CO902
 Probabilistic and statistical inference

Lecture 6

Tom Nichols
Department of Statistics \&
Warwick Manufacturing Group
t.e.nichols@warwick.ac.uk

Admin

- Project ("Written assignment")
- Due Wednesday 11 Feb at noon (or today, if you want! ©)
- Questions!?
- Presentation ("Critical Reading Assignment")
- ... at end of lecture today

Critical Reading Assignment

- 10 minute presentation
- Based on journal paper about or using Machine Learning methods

Some suggestions on the webpage; other's OK, but contact me Must notify me of your article by 18 Feb (next Mon!)

- Aim for ~5 slides, not much more
- Try to think of intuitive descriptions for any algorithms/procedures used
- Only 10 minutes! Not a lecture or a tutorial

Can't possibly explain everything...
But should be able to express general ideas in play

- Don't read your slides!

Slides shouldn't have full sentences, Just key words/phrase
to anchor audience's attention, and
to help guide/remind you of the flow

- Make good use of pretty, meaningful pictures when possible
- Look at the audience as much as possible!
- Practice!

Outline of course

A. Basics: Probability, random variables (RVs), common distributions, introduction to statistical inference
B. Supervised learning: Regression, classification, including highdimensional issues and Bayesian approaches
C. Unsupervised learning: Dimensionality reduction, clustering and mixture models
D. Networks: Probabilistic graphical models, learning in graphical models, inferring network structure

Supervised Learning Redux (1)

- Given samples $\left\{\mathbf{X}_{i}, Y_{i}\right\}, i=1$..n build tool to predict $Y_{\text {new }}$ for a new case using only $\mathbf{X}_{\text {new }}$
- Classification: Binary/discrete output Optimal classifier based on...

> Binary inputs, binary output $\mathbf{X}_{i} \in\{0,1\}^{d}, Y_{i} \in\{0,1\}$

Cont. inputs, discrete output $\mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in\{1,2, \ldots k\}$

- Discrete input

$$
P(Y=k \mid \mathbf{X}=\mathbf{x}) \propto P(\mathbf{X}=\mathbf{x} \mid Y=k) P(Y=k)
$$

- Continuous input

$$
P(Y=k \mid \mathbf{X}=\mathbf{x}) \propto p(\mathbf{x} \mid Y=k) P(Y=k)
$$

- Class conditional distribution
"Generative" model for data from class k

$$
\text { e.g for or ontinuous input... } \quad p_{k}(\mathbf{x})=p(\mathbf{x} \mid Y=k)
$$

- Estimation

Class conditional must estimated, typically with parameterized distribution

$$
\text { e.g. for continuous input... } \quad \hat{p}_{k}(\mathbf{x})=p\left(\mathbf{x} \mid Y=k, \hat{\theta}_{k}\right)
$$

e.g. Bernoulli success rates; mean and variance of a Gaussian; etc

Supervised Learning Redux (2)

- Linear Discriminant Analysis (linear decision boundary)

Gaussian generative model, equal covariance Σ over all classes k

- Quadratic Discriminant Analysis (curved decision boundary) Gaussian generative model, class-specific covariance Σ_{k}
- Naïve Bayes classifier

Based on independence over d input dimensions, using
e.g. for continuous input... $\quad p_{k}(\mathbf{x})=\prod_{j=1}^{d} p\left(x_{j} \mid Y=k\right)$

- Cross Validation

Attempt to estimate classifier accuracy with unseen data

- k-fold Cross-Validation

Run classifier k times, each time using ($k-1$)/k $\times N$ samples

- Leave One Out Cross-Validation (LOOCV)

Run classifier N times, each time using $N-1$ samples
Has least biased estimate of true error, but more variable estimate than k-fold More computationally intensive

Supervised Learning Redux (3)

- Least Squares Regression

Minimize sum of squared errors between

Cont. inputs, cont. output $\mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in \mathbb{R}$ observed and predicted response
Or, maximize likelihood of iid Gaussian errors in prediction

$$
\hat{Y}(\mathbf{X}, \mathbf{w})=\mathbf{w}^{\top} \mathbf{X} \quad \hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\mathbf{X}^{-} \mathbf{Y}
$$

- Polynomial Regression

Uses polynomial expansion of inputs, to get more flexibility

$$
\boldsymbol{\phi}(X)=\left[\begin{array}{lllll}
1 & X & X^{2} \ldots X^{k}
\end{array}\right]^{T} \quad \hat{\mathbf{w}}=\boldsymbol{\Phi}^{-} \mathbf{Y}
$$

- Arbitrary Basis Sets
E.g. splines, wavelets, Gaussians, etc.

More compact support than polynomial basis

$$
\phi(\mathbf{X})=\left[1 \phi_{1}(\mathbf{X}) \ldots \phi_{k}(\mathbf{X})\right]^{T} \quad \hat{\mathbf{w}}=\mathbf{\Phi}^{-} \mathbf{Y}
$$

- Ridge regression

Penalized Maximum Likelihood Or Bayesian MAP solution

$$
\hat{\mathbf{w}}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda \mathbf{I}_{k}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y}
$$

Regularizes fit when too many (or just redundant) parameters

Outline of course

A. Basics: Probability, random variables (RVs), common distributions, introduction to statistical inference
B. Supervised learning: Regression, classification, including highdimensional issues and Bayesian approaches
C. Unsupervised learning: Dimensionality reduction, clustering and mixture models
D. Networks: Probabilistic graphical models, learning in graphical models, inferring network structure

Unsupervised learning

- Unsupervised learning:
- Finding "intrinsic structure" in data
- Or, finding patterns without knowing what you're looking for
- Two key classes of unsupervised learning:
- Dimensionality reduction
- Clustering
- Unsupervised: you don't start with a "labelled" dataset

Curse of dimensionality

- Data in high dimensions can be troublesome
- High-dimensional data pose several problems:
- Statistical inference is very difficult, we've seen this over and over!
- Computational issues can also become a problem
- Gives rise to phrase curse of dimensionality (phrase due to Bellman, ~1960)

Consider following exercise:

- Fill [0,1]D space with sufficient data points such that,
- For each location $x_{0} \in[0,1]^{\mathrm{D}}, \mathrm{a}$ fixed number of data points are within a distance δ (on average)
- Let D grow... required number of observations will grow exponentially!

In other words

- For typical (finite) n, D-dim space is sparsely populated

Dimensionality reduction

- Dimensionality reduction: unsupervised learning problem in which goal is to obtain a lower-dimensional representation of the data losing as little useful information as possible

- Typically $k \ll d$
- Two reasons to do this:
- Pre-processing: Simplify data for subsequent analysis
- Visualization: If $k<=3$, data can be looked at

Dimensionality reduction

- The low-dimensional data are co-ordinates in a space whose (few) axes are somehow constructed from the original data
- These axes capture (a small number of) important modes of variation
- Is this just variable selection ? No!
- Again, something we do a lot of in making sense of a complex world:
- Mental and verbal descriptions of people in terms of small number of characteristics
- "Left" and "right" in politics: $R^{1000} \rightarrow R^{1}$!

Dimensionality reduction

- Example:
- Suppose you described people by height, weight and IQ
- Despite fitness/obesity, height \& weight are strongly related
- Roughly, short folks weight less than tall folks
- Try to replace height \& weight with "size"
- If height \& weight exactly linearly related, you haven't lost anything in going from 3 to 2 numbers
- We've "compressed" the data by removing redundancy
- Made statistical tasks like density estimation etc. easier

Gene expression microarrays

- Roughly speaking, gene expression is the "activity level" of a gene
- Microarrays can measure all 30,000 genes in one go!
- That is, you get a vector in $R^{30 k}$ under each condition, or across a range of conditions, through time etc...
- Now widely used in all areas of biomedical discovery, e.g. cancer

Dimensionality reduction

- Schoch et al., PNAS 2002 on Acute Myeloid Leukemia
- Gene expression (1000 genes) on bone marrow (32 patients)
- Simple dimensionality reduction revealed clinically distinct sub-types
- From 32×1000 matrix.... to a 32×2 matrix These 2 dimensions capture most (67\%) of the variability!

Linear projections

- Simplest way to reduce dimensionality is to project the data linearly:

$$
\begin{aligned}
\mathbf{Y}_{i} & =\mathbf{U}_{1}^{T} \mathbf{X}_{i} \\
\mathbf{U}_{1} & : d \times k \\
\mathbf{X}_{1} & \ldots \mathbf{X}_{n} \\
\mathbf{X}_{i} & \in \mathbb{R}^{d}
\end{aligned}
$$

- Here, the new axes are simply the columns of projection matrix \boldsymbol{U}
- The low-dimensional data \boldsymbol{Y} are new co-ordinates for the space spanned by columns of \boldsymbol{U} (the column space of \boldsymbol{U})
- A linear projection called principal components analysis or PCA is very widely used and will be our focus today
- Let's start with k=1...

PCA in one dimension

- Linear projection, k=1
- Think back to height-weight example, we only really care about direction we're projecting onto, length just results in a scale factor for the final projections.
- Simplest to assume \mathbf{u} unit length, $\mathbf{u}^{\prime} \mathbf{u}=\mathbf{1}$
- What do we want to maximize?
- The (sample) variance in the projected space
- One way of capturing the informativeness of the projection
- a projection onto a point squashes away all the information, while a "well spread out" projection is good
- Let's choose u so as to maximise variance
- But first let's review eigenvalues/eigenvectors...

PCA in one dimension

- Want u that maximises
$d \times d$ sample covariance:

$$
\begin{aligned}
& \widehat{\operatorname{Var}}(\mathbf{Y})=\mathbf{u}^{\prime} \mathbf{S u} \quad \text { s.t. } \mathbf{u}^{\prime} \mathbf{u}=1 \\
& \mathbf{S}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{\prime}
\end{aligned}
$$

- Solution must satisfy

$$
\mathbf{S u}=\lambda \mathbf{u} \quad \text { s.t. } \mathbf{u}^{\prime} \mathbf{u}=1
$$

But, this solution is not unique; every eigenvector/value of \mathbf{S} !

- Want solution that maximises

$$
\widehat{\operatorname{Var}}(\mathbf{Y})=\mathbf{u}^{\prime} \mathbf{S} \mathbf{u}=\mathbf{u}^{\prime}(\lambda \mathbf{u})=\lambda
$$

That is, the eigenvector with the largest eigenvalue!

- This is the first principal component of the data
- Interestingly, it's also the best reconstruction in a least squares sense!

PCA in general

- For the general case $k>1$, we need to write down the variance of Y's in k-dimensions

$$
\begin{gathered}
\mathbf{Y}_{i}=\mathbf{U}_{1}^{T} \mathbf{X}_{i} \\
\mathbf{U}_{1}: d \times k
\end{gathered}
$$

- Not the $k \times k$ covariance, but
- The average squared distance to the mean, i.e.
- The (sample) average squared L2 norm of Y "centered":

$$
\begin{aligned}
\operatorname{VAR}(\mathbf{Y}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right) \\
\overline{\mathbf{Y}} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{U}_{1}^{T} \mathbf{X}_{i}=\mathbf{U}_{1}^{T}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right)=\mathbf{U}_{1}^{T} \overline{\mathbf{X}}
\end{aligned}
$$

PCA in general

- Maximand is the variance in projected space (ps: full derivation of PCA not on exam, only key results and intuition)

$$
\begin{aligned}
\mathbf{Y}_{i}=\mathbf{U}_{1}^{T} \mathbf{X}_{i} & \operatorname{VAR}(\mathbf{Y}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right) \\
\mathbf{U}_{1}: d \times k & \overline{\mathbf{Y}} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i}
\end{aligned}
$$

- Useful "trace" trick:

$$
\begin{aligned}
\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{T}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right) & =\left[\mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\right]^{T}\left[\mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\right] \\
& =\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{1} \mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \\
& =\operatorname{Tr}\left[\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{1} \mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\right] \\
& =\operatorname{Tr}\left[\mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{1}\right] \quad \text { (cyclic property of the trace) }
\end{aligned}
$$

Objective function

- This gives:

$$
\begin{aligned}
\operatorname{VAR}(\mathbf{Y}) & =\frac{1}{n} \sum_{i=1}^{n} \operatorname{Tr}\left[\mathbf{U}_{1}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{1}\right] \\
& =\operatorname{Tr}\left[\mathbf{U}_{1}^{T} \mathbf{S} \mathbf{U}_{1}\right] \\
\mathbf{S} & =\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T}
\end{aligned}
$$

- Would like to maximize this quantity. But this won't make sense unless we constrain $\mathbf{U}_{\mathbf{1}}$. We want it's columns to be unit length, so use a Lagrange multiplier:

$$
\begin{aligned}
J\left(\mathbf{U}_{1}\right) & =\operatorname{Tr}\left[\mathbf{U}_{1}^{T} \mathbf{S} \mathbf{U}_{1}\right]+\sum_{j=1}^{k} \lambda_{j}\left(1-\mathbf{u}_{j}^{T} \mathbf{u}_{j}\right) \\
\mathbf{U}_{1} & =\left[\mathbf{u}_{1} \ldots \mathbf{u}_{k}\right]
\end{aligned}
$$

Maximization

- Maximise

$$
J\left(\mathbf{U}_{1}\right)=\operatorname{Tr}\left[\mathbf{U}_{1}^{T} \mathbf{S} \mathbf{U}_{1}\right]+\sum_{j=1}^{k} \lambda_{j}\left(1-\mathbf{u}_{j}^{T} \mathbf{u}_{j}\right)
$$

- Now:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \mathbf{U}_{1}} \lambda_{j}\left(1-\mathbf{u}_{j}^{T} \mathbf{u}_{j}\right) & =\left[0 \ldots-2 \lambda_{j} \mathbf{u}_{j} \ldots 0\right]^{T} \\
\frac{\mathrm{~d}}{\mathrm{~d} \mathbf{U}_{1}} \sum_{j=1}^{k} \lambda_{j}\left(1-\mathbf{u}_{j}^{T} \mathbf{u}_{j}\right) & =\left[-2 \lambda_{1} \mathbf{u}_{1} \ldots-2 \lambda_{k} \mathbf{u}_{k}\right]^{T} \\
& =-2\left(\mathbf{U}_{1} \boldsymbol{\Lambda}\right)^{T} \\
\text { where... } \boldsymbol{\Lambda} & =\operatorname{diag}\left(\left[\lambda_{1} \ldots \lambda_{k}\right]\right)
\end{aligned}
$$

Maximization

- Also:

$$
\frac{\mathrm{d}}{\mathrm{~d} \mathbf{X}} \operatorname{Tr}\left[\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right]=\left(\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{X}\right)^{T}
$$

(Magnus \& Neudecker, p178)

- Setting derivative of J wrt $\mathbf{U}_{\mathbf{1}}$ to zero:

$$
\mathbf{S U}_{1}=\mathbf{U}_{1} \boldsymbol{\Lambda}
$$

- The full eigen-decomposition
- With $k=d$, it's the spectral decomposition
- In other words: the columns of U_{1} are simply k eigenvectors of the sample covariance matrix S
- But which k?

Maximum variance solution

- Solution:

$$
\mathbf{S U}_{1}=\mathbf{U}_{1} \boldsymbol{\Lambda}
$$

- Overall variance:

$$
\begin{aligned}
\operatorname{VAR}(\mathbf{Y}) & =\operatorname{Tr}\left[\mathbf{U}_{1}^{T} \mathbf{S} \mathbf{U}_{1}\right] \\
& =\operatorname{Tr}\left[\mathbf{U}_{1}^{T} \mathbf{U}_{1} \Lambda\right] \\
& =\lambda_{1}+\ldots+\lambda_{k}
\end{aligned}
$$

- Solution: pick the k eigenvectors corresponding to the k largest eigenvalues.
- This is a nice, simple solution, can be computed easily using standard matrix operations
- Crucial! Tells us that the (sample) variance explained by k-dimensional approximate is sum of k largest eigenvalues!

PCA as a transformation: k=d case

- What happens when $k=d$?
- Q: What's the sample covariance matrix of the projected data Y ?

PCA as a transformation: k=d case

- What happens when $k=d$?
- Q: What's the sample covariance matrix of the projected data Y ?
- It's diagonal!
- Implication: we can always make the data uncorrelated, simply by rotating so the variances lie "along the axes"...

PCA: a second view

- Remarkably, PCA is also the best low-dimensional reconstruction from the squared error point of view:
$\left\{\mathbf{u}_{j}\right\}$ an arbitrary
orthonormal basis set...

$$
\begin{aligned}
\mathbf{X}_{i} & =\sum_{j=1}^{d} \mathbf{u}_{j} \alpha_{j} \quad \begin{array}{l}
\text { exact fit found with } \\
\text { these } \alpha^{\prime} \text { 's }
\end{array} \\
& =\sum_{j=1}^{d} \mathbf{u}_{j}\left(\mathbf{u}_{j}^{T} \mathbf{X}_{i}\right) \\
& =\mathbf{U U}^{T} \mathbf{X}_{i} \\
\mathbf{X}_{i} & =\mathbf{U}_{1} \mathbf{U}_{1}^{T} \mathbf{X}_{i}+\mathbf{U}_{2} \mathbf{U}_{2}^{T} \mathbf{X}_{i} \\
\mathbf{U} & =\left[\mathbf{u}_{1} \ldots \mathbf{u}_{d}\right] \\
\mathbf{U}^{T} \mathbf{U} & =\mathbf{I}_{d} \\
\mathbf{U} & =\left[\mathbf{U}_{1} \mathbf{U}_{2}\right] \\
\mathbf{U}_{1} & : d \times k \\
\mathbf{U}_{2} & : d \times(d-k)
\end{aligned}
$$

... s.t. that we want first k to approximate \mathbf{X}_{i}

PCA: a second view

- Low-dimensional approximation:

$$
\begin{aligned}
\hat{\mathbf{X}}_{i}= & \mathbf{U}_{1} \mathbf{U}_{1}^{T} \mathbf{X}_{i}+\mathbf{U}_{2} \mathbf{b} \\
& \text { per obs. } \\
& \text { fit } w / \mathbf{U}_{1} \\
& \text { wprox. }
\end{aligned}
$$

- Reconstruction error:

$$
\begin{aligned}
\mathbf{X}_{i}-\hat{\mathbf{X}}_{i} & =\mathbf{U}_{2} \mathbf{U}_{2}^{T} \mathbf{X}_{i}-\mathbf{U}_{2} \mathbf{b} \\
& =\mathbf{U}_{2}\left(\mathbf{U}_{2}^{T} \mathbf{X}_{i}-\mathbf{b}\right)
\end{aligned}
$$

- Reconstruction error sum of squares (over d dim's), summed (over n obs)

$$
\sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right\|^{2}
$$

- Derivative:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{db}}\left\|\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right\|^{2} & =-2 \mathbf{U}_{2}^{T} \mathbf{U}_{2}\left(\mathbf{U}_{2}^{T} \mathbf{X}_{i}-\mathbf{b}\right) \\
& =-2\left(\mathbf{U}_{2}^{T} \mathbf{X}_{i}-\mathbf{b}\right) \\
\frac{\mathrm{d}}{\mathrm{db}} \sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right\|^{2} & =-2 \sum_{i=1}^{n}\left(\mathbf{U}_{2}^{T} \mathbf{X}_{i}-\mathbf{b}\right)
\end{aligned}
$$

PCA: a second view

- Setting to zero, solving for \mathbf{b} :

$$
\mathbf{b}=\mathbf{U}_{2}^{T} \overline{\mathbf{X}}
$$

- This gives:

$$
\begin{aligned}
\left\|\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right\|^{2} & =\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\right\|^{2} \\
& =\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{2} \mathbf{U}_{2}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \\
& =\operatorname{tr}\left[\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{2} \mathbf{U}_{2}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\right] \\
& =\operatorname{tr}\left[\mathbf{U}_{2}^{T}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} \mathbf{U}_{2}\right] \\
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right\|^{2} & =\operatorname{tr}\left[\mathbf{U}_{2}^{T} \mathbf{S} \mathbf{U}_{2}\right] \\
\mathbf{S} & =\frac{1}{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T}
\end{aligned}
$$

$\mathbf{U}_{2}^{T} \mathbf{U}_{2}$ this is identity

PCA: a second view

- Using a Lagrange multiplier as before:

$$
\begin{aligned}
J\left(\mathbf{U}_{2}\right) & =\operatorname{tr}\left[\mathbf{U}_{2}^{T} \mathbf{S} \mathbf{U}_{2}\right]+\sum_{j=1}^{k} \lambda_{j}\left(1-\mathbf{u}_{j}^{T} \mathbf{u}_{j}\right) \\
\mathbf{U}_{2} & =\left[\mathbf{u}_{1} \ldots \mathbf{u}_{k}\right]
\end{aligned}
$$

- Setting derivative to zero and solving yields:

$$
\mathbf{S U}_{2}=\mathbf{U}_{2} \boldsymbol{\Lambda}
$$

- Overall error is:

$$
\begin{aligned}
\operatorname{tr}\left[\mathbf{U}_{2}^{T} \mathbf{S} \mathbf{U}_{2}\right] & =\operatorname{tr}\left[\mathbf{U}_{2}^{T} \mathbf{U}_{2} \mathbf{\Lambda}\right] \\
& =\lambda_{k+1}+\ldots+\lambda_{d}
\end{aligned}
$$

- Notice subscripts: we want the smallest error, so solution is same as before!

PCA: Approximation in Anger

- What about actual approximations?
- We have this expression, but it depends on all n eigenvectors

$$
\hat{\mathbf{X}}_{i}=\mathbf{U}_{1} \mathbf{U}_{1}^{T} \mathbf{X}_{i}+\mathbf{U}_{2} \mathbf{U}_{2}^{T} \overline{\mathbf{X}}
$$

- Some algebra shows that you only need the first $k .$.
(PRML, §12.1.3)

$$
\hat{\mathbf{X}}_{i}=\overline{\mathbf{X}}+\sum_{j=1}^{k}\left(\mathbf{X}_{i}^{T} \mathbf{u}_{j}-\overline{\mathbf{X}}^{T} \mathbf{u}_{j}\right) \mathbf{u}_{j}
$$

and, if data are centred this is just

$$
\hat{\mathbf{X}}_{i}=\sum_{j=1}^{k}\left(\mathbf{X}_{i}^{T} \mathbf{u}_{j}\right) \mathbf{u}_{j}
$$

- Don't forget: The k-dimensional $\mathbf{Y}_{i}=\mathbf{U}_{1}^{T} \mathbf{X}_{i}$ is the "feature"
- What goes into classification, or whatever
- Use the above result to move back into the original domain

Application: Handwritten Digits

- PCA on handwritten digits
- Length -256 data vectors (16×16 pixel grayscale images)
- Full data has 1,100 cases on each of 10 digits
- Data reduction
- Do we really need 256 dimensions to represent each observation?
- How many do we need?

Digits: First 15 cases of 1,100

Digits: First 15 eigenvectors of 1,100

ご3335

Eigenvectors scaled by $\sqrt{ } \lambda_{j}$

6
有

Recall sample covariance of $\mathbf{U} \mathbf{X}$ for $k=d$?

Approach

For each digit, $0,1,2, \ldots$
X = data, $256 \times 1,100$ matrix
Computed mean of 1,100 cases, Xb
Computed centered data, Xc (subtract off pixel-wise mean)
Compute S = Xc * Xc' / 1100
Compute eigenspectrum of S
Reconstruct data for different k

Eigenspectrum

$$
\lambda_{j}-\text { raw values }
$$

Cumulative sum, normalized to 1

Cumulative sum, zoomed in

Approximations of varying k

Error images intensity range displayed: [-25, 25]

Did I cheat?

- I used $n=1,100$ cases on each!
- But I only gave you 200 each in lab ©
- Could you have done PCA?
- If, e.g., $n=100$, what is the rank of S ?
- What will the eigenspectrum look like?

SVD for PCA

- Singular Value Decomposition
- Factorisation for arbitrary (non-square) matrices
- For $\mathrm{n} \times \mathrm{d}$ matrix \mathbf{X}

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}
$$

where
\mathbf{U} - Eigenvectors of $\mathbf{X X}{ }^{\prime}$
\mathbf{V} - Eigenvectors of $\mathbf{X}^{\prime} \mathbf{X}$
$\boldsymbol{\Sigma}-(\boldsymbol{\Sigma})_{j j}=\sqrt{ } \lambda_{j}$ where λ_{j} are common eigenvalues of $\mathbf{X X}$ ' and $\mathbf{X}^{\prime} \mathbf{X}$

- SVD can be run directly X
- No need to make huge covariance matrix

SVD for PCA

- Carefully...
- So... can either compute
- [V, D] = eig(S);

Col's of V eigenvectors of S
Diagonal of D eigenvalues of S (sorted ascending)

- [U, S] = svd(Xcenter)

Col's of U eigenvectors of S diag(S).^2/n eigenvalues of S (sorted descending)

Eigenspectrum... n = 100
λ_{j} - raw values

Cumulative sum, normalized to 1

Cumulative sum, zoomed in

Eigenspectrum... n=1100

$$
\lambda_{j}-\text { raw values }
$$

Cumulative sum, normalized to 1

Cumulative sum, zoomed in

Digits: First 15 eigenvectors of 100

Eigenvectors scaled by $\sqrt{ } \lambda_{j}$

$$
\begin{aligned}
& \text { B3 3 1 }
\end{aligned}
$$

Eigenvectors scaled by $\sqrt{ } \lambda_{j}$

7tery
67616tab

Based on $\mathrm{n}=1,100$

PCA: limitations

- PCA is linear. Linear projections can only do so much. Consider:

(Roweis \& Saul, 2000)
- Even simpler: a circle!

Non-linear approaches

- Non-linear dimensionality reduction is hard!

Roweis \& Saul, 2000)

- Locally Linear Embedding (LLE) is one alternative method
- PCA is really, really useful
- but as always, useful to be aware of limitations, especially fundamental ones
- Helps to diagnose what's wrong if it doesn't seem to work

Wrap up

- Can go a surprisingly long way with PCA! Basis vectors go by cool names in various fields...
- Eigenfaces
- Metagenes
- Sure you can think of more... eigenpeople, anyone?
- Key idea is that columns of $\mathbf{U}_{\mathbf{1}}$ are composite dimensions which capture a lot of information and can in that sense be thought of as "meta"-dimensions

