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Admin 
 §  Project (“Written assignment”) 

§  Posted last Wednesday, followed by email 
§  Binary classification based on 70-dimensional binary data 
§  Work in pairs (maybe 1 group of 3), produce individual write 

up 
§  No more than 4 sides A4 
§  Use scientific style; see details on webpage 

§  Please notify me of pairs (see spread sheet) 
§  Balance-out Matlab expertise (if you’re shaky, find a power-user) 

§  Due date:  9AM Monday 11 February 
§  But, will accept them for full credit until Noon Wednesday 13 February 

§  Questions? 
§  Presentation (“Critical Reading Assignment”) 

§  10 minute presentation, 25 Feb & 4 Mar 
§  Based on scientific article that uses machine learning 

§  … more next week 
§  Wrap up on discriminant analysis… (Lecture 4) 



Outline of course 

A. Basics: Probability, random variables (RVs), common distributions, 
introduction to statistical inference 

B. Supervised learning: Classification, regression; including 
issues of over-fitting; penalized likelihood & Bayesian 
approaches 

C. Unsupervised learning: Dimensionality reduction, clustering and mixture 
models 

D. Networks: Probabilistic graphical models, learning in graphical models, 
inferring network structure 



Today 

- Probabilistic view of regression 
 
- Over-fitting in regression 
 
- Penalized likelihood: “ridge regression” 
 
- Bayesian regression 



Predicting drug response 

§  Suppose we collect data of the following kind: 
–  For each of n patients, we get a tumour sample, and using a 

microarray obtain expression measurements for d=10k genes 

–  Also, we administer the drug to each of the n patients, and record a 
quantitative measure of drug response 

§  This gives us data of the following kind: 



Classification and regression 

§  Supervised learning: prediction problems where you start with a dataset 
in which the “right” answers are given 

§  Supervised in the sense of “learning with a teacher” 

Classification Regression 

§  Classification and regression are closely related (e.g. classifiers we've seen 
can be viewed as a type of regression called logistic regression) 



Regression 

§  Regression: predicting real-valued outputs Y from inputs X 
§  In other words: supervised learning with quantitative rather than 

categorical outputs 
 
§  Recent decades have seen much progress in understanding: 

–  Statistical aspects: accounting for random variation in data, learning 
parameters etc. 

–  Practical aspects: empirically evaluating predictive ability etc. 

§  But open questions abound, e.g.: 
–  Interplay between predictors 

–  High-dimensional input spaces 

–  Sparse prediction 



Linear regression 

§  Simplest function: Y is a linear combination of components of vector X: 

§  Here, parameters are the “weights” w 
§  To start with, we'd like to choose w such that the predictions fit the 

data well 



Residual sum of squares 

§  Residual sum of squares captures the difference between the n 
predictions and corresponding true output values: 

§  Matrix X is n by (d+1), it's just all of the input  
data together 
§  Sometimes called the “design matrix” 

§  Components of vector Y are the n (true) outputs  

y



Matrix notation 

§  Sum of squares in matrix notation: 

§  This is now simply a problem in linear algebra 
§  Q: what combination of the columns of X bring us closest to Y, 

or what are the co-ordinates of the projection of Y onto the 
column space of X? 

§  We want: 



Solution 

§  Learn parameters to minimize residual sum of squares: 

§  Solution given by: 

§  But, much safer to use the Moore-Penrose pseudo-inverse 

§  “pinv(X)” in Matlab 
§  Numerically stable 
§  Gives one (of infinite number) of solutions if X rank deficient 

ŵ = X−Y



Polynomial regression 

§  This was entirely linear 
§  We can extend this approach by allowing the data to pass through a 

set of functions 



Polynomial regression 

§  Prediction function (for now, assume X scalar): 

§  Residual sum of squares: §  Residual sum of squares: 



Polynomial regression 

§  Least squares solution: 

= Φ
−

Y



Regression using basis functions 
§  More generally, we can think of transforming input data using k basis 

functions (Rd to R), linear regression is then a special case: 

§  In a similar fashion to simple linear and  
polynomial regression this gives: Gaussian pdf Basis Functions 

2D Spline Basis Functions 



Regression using basis functions 

§  The least-squares solution is obtained using the pseudo-inverse of the 
design matrix: 

§  Same as before because it's still linear in the parameters, despite non-
linear functions of X 

 



A probability model 

§  Nothing we've seen so far is a probability model 
§  We can couch linear regression in probabilistic terms by considering the 

conditional distribution of output Y given input vector X and 
parameters: 

§  We get here by a similar argument to the one we used for 
classification, starting from P(X,Y|w,\theta) 



A probabilistic model 

§  Conditional distribution of output Y given input vector X and 
parameters: 

§  This is a density over Y, which tells us how Y varies given a specific 
observation of X 

§  The parameters include the weights for the prediction function, but 
also includes other parameters 

§  We'll assume the conditional distribution is a Normal... 



Normal model 

§  Normal model: 

§  This tells us that given X, Y's distribution is a Normal pdf, centred on 
the output we'd get using the inputs X and weights w 
§  A conditional model 

§  Can also be written as  
 
output = deterministic part + noise 

 



Likelihood function 

§  Assuming outputs are independent given inputs (or “conditionally 
independent”), we get the following likelihood: 

§  Now we're in a position to estimate the weights w 
 
§  Q: Using the likelihood function above, what's the Maximum 

likelihood estimate of w? 



Log-likelihood 

§  Log-likelihood: 



MLE 

§  MLE: 

§  This gives 
 
§  Thus, due to the quadratic term in the Normal exponent, the MLE 

under a Normal model is identical to the least-squares solution 



Polynomial regression: example 

§  Prediction function (for now, assume X scalar): 

§  Residual sum of squares: §  Residual sum of squares: 



Polynomial regression: example 

§  Least squares solution: 

= Φ
−

Y



Example: order k polynomial 

§  k=0   

True function 



Example: order k polynomial 

§  k=1 

True function 



Example: order k polynomial 

§  k=3 

True function 



Example: order k polynomial 
§  k=9 

–  k=9 subsumes k=3, in that sense it's more powerful, more general 

–  But seems to do worse 
True function 



Model complexity 

§  Closely fitting a complex model to the data may not be predictive! 
§  This is an example of overfitting 
 
§  We have to be  

–  Careful about the choice of prediction function: 

•  if it's too general, we run the risk of overfitting (e.g. k=9) 
•  if it's too restricted we may not be able to capture the 

relationship between input and output (e.g. k=1) 

–  If we do use relatively complex models, with many parameters, we 
must be careful about learning the parameters 

Model 
too complex 

Model 
too simple 



Model selection 

§  So we have to negotiate a trade-off and choose a good level of model 
complexity – but how? 

 
§  This is a problem in model selection, it can be done: 
 

–  Using Bayesian methods,  

–  By augmenting the likelihood the to penalize complex models 

–  Empirically, e.g. using test data, or cross-validation 

 



Train and test paradigm 

§  Recall “train and test” idea from classification 
 
§  Idea: since we're interested in predictive ability on unseen data, why 

not “train” on a subset of the data and “test” on the remainder? 
§  This would give us some indication of how well we'd be likely to do on 

new data... 
 
 
 
§  These “train and test” curves have a characteristic form, which you'll 

see in many contexts 
 
 
§  Here's a typical empirical result for the polynomial order example... 



Train and test curve 

§  Empirical result for the polynomial order example... 

§  Arguably single most important empirical phenomenon in learning! 
–  Note that training set error goes to zero 

–  But test set error finds a min then goes up and up 

–  This is the point after which we're over-fitting 

Training 
error 

Test 
error 

E
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Overfitting in supervised learning 

§  We've seen that a snugly fit model can nonetheless be a poor predictor 
 
§  Train/test and cross-validation provide a means to check that a 

given class of model is useful 
 
§  But they are empirical and computationally intensive 



Overfitting in supervised learning 

§  We've seen that a snugly fit model can nonetheless be a poor predictor 
 
§  Train/test and cross-validation provide a means to check that a 

given class of model is useful 
 
§  But they are empirical and computationally intensive: 

–  Not usually practical for learning the parameters for a given class/
complexity of model 

–  Better suited to checking a small set of models after parameter 
estimation 

§  Also, in some settings, a relatively complex model may make sense 
§  But the overfitting problem won't just go away, so it's important to 

methods to fit more complex models 



Penalized likelihood 
§  The problem of overfitting is one of sticking too closely to the data, 

being overly reliant on the likelihood 
§  In regression, what happens is that we get large coefficients for inputs 

or functions of inputs 
§  E.g. For polynomial example: 

§  Natural idea: modify objective function to take account of size of 
weight vector... 



Ridge regression 

§  Want to modify objective function to take account of size of weights 
§  One way is to add a term capturing the length of the weight vector: 

§  This is called ridge regression 
§  Objective function is called a penalized likelihood, second term is an 

“L2 penalty” 
§  It ought to to discourage solutions with large weights 



Ridge regression: learning 

§  Objective function: 

§  Closed form solution 
§  Can’t use pseudo inverse trick 

§  Adding identity improves conditioning of matrix 
§  (cf Tikhonov regularization) 

§  Let's try it for k=9 

§  Taking derivative wrt to w and setting to zero: 

§  Solving for w: 



Ridge regression: learning 

§  Ridge (red dashed line) 

§  Recall what the least squares/MLE for k=9 looked like... 



Ridge regression: learning 

§  Ridge regression is much better. The large values of the weight 
vector are kept under control and prediction is noticeably improved 

§  Ridge parameter can be learned by cross-validation 

§  Ridge (red dashed line) 



§  Cross-validation to learnλ 

 

Ridge regression: learning 

usual least 
squares 

fitting a 
constant  



Back to Bayes 
§  For the coins, a Bayesian approach was great 

§  MAP estimate was nice alternative to the MLE 

§  What does Bayesian regression look like? 



Bayesian regression 

§  Recall the likelihood model for regression: 

§  Here, the weights are the unknown parameters of interest, so we 
should write down a posterior distribution over the weights... 



Posterior over weights 

§  Posterior distribution over weights: 

§  p(w) is a prior 
§  We'll use a zero mean MVN. This means that 
(i) Weights are expected to be small (centred around zero) 

(ii) Large deviations from zero are strongly discouraged (light tails) 

§  This is just: 



Posterior over weights 

§  Prior on weights: 

§  This is a simple, one-parameter multi-variate density, the variance is a 
hyper-parameter 

 
§  Under the (conditionally) independent Normal model, the posterior is: 



MAP estimate of weights 

§  Q: write down the log-posterior, and hence derive the MAP 
estimate of the weights 



MAP estimate of weights 

§  Q: what is the MAP estimate of the weights? 

§  Changing sign and multiplying through by σ2: 
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MAP estimate of weights 

§  But this is simply ridge regression! 
§  Penalty λ is ratio of residual variance to prior variance 

§  Unsurprising: prior was Normal, the quadratic term in the exponent 
corresponds to the L2 penalty in ridge regression 

 
§  Thus, we get: 



Regression 

§  Simple, closed form solution for linear-in-parameters problems 
§  Complex models give power to fit interesting functions, but run the risk 

of overfitting 
 
§  Penalized likelihood methods like Ridge regression, or Bayesian 

approaches allow us to fit complex models while ameliorating over-
fitting 

§  Train/test, cross validation are valid ways to check how well we're 
doing 


