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Admin

* Project ("Written assignment”)

* Due Wednesday 11 Feb at noon (or today, if you
want! © )

= Questions!?

* Presentation ("Critical Reading Assignment”)
= ... at end of lecture today



Critical Reading Assignment

10 minute presentation

Based on journal paper about or using Machine Learning methods
Some suggestions on the webpage; other’s OK, but contact me
Must notify me of your article by 18 Feb (next Mon!)

Aim for ~5 slides, not much more
Try to think of intuitive descriptions for any algorithms/procedures used

Only 10 minutes! Not a lecture or a tutorial
Can't possibly explain everything...
But should be able to express general ideas in play

Don't read your slides!
Slides shouldnt have full sentences,
Just key words/phrase
to anchor audience’s attention, and
to help guide/remind you of the flow

Make good use of pretty, meaningful pictures when possible
Look at the audience as much as possible!
Practice!



Outline of course

. Basics: Probability, random variables (RVs), common distributions,
introduction to statistical inference

. Supervised learning: Regression, classification, including high-
dimensional issues and Bayesian approaches

. Unsupervised learning: Dimensionality reduction, clustering and mixture
models

. Networks: Probabilistic graphical models, learning in graphical models,
inferring network structure



Supervised Learning Redux (1)

Given samples {X;, Y;}, ¢ = 1..n build tool to predict v,.,, for a new case
using only X__
Binary inputs, binary output
X; € {0,1}, Y; € {0,1}
Classification: Binary/discrete output _ |
Optimal classifier based on... Cont. inputs, discrete output
X, €eRY, Y €{1,2,... k}

= Discrete input
P(Y =kX=x)x PX=x|Y =k)P(Y =k)
= Continuous input
PlY =kX=x) xpx|Y =k)P(Y =k)
Class conditional distribution
“Generative” model for data from class &
og orconimousinut.. PE(X) = p(x|Y = k)

Estimation
Class conditional must estimated, typically with parameterized distribution

e.g. for continuous input... ﬁk (X) — p(X’Y — k, ek)

e.g. Bernoulli success rates; mean and variance of a Gaussian; etc



Supervised Learning Redux (2)

Linear Discriminant Analysis (linear decision boundary)
Gaussian generative model, equal covariance X over all classes k

Quadratic Discriminant Analysis (curved decision boundary)
Gaussian generative model, class-specific covariance %,

Naive Bayes classifier
Based on independence over d input dimensions, using

d
e.g. for continuous input... pk (X) — H]Zl p(:E] ’Y — k)

Cross Validation
Attempt to estimate classifier accuracy with unseen data

run 1

k-fold Cross-Validation run 2
Run classifier k times, each time using (k-1)/k x N samples

run 3

Leave One Out Cross-Validation (LOOCV) run 4
Run classifier N times, each time using N—-1 samples

Has least biased estimate of true error, but more variable estimate than k-fold
More computationally intensive




Supervised Learning Redux (3)

_ Cont. inputs, cont. output
Least Squares Regression X. cR? Y e R

Minimize sum of squared errors between
observed and predicted response
Or, maximize likelihood of Jid Gaussian errors in prediction

YX,w=w'X w=X'X)"'X'Y=X"Y

1

Polynomial Regression
Uses polynomial expansion of inputs, to get more flexibility of S

pX) = LXX2.. X" w=&"Y .

Arbitrary Basis Sets
E.g. splines, wavelets, Gaussians, etc.
More compact support than polynomial basis

¢(X) = [11(X)...ou(X))F W=
Ridge regression
Penalized Maximum Likelihood Or Bayesian MAP solution
w = (®T®+2I,) 'Y
Regularizes fit when too many (or just redundant) parameters




Outline of course

. Basics: Probability, random variables (RVs), common distributions,
introduction to statistical inference

. Supervised learning: Regression, classification, including high-
dimensional issues and Bayesian approaches

. Unsupervised learning: Dimensionality reduction, clustering
and mixture models

. Networks: Probabilistic graphical models, learning in graphical models,
inferring network structure



Unsupervised learning

= Unsupervised learning:
— Finding “intrinsic structure” in data

— Or, finding patterns without knowing what you're looking for

= Two key classes of unsupervised learning:
— Dimensionality reduction

— Clustering

= Unsupervised: you don't start with a “labelled” dataset



Curse of dimensionality

= Data in high dimensions can be troublesome
= High-dimensional data pose several problems:
— Statistical inference is very difficult, we've seen this over and over!

— Computational issues can also become a problem

= Gives rise to phrase curse of dimensionality (phrase due to Bellman,
~1960)

Consider following exercise:

1 dimension:
10 positions

 Fill [0,1]° space with sufficient
data points such that,

« For each location x, € [0,1]°, a
fixed number of data points are
within a distance & (on average)

* Let D grow... required number of
observations will grow
exponentially!

2 dimensions:
100 positions
[

In other words
P 1000 positions! « For typical (finite) n, D-dim
space is sparsely populated

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html



Dimensionality reduction

= Dimensionality reduction: unsupervised learning problem in which
goal is to obtain a lower-dimensional representation of the data losing
as little useful information as possible

x XX e | x XX e

| Dimensionality x X o
reduction

= Typically k<<d

= Two reasons to do this:
— Pre-processing: Simplify data for subsequent analysis

— Visualization: If k<=3, data can be looked at



Dimensionality reduction

' Dimensionality x X o
> reduction

v

The low-dimensional data are co-ordinates in a space whose (few) axes
are somehow constructed from the original data

These axes capture (a small number of) important modes of variation
Is this just variable selection ? No!

Again, something we do a /ot of in making sense of a complex world:
— Mental and verbal descriptions of people in terms of small number
of characteristics

— “Left” and “right” in politics: R19% — R



Dimensionality reduction

=

Dimensionality
reduction

v

Example:
— Suppose you described people by height, weight and IQ

— Despite fitness/obesity, height & weight are strongly related
— Roughly, short folks weight less than tall folks
— Try to replace height & weight with “size”

— If height & weight exactly linearly related,
you haven't lost anything in going from 3 to 2 numbers

— We've “compressed” the data by removing redundancy
— Made statistical tasks like density estimation etc. easier



(Gene expression microarrays

prepare'ICONARIone prepareMicroarray

UArsE
|’_

l

Roughly speaking, gene expression is the “activity level” of a gene
Microarrays can measure all 30,000 genes in one go!

That is, you get a vector in R?% under each condition, or across a
range of conditions, through time etc...

Now widely used in all areas of biomedical discovery, e.g. cancer



Dimensionality reduction
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Schoch et al. (2002), PNAS 99(15):10008-10013

= Schoch et al., PNAS 2002 on Acute Myeloid Leukemia
— Gene expression (1000 genes) on bone marrow (32 patients)

— Simple dimensionality reduction revealed clinically distinct sub-types

— From 32 x 1000 matrix.... to a 32 x 2 matrix
These 2 dimensions capture most (67%) of the variability!



Linear projections

Simplest way to reduce dimensionality is to project the data linearly:

Y, = U'X,

U1 . d x k
X;...X,
X, € Rd

Here, the new axes are simply the columns of projection matrix U

The low-dimensional data Y are new co-ordinates for the space
spanned by columns of U (the column space of U)

A linear projection called principal components analysis or PCA is
very widely used and will be our focus today

Let's start with k=1...




PCA in one dimension

Linear projection, k=1
Think back to height-weight example, we only really care about

direction we're projecting onto, length just results in a scale factor for
the final projections.

Simplest to assume u unit length, u"u =1

What do we want to maximize?
The (sample) variance in the projected space
= One way of capturing the informativeness of the projection

= a projection onto a point squashes away all the information,
while a “well spread out” projection is good

Let's choose u so as to maximise variance

But first let’s review eigenvalues/eigenvectors...



PCA in one dimension

Want u that maximises Var(Y) —u'Su st. uu=1

dxd sample covariance: S = % Z?:l(Xi — X) (XZ — X)/

Solution must satisfy Su = \u st vu=1

But, this solution is not unique; every eigenvector/value of S!

Want solution that maximises

Var(Y) = 0'Su = u/(\u) = A

That is, the eigenvector with the largest eigenvalue!

This is the first principal component of the data
Interestingly, it's also the best reconstruction in a least squares sense!




PCA in general

= For the general case k>1, we need to write down the variance of Y's in
k-dimensions

Y, = U/X,
U1 . d x k

— Not the & x k covariance, but
— The average squared distance to the mean, i.e.
— The (sample) average squared L2 norm of Y “centered”:

1 mn B
VAR(Y) = -3 (Yi-Y)'(Yi-Y)
=1

- 1 n



PCA in general

= Maximand is the variance in projected space
(ps: full derivation of PCA not on exam, only key results and intuition)

1 T ~
VARY) = =S (Y;-Y)(Y,-Y
Yy, = U’Xx, (Y) n;( —Y)'(Y - Y)
U1 . d x k 1 -
Y = —-) Y,
= Useful “trace” trick:

(Yi-Y)'"(Y:i-Y) = [U(Xi—X)]'[U] (Xi - X)]
- (X; -X)'u,uf(X; -X)
= T[(X; - X)'U, U] (X; — X)]
= Tr[UT(X; — X)(X; — X)TU ] (oyclic property of the trace)



Objective function

This gives:

o 1 & , _ _ .
/AR = =) TUiX, - X)(X; - X)'U
VAR(Y) - ?:1 (U7 (X; — X)(X; — X)" Uy
— Tr[UTSU|
1 n o o
S - ;:1( (X )

Would like to maximize this quantity. But this won't make sense unless
we constrain U;. We want it's columns to be unit length, so use a
Lagrange multiplier:

k
](Ul) = TI[UTSUI] + ,)\j (1 - UTu]')
J
j=1



Maximization

Maximise

Now:

k
J(U,) = Tx[ulsu,]+ Z,\j(l _ u;ruj)
j=1

d .
dUlAj(l N u]Tuj) — [0-- . 2/\juj O]

k

d .
dU;, D A(l—ujuy) = [“2Aur... — 22wy

j=1

where... A = diag([/\l ce )‘k])



Maximization

Also:

R _ T T
ﬁT‘l[X AX] = ((A+A")X)

Setting derivative of Jwrt U; to zero:

The full eigen-decomposition
With k=d, it's the spectral decomposition

(Magnus & Neudecker, p178)

In other words: the columns of U; are simply k eigenvectors of the

sample covariance matrix S
But which k ?



Maximum variance solution

Solution:

Overall variance:

VAR(Y) = Tr[UISU,]
= Tr[UTUA]
= M +...+ N\

Solution: pick the k eigenvectors corresponding to the k largest eigen-
values.

This is a nice, simple solution, can be computed easily using standard
matrix operations

Crucial! Tells us that the (sample) variance explained by k-dimensional
approximate is sum of k largest eigenvalues!



PCA as a transformation: k=d case

= What happens when k=a?

= Q: What's the sample covariance matrix of the projected data
Y?



PCA as a transformation: k=d case

What happens when k=d?

Q: What's the sample covariance matrix of the projected data
Y?

It's diagonal!

Implication: we can a/lways make the data uncorrelated, simply by
rotating so the variances lie “along the axes”...



PCA: a second view

= Remarkably, PCA is also the best low-dimensional reconstruction from
the squared error point of view:

{ u{"} an arbitrary < d
orthonormal basis set... i = Z u;Q; exact fit found with
Jj > these a’s
= D>y X
j=1
— UU'X,
.. .t. that we want first X; = U U'X; + Uzﬂ
k to approximate X, U = [u...uy
vl = 14
U = [U; Uy
Ul : dxk

Us : dx(d—k)

See also Bishop (PRML), §12.1.2



PCA: a second view

Low-dimensional approximation:

X; = U U'X; +Ub
per obs. approx.
fitw/U, w/U,
Reconstruction error:

X;—X; = U,ULX;, —Uyb
= Uy(UlX;-b)
Reconstruction error sum of squares (over d dim’s), summed (over n obs)

n

> IX =X

1=1

Derivative:
1 ~
ﬁ“xi -Xi|? = —203U,(U;X; —b)
(1 n A . n
— D IXi-X? = 23 (UJX; - b)

1=1 i=1



PCA: a second view

= Setting to zero, solving for b:

= This gives:
1X; — X
1 « .
=) IIXi - Xi?

e

S

o U2 U,
U, UL (X; — X)|? this is

(X; - X)Tu, Ul (X; — X) identity
r[(X; — X)'U, U3 (X; — X))
tr[U; (Xi — X)(Xi — X)" Uy

tr[US SUy]

Lx - X)X, - X"

An,



PCA: a second view

Using a Lagrange multiplier as before:

k
J(Uy) = tr[UySUJ+ Y Ai(1 —ujuy)
j=1
UQ — [ul...uk_]

Setting derivative to zero and solving yields:

SU, = Us5A
Overall error is:
tr[lU28U,] = tr[ULU,A]
= Mea1+---+ A

Notice subscripts: we want the smallest error, so solution is same as
before!



PCA: Approximation in Anger

= \What about actual approximations?
= We have this expression, but it depends on all n eigenvectors

A

X; = U, UX,+U,ulx
» Some algebra shows that you only need the first k...  (PRML, §12.1.3)
k

Xz’ =X + Z(X;Fuj — XTU.j>11j
j=1

and, if data are centred this is just
k
Z XTuJ

= Don't forget: The k-dimensional Y; = U{X; is the “feature’
» What goes into classification, or whatever
= Use the above result to move back into the original domain



Application: Handwritten Digits

= PCA on handwritten digits
» Length-256 data vectors (16x16 pixel grayscale images)
= Full data has 1,100 cases on each of 10 digits

= Data reduction

= Do we really need 256 dimensions to represent each observation?
» How many do we need?



Digits: First 15 cases o 1,100

V4 V4 VA VA YA VA VA VA V4 V4 V4V VA V4 Y
1 ] ¥ 1 1 ) L L B I ) S 5
B 4 5 6 5 B D 6 5
7 P I 7 WA AV 2
OIS TOISISE IS 15151518
VA YA I A T 2 B P T P 1A ) A T2
V4 VA Vi ¥ Vi 7 W P4 VA Vd Vi Y 0 Va
54 V2 K T 15 5023 P e o i O
va ¥ 7 1 1 &, i i VA 7 d 7 7
01141 14, ¥, % @, 18 ) 17, Y 10) 14, 5. 15 %,




Digits: First 15 eigenvectors o110

4 ‘ i Al ¥ } ¥ o
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L = L 0 S ~RE Wy (L - e




Eigenvectors scaled by Vi,

» | ‘ A M ’ ' . ¥
W A [ 124 B P
' . , - [ ~ - |
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Recall sample covariance of U’X for k=d ?




Approach

For each digit, O, 1, 2,...
X = data, 256 x 1,100 matrix
Computed mean of 1,100 cases, Xb
Computed centered data, Xc (subtract off pixel-wise mean)
Compute S = Xc * Xc' / 1100
Compute eigenspectrum of S
Reconstruct data for different &



Eigenspectrum

/lj — raw values
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Approximations of varying k

Original nDim=5 nDim=10 nDim=25  nDim=50

RMSE= RMSE=
14.4 11.4

el
T

Original nDim=5 nDim=10 nDim=25  nDim=50

nDim=25 nDim=50

Original nDim=5

b4 Vs

RMSE= RMSE=

Error:

Original nDim=10 nDim=25

RMSE= RMSE= RMSE=
68.0 54.1 42.0

Error images intensity range displayed: [-25, 25]



Did | cheat?

= [ used n=1,100 cases on each!
= But I only gave you 200 each in lab ©

= Could you have done PCA?
= If, e.g., n = 100, what is the rank of S?
= What will the eigenspectrum look like?



SVD for PCA

= Singular Value Decomposition
= Factorisation for arbitrary (non-square) matrices

= For n X d matrix X

X=UXV
where
U — Eigenvectors of XX’
V — Eigenvectors of X’X
pIE (E)jzx/ﬂ,j where 4; are common eigenvalues
of XX and X’X
= SVD can be run directly X
= No need to make huge covariance matrix



SVD for PCA

= Carefully...

= S0... can either compute
" [V, D] = eig(S);
Col’s of V eigenvectors of S
Diagonal of D eigenvalues of S (sorted ascending)
= [U, S] = svd(Xcenter)
Col’s of U eigenvectors of S
dlag(S)’\Z/n eigenvalues Of S (sorted descending)



Eigenspectrum... n = 100

/lj — raw values
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Eigenspectrum... n=1100
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Digits: First 15 eigenvectors oo
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Eigenvectors scaled by Vi,

. r | 4 ' ¥ ,r
P P 4 i VA A A
- 3 - . - 'ﬂ ." - y "! & L T‘ %
HRDEERBEREEREER
1 -] | =1 B o - ¥
N . = - { el P - [ & =
EEEBEEEREESEESEEE
VA i 2 A A 1
, | PR LA LA s £ Wrri BTF
: i =N I - = - - ,-': 're L'E _‘__"
MBS EFEEEEEEEE S
| Fit o | - I - FE :
GELCEZBEBEBEEEEEEZE
N - - 3 b S s _"1
Vv i 2 P 74 1 W A L |
- | L e e [T E L B3 NF i
&G EE S S R EE L
7 711 K2l 1 i i L
CilZ VA2 A IAZ A L A
: — : -
r F oy, & N | o -y 3 4 A
pleedEzZR EEE EdE

Based on n =100




Eigenvectors scaled by Vi,
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PCA: limitations

= PCA is linear. Linear projections can only do so much. Consider:

(Roweis & Saul, 2000)

= Even simpler: a circle!



Non-linear approaches

= Non-linear dimensionality reduction is hard!

Roweis & Saul, 2000)

= Locally Linear Embedding (LLE) is one alternative method

= PCA is really, really useful
— but as always, useful to be aware of limitations, especially
fundamental ones

— Helps to diagnose what's wrong if it doesn't seem to work



Wrap up

X XXk | x XX e
- X x

.,~‘fi;. ....... % Dimensionality X X
""" > reduction

v

= (Can go a surprisingly long way with PCA! Basis vectors go by cool
names in various fields...
— Eigenfaces

— Metagenes
— Sure you can think of more... eigenpeople, anyone?

— Key idea is that columns of U1 are composite dimensions which
capture a lot of information and can in that sense be thought of as

“meta”-dimensions



