 
“modified MLE” from lab 

 

Xi|θ,α,β ∼ Ber(θ), iid
θ|α,β ∼ Beta(α,β)
θ|{Xi},α,β ∼ Beta(n1 + α, n− n1 + β)

n1 =

∑n

i=1
Xi

θ̂MAP =
n1 + α− 1

n+ α+ β − 2



Lab Exercise Observations 
MLE vs MAP 

§  When θis likely under prior 
§  Good MSE for small/moderate data 

§  When θis far from prior mean 
§  Poor MSE for small/moderate data 

§  With strong prior, dramatic reduction in variance 
§  When lots of data 

§  Little impact of prior 

 



Classification 

??? 

Classification 

All these problems share 
a common structure 



Classification/Prediction & 
 Decision Theory 

§  Have done classification in lab, informally 
justifying the  method each time 
§  Markov Chain – Choose most likely Xi given Xi-1 
§  Spam – Compute probability spam given label 

§  What are the general principals at work here? 
§  Decision Theory… (boardwork, supported notes) 

 



Classification/Prediction & 
 Decision Theory: Redux 

§  For discrete outcome (“class”) prediction 
§  Decision Theory gives general principals 
§  Leads to vital role class conditional distributions 

§  But  
§  Crux of the problem remains estimating the class 

conditional distributions 
§  Many issues rmain 

 



Class-conditional generative model 

§  Data: 

§  Two distinct classes 
§  Use two distributions, one for each class... 

§  These are called class-conditional distributions 

(same family, different parameters) 



Class posterior 

§  We want to classify a data-vector, i.e. determine it's class 
§  Using Bayes' rule: 

§  If we  
–  Assume some prior on class membership and 

–  Can estimate the two class-conditional pdfs/pmfs 

then we can classify data-points 



Inference 

§  Intuitively 
–  We have two groups, labelled by Y=0, Y=1 

–  We want the parameters for each group 

–  We can just estimate the parameters for all datapoints having Y = k 

§  This can be described more formally in likelihood terms 

§  We'll start with a discrete classifier 



Discrete data 

§  Often, the data vectors themselves are discrete 
§  Binary case: 

§  Examples: 
–  spam from presence/absence of d words 

–  Cancer status from presence/absence of d genes/proteins 

–  Drug response from presence/absence of d genes/proteins 



Model 

§  Let's assume binary inputs and two output classes 
§  A general class-conditional distribution (for Y=1): 

§  Q: how many parameters does the complete model have? 

X1      X2      . . . . . .       Xd                                  P(X | Y=1) 

0        0      . . . . . .        0                                           θ1 

1       1      . . . . . .        1                                             θ2d 
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“Naïve bayes” assumption 

§  A common assumption is to allow the class-conditional distribution to 
factorize over variables: 

§  That is, assume inputs are independent (given output class) 
§  Known as the “Naive Bayes” assumption (unfortunate misnomer: 

actually has nothing intrinsically to do with Bayes) 



Bernoulli model 

§  We want to characterize the chance that input j is “on”, given Y=1, 
that is given class #1 

§  Assuming the N observations are i.i.d., the natural model is Bernoulli: 



Naïve bayes class conditional 

§  NB assumption with a Bernoulli model gives the following class 
conditional distribution: 

§  In summary: 
–  What we're talking about is simply having different thetas 

depending on whether Y is 1 or 0 

–  Doing this for each input 

–  And then, assuming independence between inputs (given output), 
multiplying them together to get P(X | Y) 



MLEs 

§  What are the parameters?  

 
   Probability that Xj = 1 when Y = 1 

     Probability that Xj = 1 when Y = 0  
 

§  What are the MLE’s? 

 
  
 

θj1

θj0



MLEs 

§  What are the parameters?  

 
   Probability that Xj = 1 when Y = 1 

     Probability that Xj = 1 when Y = 0  
 

§  What are the MLE’s? 

 
  
 

θ̂j1 =
nj1

n1

θ̂j0 =
nj0

n0

θj1

θj0

njk =
∑

i : Yi=k Xij

nk =
∑

i : Yi=k 1



Example: Handwritten Digit 
Classification 

§  Classify A vs B in handwritten data? 
§  16×20 pixel images 

§  X: d = 16×20 =  320 variables 
§  Pixels not independent, but we assume independence 

as part of “Naïve Bayes” 

§  Y: K = 2 (for now), just “A” (Y=0) and “B” (Y=1) 
§  n = 78 (39 per class) not much data given d = 320 ! 



Example: Handwritten Digit 
Classification 

§  Estimated Class Conditional Distribution, for k=0 (“A”) 

 

 
§  Ditto for k=1 (“B”) θ̂j1 =θ̂j0 =

log P̂ (X|Yi = 0) =
d∑

j=1

Xj log(θ̂j0) + (1−Xj) log(1− θ̂j0)

X40,X41, . . .

X1,X2, . . .

X40,X41, . . .

X1,X2, . . .
Log Class Conditional Distribution 

log P̂ (Xi|Yi = 1 “B”)log P̂ (Xi|Yi = 0 “A”)



Example: Handwritten Digit 
Classification 

§  Note nearly every sample correctly classified 
§  For A’s… 

§  For B’s… 

§  However, note the three failures  

X40,X41, . . .

X1,X2, . . .

X40,X41, . . .

X1,X2, . . .
Log Class Conditional Distribution 

log P̂ (Xi|Yi = 0) > log P̂ (Xi|Yi = 1)

log P̂ (Xi|Yi = 0) < log P̂ (Xi|Yi = 1)

log P̂ (Xi|Yi = 1 “B”)log P̂ (Xi|Yi = 0 “A”)



How good are predictions? 

§  Once we've chosen a model, estimated required parameters etc., we're 
ready to classify any given input X, i.e. assign it to a class 

 
§  But what would the error rate be in such assignment? Let's call our 

overall classification rule g (i.e. g(X_i) = 0,1, for two classes) 
 
§  In-sample or training error rate: proportion of training data {X_i} 

incorrectly assigned under g 
 
§  True error rate/risk/generalisation error: Prob(g(X) \neq Y), i.e. 

proportion of all possible data incorrectly assigned under g 
 
§  True error is the real test: does it predict unseen data? 
 
 
 



Train and test paradigm 

§  Idea: since we're interested in predictive power on unseen data, why 
not “train” on a subset of the data and “test” on the remainder? 

§  This would give us some indication of how well we'd be likely to do on 
new data... 

§  That is, we want to estimate risk 



Cross-validation 

§  But what if the dataset is small? 
§  Training on a subset of a small dataset may well do badly, but does 

this tell us how things would go in practice, using all of the data for 
training? 

 
§  Idea: use all but one datapoint to train, and test on the one left out, 

iterating until every datapoint has been used in this way 
§  This is called (leave-one-out) cross-validation (or “LOOCV”) 

§  LOOCV on handwriting sample… 
§  Recompute class conditionals 78 times… holding out one sample each time 
§  LOOCV gave same result… 3 out of 78 accurately classified 

log P̂ (Xi|Yi = 0) log P̂ (Xi|Yi = 1)



Cross-Validation 

§  LOOCV great, but computationally expensive 
§  N-fold cross-validation 

§  Split data in to N-folds 
§  Hold out 1/N-th as test 
§  Use (N-1)/N of data to train 
§  Measure accuracy on held-out sample 

§  Validation in general… 
§  It is a simple but immensely useful way to check the behaviour of a model in 

supervised learning 
§  The nice thing about supervised learning is that you have some “correct” answers 

–  Train and test and cross validation are about using those data to assess how 
well your fitted model will generalize to unseen data 

–  These can be immensely powerful and can be performed even for complicated 
models which are not amenable to formal analysis 

 

Test 

Test 

Test 

Test 



Prediction with Continuous Response 

(1) Gaussian generative model and class-conditional distributions 
(2) Decision boundary 
(3) Variable selection, Fisher ratio 



Generative model 

§  Question: given vector-valued continuous input data, with each 
datapoint belonging to one of two classes, can we learn a probability 
model to automatically classify such observations? 

 
§  Data: 

§  Want to make a generative model for each class of Yi 



Class-conditional generative model 

§  Data: 

§  What kind of model do we want? 
§  There are two distinct classes, so we certainly don't expect all of the 

data to come from the same distribution 
§  We can instead use two distributions, one for each class... 

§  These are called class-conditional distributions 

(same family, different parameters) 

(different distributions) 



Class-conditional Gaussians 

§  Let the class-conditional densities be multi-variate Gaussians 
§  Assume also that the data are iid given the class: 

§  We have standard estimators for the class-conditional parameters 

  Sample mean of samples in class k 
 
 

  Sample covariance of (d-dimensional) samples in class k 

µk

Σk



Class posterior 

§  We want to classify a data-vector, i.e. determine it's class 
§  Using Bayes' rule: 

§  Same machinery!! 
§  That X is continuous doesn’t change the mathematics 

§  If we can estimate the two class-conditional densities, we can classify 
data-points 



Decision boundary 

§  Visualize X-space... 
§  Once we've built our classifier, for any point X in this space we can get 
P(Y=1 | X) 

P(Y=0 | X) 

§  And thereby assign the point to a class 
§  Decision boundary: set of points {X} for which 
P(Y=1 | X) = P(Y=0 | X) 

§  That is, can't decide which class, in this sense “on the boundary” 
between regions of the space corresponding to each class 

 
§  Q: For the Gaussian case, what's the equation (in X) of the 

decision boundary? Assume equal covariances Sigma. 
§  What sort of decision boundary do you get? 



§  If we assume equal covariances… 
§  Then quadratic term becomes                    

and is irrelevant for maximizing 
§  Boundary will depend on                  a linear function in x 

§  Otherwise, for unequal covariances, boundary is quadratic 

Decision boundary 

= argmaxk log p(x|Y = k) + logP (Y = k)

= argmaxk −
1

2
log |Σk|−

1

2
(x− µk)′Σ

−1

k
(x− µk) + logP (Y = k)

= argmaxk −
1

2
log |Σk|+ x

′Σ−1

k
µk − 1

2
µ′

k
Σ−1

k
µk − 1

2
x
′Σ−1

k
x+ logP (Y = k)

§  Starting with optimal decision rule… 

argmaxk P (Y = k|X = x)

= argmaxk p(x|Y = k)P (Y = k)

Σ = Σk

x
′Σ−1

x

x
′Σ−1

µk



Linear vs. Quadratic Boundary 

“Iris” data 
 Based on 
different 
types of 
flowers  
 Length 
and the 
width of 
the pedals 



Linear and quadratic discriminants 

 
§  The corresponding classification algorithms are called 

–  Linear discriminant analysis, and 

–  Quadratic discriminant analysis, respectively. 

§  These are simple, but surprisingly effective classifiers. Hastie et al.: 
“...LDA and QDA perform well on an amazingly large and diverse set of 

classification tasks... whatever exotic tools are the rage of the day, we 
should always have available these two simple tools.” 


