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Admin 
 §  Project (“Written assignment”) 

§  Due Wednesday 11 Feb at noon (or today, if you 
want! J ) 

§  Questions!? 
§  Presentation (“Critical Reading Assignment”) 

§  … at end of lecture today 



Critical Reading Assignment 
 

•  10 minute presentation 

•  Based on journal paper about or using Machine Learning methods 
 Some suggestions on the webpage; other’s OK, but contact me 
 Must notify me of your article by 18 Feb (next Mon!) 

•  Aim for ~5 slides, not much more 

•  Try to think of intuitive descriptions for any algorithms/procedures used 

•  Only 10 minutes!  Not a lecture or a tutorial 
Can’t possibly explain everything… 
But should be able to express general ideas in play 

•  Don’t read your slides! 
Slides shouldn’t have full sentences, 
Just key words/phrase  

 to anchor audience’s attention, and 
 to help guide/remind you of the flow 

•  Make good use of pretty, meaningful pictures when possible 

•  Look at the audience as much as possible! 

•  Practice! 



Outline of course 

A. Basics: Probability, random variables (RVs), common distributions, 
introduction to statistical inference 

B. Supervised learning: Regression, classification, including high-
dimensional issues and Bayesian approaches 

C. Unsupervised learning: Dimensionality reduction, clustering and mixture 
models 

D. Networks: Probabilistic graphical models, learning in graphical models, 
inferring network structure 



Supervised Learning Redux (1) 
 §  Given samples                             build tool to predict Ynew for a new case 

using only Xnew	



§  Classification: Binary/discrete output 
Optimal classifier based on… 

§  Discrete input 

§  Continuous input 

§  Class conditional distribution 
“Generative” model for data from class k	



§  Estimation 
Class conditional must estimated, typically with parameterized distribution 
 
 
e.g. Bernoulli success rates; mean and variance of a Gaussian; etc 

Binary inputs, binary output 

Cont. inputs, discrete output 

P (Y = k|X = x) ∝ P (X = x|Y = k)P (Y = k)

P (Y = k|X = x) ∝ p(x|Y = k)P (Y = k)

pk(x) = p(x|Y = k)

p̂k(x) = p(x|Y = k, θ̂k)

e.g. for continuous input… 

e.g. for continuous input… 



Supervised Learning Redux (2) 
 

§  Linear Discriminant Analysis (linear decision boundary) 
Gaussian generative model, equal covariance Σ over all classes k	



§  Quadratic Discriminant Analysis (curved decision boundary) 
Gaussian generative model, class-specific covariance Σk	



§  Naïve Bayes classifier 
Based on independence over d input dimensions, using 

 

 

§  Cross Validation 
Attempt to estimate classifier accuracy with unseen data 

§  k-fold Cross-Validation  
Run classifier k times, each time using (k-1)/k × N samples 

§  Leave One Out Cross-Validation (LOOCV) 
Run classifier N times, each time using N−1 samples 
Has least biased estimate of true error, but more variable estimate than k-fold 
More computationally intensive 

pk(x) =
∏d

j=1
p(xj |Y = k)e.g. for continuous input… 



Supervised Learning Redux (3) 
 

§  Least Squares Regression 
Minimize sum of squared errors between 
observed and predicted response 
Or, maximize likelihood of iid Gaussian errors in prediction 

§  Polynomial Regression 
Uses polynomial expansion of inputs, to get more flexibility  

§  Arbitrary Basis Sets 
E.g. splines, wavelets, Gaussians, etc. 
More compact support than polynomial basis 

§  Ridge regression 
Penalized Maximum Likelihood Or Bayesian MAP solution 
 
 
Regularizes fit when too many (or just redundant) parameters 

Cont. inputs, cont. output 

Ŷ (X,w) = w
!
X ŵ = (X!
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Outline of course 

A. Basics: Probability, random variables (RVs), common distributions, 
introduction to statistical inference 

B. Supervised learning: Regression, classification, including high-
dimensional issues and Bayesian approaches 

C. Unsupervised learning: Dimensionality reduction, clustering 
and mixture models 

D. Networks: Probabilistic graphical models, learning in graphical models, 
inferring network structure 



Unsupervised learning 

§  Unsupervised learning: 
–  Finding “intrinsic structure” in data 

–  Or, finding patterns without knowing what you're looking for 

§  Two key classes of unsupervised learning: 
–  Dimensionality reduction 

–  Clustering 

§  Unsupervised: you don't start with a “labelled” dataset 



Curse of dimensionality 

§  Data in high dimensions can be troublesome  
§  High-dimensional data pose several problems: 

–  Statistical inference is very difficult, we've seen this over and over! 

–  Computational issues can also become a problem 

§  Gives rise to phrase curse of dimensionality (phrase due to Bellman, 
~1960) 

Consider following exercise: 
 
•  Fill [0,1]D space with sufficient 

data points such that, 
•  For each location x0 ∈ [0,1]D, a 

fixed number of data points are 
within a distance δ (on average) 

•  Let D grow… required number of 
observations will grow 
exponentially! 
 

In other words 
•  For typical (finite) n, D-dim 

space is sparsely populated 

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html 



§  Dimensionality reduction: unsupervised learning problem in which 
goal is to obtain a lower-dimensional representation of the data losing 
as little useful information as possible 

Dimensionality reduction 
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§  Typically k<<d 
§  Two reasons to do this: 

–  Pre-processing: Simplify data for subsequent analysis 

–  Visualization: If k<=3, data can be looked at 



Dimensionality reduction 

§  Again, something we do a lot of in making sense of a complex world: 
–  Mental and verbal descriptions of people in terms of small number 

of characteristics 

–  “Left” and “right” in politics: R1000 → R1 ! 

§  The low-dimensional data are co-ordinates in a space whose (few) axes 
are somehow constructed from the original data 

§  These axes capture (a small number of) important modes of variation 
§  Is this just variable selection ?  No! 
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Dimensionality reduction 

§  Example: 
–  Suppose you described people by height, weight and IQ 

–  Despite fitness/obesity, height & weight are strongly related 

–  Roughly, short folks weight less than tall folks 

–  Try to replace height & weight with “size”  

–  If height & weight exactly linearly related,  
you haven't lost anything in going from 3 to 2 numbers 

–  We've “compressed” the data by removing redundancy 

–  Made statistical tasks like density estimation etc. easier 
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Gene expression microarrays 

§  Roughly speaking, gene expression is the “activity level” of a gene 
§  Microarrays can measure all 30,000 genes in one go! 
§  That is, you get a vector in R30k under each condition, or across a 

range of conditions, through time etc... 
§  Now widely used in all areas of biomedical discovery, e.g. cancer 



Dimensionality reduction 

§  Schoch et al., PNAS 2002 on Acute Myeloid Leukemia 
–  Gene expression (1000 genes) on bone marrow (32 patients) 

–  Simple dimensionality reduction revealed clinically distinct sub-types 
–  From 32 × 1000 matrix…. to a 32 × 2 matrix 

These 2 dimensions capture most (67%) of the variability! 

Schoch et al. (2002), PNAS 99(15):10008-10013 



Linear projections 

§  Simplest way to reduce dimensionality is to project the data linearly: 

§  Here, the new axes are simply the columns of projection matrix U 
§  The low-dimensional data Y are new co-ordinates for the space 

spanned by columns of U (the column space of U) 
§  A linear projection called principal components analysis or PCA is 

very widely used and will be our focus today 
§  Let's start with k=1… 



PCA in one dimension 

§  Linear projection, k=1 
§  Think back to height-weight example, we only really care about 

direction we're projecting onto, length just results in a scale factor for 
the final projections. 

§  Simplest to assume u unit length, u’ u = 1 

§  What do we want to maximize? 
§  The (sample) variance in the projected space 

§  One way of capturing the informativeness of the projection 
§  a projection onto a point squashes away all the information, 

while a “well spread out” projection is good 
§  Let's choose u so as to maximise variance 

§  But first let’s review eigenvalues/eigenvectors… 



PCA in one dimension 

§  Want u that maximises 
   
d×d sample covariance: 

§  Solution must satisfy 
 
 
But, this solution is not unique; every eigenvector/value of S! 
 

§  Want solution that maximises 
 
 
That is, the eigenvector with the largest eigenvalue!  

 
 §  This is the first principal component of the data  
§  Interestingly, it's also the best reconstruction in a least squares sense! 

Su = λu s.t. u
′
u = 1

V̂ar(Y) = u
′
Su

S = 1

n

∑n

i=1
(Xi − X̄)(Xi − X̄)′

V̂ar(Y) = u
′
Su = u

′(λu) = λ

s.t. u
′
u = 1



PCA in general 

§  For the general case k>1, we need to write down the variance of Y's in 
k-dimensions 

–  Not the  k × k covariance, but 
–  The average squared distance to the mean, i.e.  
–  The (sample) average squared L2 norm of Y “centered”: 

=
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PCA in general 

§  Maximand is the variance in projected space  
(ps: full derivation of PCA not on exam, only key results and intuition) 

§  Useful “trace” trick: 

(cyclic property of the trace) 



Objective function 

§  This gives: 

§  Would like to maximize this quantity. But this won't make sense unless 
we constrain U1. We want it's columns to be unit length, so use a 
Lagrange multiplier: 



Maximization 

§  Maximise 

§  Now: 

where… 



Maximization 

§  Also: 

§  The full eigen-decomposition 
§  With k=d, it's the spectral decomposition 
§  In other words: the columns of  U1 are simply k eigenvectors of the 

sample covariance matrix S  
§  But which k ? 

§  Setting derivative of J wrt U1 to zero: 

(Magnus & Neudecker, p178) 



Maximum variance solution 

§  Solution: pick the k eigenvectors corresponding to the k largest eigen-
values. 

§  Overall variance: 

§  Solution: 

§  This is a nice, simple solution, can be computed easily using standard 
matrix operations 

§  Crucial!  Tells us that the (sample) variance explained by k-dimensional 
approximate is sum of k largest eigenvalues! 



PCA as a transformation: k=d case 

§  What happens when k=d? 
§  Q: What's the sample covariance matrix of the projected data 

Y? 



PCA as a transformation: k=d case 

§  What happens when k=d? 
§  Q: What's the sample covariance matrix of the projected data 

Y? 
 
 
 
 
§  It's diagonal! 
§  Implication: we can always make the data uncorrelated, simply by 

rotating so the variances lie “along the axes”... 



PCA: a second view 

§  Remarkably, PCA is also the best low-dimensional reconstruction from 
the squared error point of view: 

{ uj }  an arbitrary  
orthonormal basis set… 

… s.t. that we want first 
k to approximate Xi	



See also Bishop (PRML), §12.1.2 

exact fit found with 
these α’s	





PCA: a second view 
§  Low-dimensional approximation: 

§  Derivative: 

per obs. 
fit w/ U1	



§  Reconstruction error sum of squares (over d dim’s), summed (over n obs) 

approx. 
w/ U2 

§  Reconstruction error: 



PCA: a second view 

§  Setting to zero, solving for b: 

§  This gives: 

this is 
identity 



PCA: a second view 

§  Using a Lagrange multiplier as before: 

§  Setting derivative to zero and solving yields: 

§  Overall error is: 

§  Notice subscripts: we want the smallest error, so solution is same as 
before! 



PCA: Approximation in Anger 

§  What about actual approximations? 
§  We have this expression, but it depends on all n eigenvectors 

§  Some algebra shows that you only need the first k…      (PRML, §12.1.3) 

 and, if data are centred this is just 

§  Don’t forget:  The k-dimensional                          is the “feature”  
§  What goes into classification, or whatever 
§  Use the above result to move back into the original domain 

X̂i

X̂i = X̄+
k∑

j=1

(XT
i uj − X̄

T
uj)uj

X̂i =
k∑

j=1

(XT
i uj)uj



Application: Handwritten Digits 

§  PCA on handwritten digits 
§  Length-256 data vectors (16×16 pixel grayscale images) 
§  Full data has 1,100 cases on each of 10 digits 

§  Data reduction 
§  Do we really need 256 dimensions to represent each observation? 
§  How many do we need? 

 



Digits: First 15 cases of 1,100 
 



Digits: First 15 eigenvectors of 1,100 
 



Eigenvectors scaled by √λj���
	



Recall sample covariance of U’X for k=d ? 



Approach 

For each digit, 0, 1, 2,… 
 X = data, 256 × 1,100 matrix 
 Computed mean of 1,100 cases, Xb 
 Computed centered data, Xc   (subtract off pixel-wise mean) 

 Compute S = Xc * Xc’ / 1100 
 Compute eigenspectrum of S   
 Reconstruct data for different k	



 



Eigenspectrum 
 λj – raw values Cumulative sum,  

normalized to 1 
Cumulative sum,  

zoomed in 



Approximations of varying k 
 

sdf 

Error: 

Error: 

Error: 

Error: 

Error images intensity range displayed: [-25, 25] 



Did I cheat? 

§  I used n=1,100 cases on each! 
§  But I only gave you 200 each in lab J 

§  Could you have done PCA? 
§  If, e.g., n = 100, what is the rank of S? 
§  What will the eigenspectrum look like? 

 



SVD for PCA 

§  Singular Value Decomposition 
§  Factorisation for arbitrary (non-square) matrices 
§  For n × d matrix X 

 X = U Σ V 
where 

 U – Eigenvectors of XX’ 
    V – Eigenvectors of X’X 
    Σ – (Σ)jj = √λj where λj are common eigenvalues 

   of XX’ and X’X 
§  SVD can be run directly X 

§  No need to make huge covariance matrix 
  
  



SVD for PCA 

§  Carefully… 

§  So… can either compute 
§  [V, D] = eig(S);  

 Col’s of V eigenvectors of S 
 Diagonal of D eigenvalues of S (sorted ascending) 

§  [U, S] = svd(Xcenter) 
 Col’s of U eigenvectors of S 
 diag(S).^2/n eigenvalues of S (sorted descending) 



Eigenspectrum… n = 100 
 λj – raw values Cumulative sum,  

normalized to 1 
Cumulative sum,  

zoomed in 



Eigenspectrum… n=1100 
 λj – raw values Cumulative sum,  

normalized to 1 
Cumulative sum,  

zoomed in 



Digits: First 15 eigenvectors of 100 
 

Based on n = 100 



Eigenvectors scaled by √λj���
	



Based on n = 100 



Eigenvectors scaled by √λj���
	



Based on n = 1,100 



PCA: limitations 

§  PCA is linear. Linear projections can only do so much. Consider: 

(Roweis & Saul, 2000) 

§  Even simpler: a circle! 



Non-linear approaches 

§  Non-linear dimensionality reduction is hard! 

Roweis & Saul, 2000) 

§  Locally Linear Embedding (LLE) is one alternative method 
§  PCA is really, really useful 

–  but as always, useful to be aware of limitations, especially 
fundamental ones 

–  Helps to diagnose what's wrong if it doesn't seem to work 



Wrap up 

§  Can go a surprisingly long way with PCA! Basis vectors go by cool 
names in various fields... 
–  Eigenfaces 

–  Metagenes 

–  Sure you can think of more... eigenpeople, anyone? 

–  Key idea is that columns of U1 are composite dimensions which 
capture a lot of information and can in that sense be thought of as 
“meta”-dimensions 
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