CO902
 Probabilistic and statistical inference

Lecture 5

Tom Nichols
Department of Statistics \&
Warwick Manufacturing Group
t.e.nichols@warwick.ac.uk

Admin

- Project ("Written assignment")
- Posted last Wednesday, followed by email
- Binary classification based on 70-dimensional binary data
- Work in pairs (maybe 1 group of 3), produce individual write up
- No more than 4 sides A4
- Use scientific style; see details on webpage
- Please notify me of pairs (see spread sheet)
- Balance-out Matlab expertise (if you're shaky, find a power-user)
- Due date: 9AM Monday 11 February
- But, will accept them for full credit until Noon Wednesday 13 February
- Questions?
- Presentation ("Critical Reading Assignment")
- 10 minute presentation, 25 Feb \& 4 Mar
- Based on scientific article that uses machine learning
- ... more next week
- Wrap up on discriminant analysis... (Lecture 4)

Outline of course

A. Basics: Probability, random variables (RVs), common distributions, introduction to statistical inference
B. Supervised learning: Classification, regression; including issues of over-fitting; penalized likelihood \& Bayesian approaches
C. Unsupervised learning: Dimensionality reduction, clustering and mixture models
D. Networks: Probabilistic graphical models, learning in graphical models, inferring network structure

Today

- Probabilistic view of regression
- Over-fitting in regression
- Penalized likelihood: "ridge regression"
- Bayesian regression

Predicting drug response

- Suppose we collect data of the following kind:
- For each of n patients, we get a tumour sample, and using a microarray obtain expression measurements for $\mathrm{d}=10 \mathrm{k}$ genes
- Also, we administer the drug to each of the n patients, and record a quantitative measure of drug response
- This gives us data of the following kind:

$$
\begin{array}{r}
\left\{\mathbf{X}_{i}, Y_{i}\right\}, i=1 . . n \\
\mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in \mathbb{R}
\end{array}
$$

Classification and regression

- Supervised learning: prediction problems where you start with a dataset in which the "right" answers are given
- Supervised in the sense of "learning with a teacher"

$$
\quad \begin{gathered}
\mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in \mathbb{R} \\
\hline
\end{gathered}
$$

- Classification and regression are closely related (e.g. classifiers we've seen can be viewed as a type of regression called logistic regression)

Regression

- Regression: predicting real-valued outputs Y from inputs X
- In other words: supervised learning with quantitative rather than categorical outputs
- Recent decades have seen much progress in understanding:
- Statistical aspects: accounting for random variation in data, learning parameters etc.
- Practical aspects: empirically evaluating predictive ability etc.
- But open questions abound, e.g.:
- Interplay between predictors
- High-dimensional input spaces
- Sparse prediction

Linear regression

- Simplest function: Y is a linear combination of components of vector X :

$$
\begin{aligned}
\hat{Y}(\mathbf{X}, \mathbf{w}) & =w_{0}+w_{1} X_{1}+w_{2} X_{2} \ldots w_{d} X_{d} \\
& =\mathbf{w}^{T} \tilde{\mathbf{X}} \\
\mathbf{w} & =\left[\begin{array}{lll}
w_{0} & w_{1} \ldots w_{d}
\end{array}\right]^{T} \\
\mathbf{X} & =\left[\begin{array}{lll}
1 & X_{1} & X_{2} \ldots X_{d}
\end{array}\right]^{T}
\end{aligned}
$$

- Here, parameters are the "weights" w
- To start with, we'd like to choose \boldsymbol{w} such that the predictions fit the data well

Residual sum of squares

- Residual sum of squares captures the difference between the n predictions and corresponding true output values:

$$
\begin{aligned}
J(\mathbf{w}) & =\sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \mathbf{X}_{i}\right)^{2} \\
& =\|\mathbf{X} \mathbf{w}-\mathbf{Y}\|^{2} \\
\mathbf{X} & =\left[\mathbf{X}_{1} \ldots \mathbf{X}_{n}\right]^{T} \\
\mathbf{Y} & =\left[Y_{1} \ldots Y_{n}\right]^{T}
\end{aligned}
$$

- Matrix \boldsymbol{X} is n by $(d+1)$, it's just all of the input data together

- Sometimes called the "design matrix"
- Components of vector Y are the n (true) outputs

Matrix notation

- Sum of squares in matrix notation:

$$
J(\mathbf{w})=\|\mathbf{X} \mathbf{w}-\mathbf{Y}\|^{2}
$$

- We want:

$$
\begin{aligned}
\hat{\mathbf{w}} & =\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w}) \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{X} \mathbf{w}-\mathbf{Y}\|^{2}
\end{aligned}
$$

- This is now simply a problem in linear algebra
- Q: what combination of the columns of \boldsymbol{X} bring us closest to $\boldsymbol{Y}_{\boldsymbol{r}}$ or what are the co-ordinates of the projection of Y onto the column space of X ?

Solution

- Learn parameters to minimize residual sum of squares:

$$
\begin{aligned}
\hat{\mathbf{w}} & =\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w}) \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{X w}-\mathbf{Y}\|^{2}
\end{aligned}
$$

- Solution given by:

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- But, much safer to use the Moore-Penrose pseudo-inverse

$$
\hat{\mathbf{w}}=\mathbf{X}^{-} \mathbf{Y}
$$

- "pinv (X) " in Matlab
- Numerically stable
- Gives one (of infinite number) of solutions if X rank deficient

Polynomial regression

- This was entirely linear
- We can extend this approach by allowing the data to pass through a set of functions

Polynomial regression

- Prediction function (for now, assume X scalar):

$$
\begin{aligned}
\hat{Y}(X, \mathbf{w}) & =w_{0}+w_{1} X+w_{2} X^{2} \ldots w_{k} X^{k} \\
& =\mathbf{w}^{T} \boldsymbol{\phi}(X) \\
\mathbf{w} & =\left[\begin{array}{lll}
w_{0} & w_{1} \ldots w_{k}
\end{array}\right]^{T} \\
\boldsymbol{\phi}(X) & =\left[\begin{array}{lll}
1 & X & X^{2} \ldots X^{k}
\end{array}\right]^{T}
\end{aligned}
$$

- Residual sum of squares:

$$
\begin{aligned}
J(\mathbf{w}) & =\sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(X_{i}\right)\right)^{2} \\
& =\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2} \\
\mathbf{\Phi} & : n \times(k+1) \\
\mathbf{Y} & =\left[Y_{1} \ldots Y_{n}\right]^{T}
\end{aligned}
$$

Polynomial regression

- Least squares solution:

$$
\begin{aligned}
\hat{\mathbf{w}} & =\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w}) \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y}\|^{2} \\
& =\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y} \\
& =\mathbf{\Phi}^{-} \mathbf{Y}
\end{aligned}
$$

Regression using basis functions

- More generally, we can think of transforming input data using k basis functions (R^{d} to R), linear regression is then a special case:

$$
\begin{aligned}
\hat{Y}(\mathbf{X}, \mathbf{w}) & =w_{0}+w_{1} \phi_{1}(\mathbf{X})+w_{2} \phi_{2}(\mathbf{X}) \ldots w_{k} \phi_{k}(\mathbf{X}) \\
& =\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{X}) \\
\mathbf{w} & =\left[w_{0} w_{1} \ldots w_{k}\right]^{T} \\
\boldsymbol{\phi}(\mathbf{X}) & =\left[1 \phi_{1}(\mathbf{X}) \ldots \phi_{k}(\mathbf{X})\right]^{T}
\end{aligned}
$$

- In a similar fashion to simple linear and polynomial regression this gives:

$$
\begin{aligned}
\hat{\mathbf{w}} & =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2} \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2} \\
\mathbf{\Phi} & : n \times(k+1) \\
\mathbf{Y} & =\left[Y_{1} \ldots Y_{n}\right]^{T}
\end{aligned}
$$

Regression using basis functions

- The least-squares solution is obtained using the pseudo-inverse of the design matrix:

$$
\hat{\mathbf{w}}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \mathbf{\Phi}^{T} \mathbf{Y}
$$

- Same as before because it's still linear in the parameters, despite nonlinear functions of X

A probability model

- Nothing we've seen so far is a probability model
- We can couch linear regression in probabilistic terms by considering the conditional distribution of output Y given input vector \boldsymbol{X} and parameters:

$$
p(Y \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\theta})
$$

- We get here by a similar argument to the one we used for classification, starting from $P(X, Y \mid w, \backslash$ theta $)$

A probabilistic model

- Conditional distribution of output Y given input vector \boldsymbol{X} and parameters:

$$
p(Y \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\theta})
$$

- This is a density over Y, which tells us how Y varies given a specific observation of \boldsymbol{X}
- The parameters include the weights for the prediction function, but also includes other parameters
- We'll assume the conditional distribution is a Normal...

Normal model

- Normal model:

$$
p\left(Y \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(Y \mid \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{X}), \sigma^{2}\right)
$$

- This tells us that given $\boldsymbol{X}, Y^{\prime}$'s distribution is a Normal pdf, centred on the output we'd get using the inputs \boldsymbol{X} and weights \boldsymbol{w}
- A conditional model
- Can also be written as
output $=$ deterministic part + noise

Likelihood function

- Assuming outputs are independent given inputs (or "conditionally independent"), we get the following likelihood:

$$
p\left(Y_{1} \ldots Y_{n} \mid \mathbf{X}_{1} \ldots \mathbf{X}_{n}, \mathbf{w}, \sigma^{2}\right)=\prod_{i=1}^{n} \mathcal{N}\left(Y_{i} \mid \mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right), \sigma^{2}\right)
$$

- Now we're in a position to estimate the weights \boldsymbol{w}
- Q: Using the likelihood function above, what's the Maximum likelihood estimate of w ?

Log-likelihood

- Log-likelihood:

$$
\begin{aligned}
\mathcal{L}(\mathbf{w}) & =\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi} \sigma^{2}}\right)-\frac{1}{2}\left(\frac{Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)}{\sigma^{2}}\right)^{2} \\
& =\text { const }-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2}
\end{aligned}
$$

MLE

- MLE:

$$
\begin{aligned}
\hat{\mathbf{w}}_{M L E} & =\underset{\mathbf{w}}{\operatorname{argmax}} \mathcal{L}(\mathbf{w}) \\
& =\underset{\mathbf{w}}{\operatorname{argmax}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2} \\
& =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2} \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2}
\end{aligned}
$$

- This gives $\hat{\mathbf{w}}_{M L E}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y}$
- Thus, due to the quadratic term in the Normal exponent, the MLE under a Normal model is identical to the least-squares solution

Polynomial regression: example

- Prediction function (for now, assume X scalar):

$$
\begin{aligned}
\hat{Y}(X, \mathbf{w}) & =w_{0}+w_{1} X+w_{2} X^{2} \ldots w_{k} X^{k} \\
& =\mathbf{w}^{T} \boldsymbol{\phi}(X) \\
\mathbf{w} & =\left[\begin{array}{lll}
w_{0} & w_{1} \ldots w_{k}
\end{array}\right]^{T} \\
\phi(X) & =\left[\begin{array}{lll}
1 & X & X^{2} \ldots X^{k}
\end{array}\right]^{T}
\end{aligned}
$$

- Residual sum of squares:

$$
\begin{aligned}
J(\mathbf{w}) & =\sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(X_{i}\right)\right)^{2} \\
& =\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y}\|^{2} \\
\mathbf{\Phi} & : n \times(k+1) \\
\mathbf{Y} & =\left[Y_{1} \ldots Y_{n}\right]^{T}
\end{aligned}
$$

Polynomial regression: example

- Least squares solution:

$$
\begin{aligned}
\hat{\mathbf{w}} & =\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w}) \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2} \\
& =\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y} \\
& =\mathbf{\Phi}^{-} \mathbf{Y}
\end{aligned}
$$

Example: order k polynomial

- $k=0$

True function

Example: order k polynomial

- $k=1$

True function

Example: order k polynomial

- $k=3$

True function

Example: order k polynomial

- $k=9$
- $k=9$ subsumes $k=3$, in that sense it's more powerful, more general
- But seems to do worse

True function

Model complexity

- Closely fitting a complex model to the data may not be predictive!
- This is an example of overfitting
- We have to be
- Careful about the choice of prediction function:
- if it's too general, we run the risk of overfitting (e.g. k=9)
- if it's too restricted we may not be able to capture the relationship between input and output (e.g. $\mathrm{k}=1$)
- If we do use relatively complex models, with many parameters, we must be careful about learning the parameters

Model selection

- So we have to negotiate a trade-off and choose a good level of model complexity - but how?
- This is a problem in model selection, it can be done:
- Using Bayesian methods,
- By augmenting the likelihood the to penalize complex models
- Empirically, e.g. using test data, or cross-validation

Train and test paradigm

- Recall "train and test" idea from classification
- Idea: since we're interested in predictive ability on unseen data, why not "train" on a subset of the data and "test" on the remainder?
- This would give us some indication of how well we'd be likely to do on new data...
- These "train and test" curves have a characteristic form, which you'll see in many contexts
- Here's a typical empirical result for the polynomial order example...

Train and test curve

- Empirical result for the polynomial order example...

- Arguably single most important empirical phenomenon in learning!
- Note that training set error goes to zero
- But test set error finds a min then goes up and up
- This is the point after which we're over-fitting

Overfitting in supervised learning

- We've seen that a snugly fit model can nonetheless be a poor predictor
- Train/test and cross-validation provide a means to check that a given class of model is useful
- But they are empirical and computationally intensive

Overfitting in supervised learning

- We've seen that a snugly fit model can nonetheless be a poor predictor
- Train/test and cross-validation provide a means to check that a given class of model is useful
- But they are empirical and computationally intensive:
- Not usually practical for learning the parameters for a given class/ complexity of model
- Better suited to checking a small set of models after parameter estimation
- Also, in some settings, a relatively complex model may make sense
- But the overfitting problem won't just go away, so it's important to methods to fit more complex models

Penalized likelihood

- The problem of overfitting is one of sticking too closely to the data, being overly reliant on the likelihood
- In regression, what happens is that we get large coefficients for inputs or functions of inputs
- E.g. For polynomial example:

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

- Natural idea: modify objective function to take account of size of weight vector...

Ridge regression

- Want to modify objective function to take account of size of weights
- One way is to add a term capturing the length of the weight vector:

$$
\begin{aligned}
J(\mathbf{w}) & =\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y}\|^{2}+\lambda\|\mathbf{w}\|^{2} \\
\mathbf{\Phi}_{i j} & =\phi_{j}\left(\mathbf{X}_{i}\right) \\
\mathbf{Y} & =\left[Y_{1} \ldots Y_{n}\right]^{T}
\end{aligned}
$$

- This is called ridge regression
- Objective function is called a penalized likelihood, second term is an "L2 penalty"
- It ought to to discourage solutions with large weights

Ridge regression: learning

- Objective function:

$$
\begin{aligned}
J(\mathbf{w}) & =\|\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y}\|^{2}+\lambda\|\mathbf{w}\|^{2} \\
& =(\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y})^{T}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{Y})+\lambda \mathbf{w}^{T} \mathbf{w}
\end{aligned}
$$

- Taking derivative wrt to \boldsymbol{w} and setting to zero:

$$
\boldsymbol{\Phi}^{T}(\boldsymbol{\Phi} \hat{\mathbf{w}}-\mathbf{Y})-\lambda \hat{\mathbf{w}}=0
$$

- Solving for w:

$$
\hat{\mathbf{w}}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda \mathbf{I}_{k}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y}
$$

- Closed form solution
- Can't use pseudo inverse trick
- Adding identity improves conditioning of matrix
- (cf Tikhonov regularization)
- Let's try it for $\mathrm{k}=9$

Ridge regression: learning

- Ridge (red dashed line)

- Recall what the least squares/MLE for $\mathrm{k}=9$ looked like...

Ridge regression: learning

- Ridge (red dashed line)

- Ridge regression is much better. The large values of the weight vector are kept under control and prediction is noticeably improved
- Ridge parameter can be learned by cross-validation

Ridge regression: learning

- Cross-validation to learn λ

Back to Bayes

- For the coins, a Bayesian approach was great
- MAP estimate was nice alternative to the MLE
- What does Bayesian regression look like?

Bayesian regression

- Recall the likelihood model for regression:

$$
p\left(Y \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(Y \mid \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{X}), \sigma^{2}\right)
$$

- Here, the weights are the unknown parameters of interest, so we should write down a posterior distribution over the weights...

Posterior over weights

- Posterior distribution over weights:

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{Y}, \mathbf{X}) & \propto p(\mathbf{Y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w} \mid \mathbf{X}) \\
& =p(\mathbf{Y} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})
\end{aligned}
$$

- This is just:

$$
\text { posterior } \propto \text { likelihood } \times \text { prior }
$$

- $p(\boldsymbol{w})$ is a prior
- We'll use a zero mean MVN. This means that
(i) Weights are expected to be small (centred around zero)
(ii) Large deviations from zero are strongly discouraged (light tails)

Posterior over weights

- Prior on weights:

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma_{0}^{2} \mathbf{I}\right)
$$

- This is a simple, one-parameter multi-variate density, the variance is a hyper-parameter
- Under the (conditionally) independent Normal model, the posterior is:

$$
\begin{aligned}
& p\left(\mathbf{w} \mid Y_{1} \ldots Y_{n}, \mathbf{X}_{1} \ldots \mathbf{X}_{n}\right) \\
& \\
& \propto\left[\prod_{i=1}^{n} \mathcal{N}\left(Y_{i} \mid \mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right), \sigma^{2}\right)\right] \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \sigma_{0}^{2} \mathbf{I}\right)
\end{aligned}
$$

MAP estimate of weights

- Q: write down the log-posterior, and hence derive the MAP estimate of the weights

MAP estimate of weights

- Q: what is the MAP estimate of the weights?

$$
\begin{aligned}
& \log (p(\mathbf{w} \mid \mathbf{Y}, \mathbf{X})) \\
& \propto n \log \left(\frac{1}{\sqrt{2 \pi} \sqrt{\sigma^{2}}}\right)-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{Y_{i}-\mathbf{w}^{T} \phi\left(\mathbf{X}_{i}\right)}{\sigma^{2}}\right)^{2}+\log \left(\frac{1}{(2 \pi)^{d / 2}\left|\sigma_{0}^{2} \mathbf{I}\right|^{1 / 2}}\right)-\frac{1}{2} \mathbf{w}^{T}\left(\sigma_{0}^{-2} \mathbf{I}\right) \mathbf{w} \\
& \hat{\mathbf{w}}_{M A P}=\underset{\mathbf{w}}{\operatorname{argmax}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2}-\frac{1}{2} \mathbf{w}^{T}\left(1 / \sigma_{0}^{2}\right) \mathbf{I} \mathbf{w}
\end{aligned}
$$

- Changing sign and multiplying through by σ^{2} :

$$
\begin{aligned}
\hat{\mathbf{w}}_{M A P} & =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2}+\frac{\sigma^{2}}{\sigma_{0}^{2}} \mathbf{w}^{T} \mathbf{w} \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2}+\lambda\|\mathbf{w}\|^{2}
\end{aligned}
$$

MAP estimate of weights

$$
\begin{aligned}
\hat{\mathbf{w}}_{M A P} & =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{X}_{i}\right)\right)^{2}+\frac{\sigma^{2}}{\sigma_{0}^{2}} \mathbf{w}^{T} \mathbf{w} \\
& =\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{\Phi} \mathbf{w}-\mathbf{Y}\|^{2}+\lambda\|\mathbf{w}\|^{2}
\end{aligned}
$$

- But this is simply ridge regression!
- Penalty λ is ratio of residual variance to prior variance
- Unsurprising: prior was Normal, the quadratic term in the exponent corresponds to the L2 penalty in ridge regression
- Thus, we get:

$$
\hat{\mathbf{w}}_{M A P}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda \mathbf{I}_{k}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y}
$$

Regression

- Simple, closed form solution for linear-in-parameters problems
- Complex models give power to fit interesting functions, but run the risk of overfitting
- Penalized likelihood methods like Ridge regression, or Bayesian approaches allow us to fit complex models while ameliorating overfitting
- Train/test, cross validation are valid ways to check how well we're doing

