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Preface

These lecture notes serve as a primary reference for two modules, ST903 and ST911 (MASDOC S1).
Two slightly different versions are produced from common source files; the differences are small but
do provide some specific additional information for each of the modules. This version of the notes
is intended to be used by students studying ST911.

This course aims to provide a grounding in fundamental aspects of modern statistics. The first
part of the course covers Monte Carlo methods which lie at the heart of much modern statistics.
The second part, covered by the second half of these notes, is concerned with statistical rather than
computational aspects of modern statistics.

The notes are divided into two parts. The first contains background reading with which you are
expected to be familiar by the time that you start attending lectures on the second part of the
course. The second part of these lecture notes is intended to support the lectures occuring in weeks
6-10.

Beware: although there are some parts of this course which you might feel you know already,
such as chapter 8 you should make sure that you really are comfortable with everything that these
parts of the notes contain (including, say, section 8.3) as well as those parts which you may have
seen before.

Books

There are a great many books which cover the topics studied in this course. A number of these are
recommended, but you should spend some time in the library deciding which books you find useful.

Some which are recommended include:

– Statistical Inference, G. Casella and R. L. Berger, Duxbury, 2001 (2nd ed.).
– All of Statistics: A Concise Course in Statistical Inference, L. Wasserman, Springer Verlag,

2004.

These Notes

Although these lecture notes are reasonably comprehensive, you are strongly encouraged to consult
these or other books if there are any areas which you find unclear; or just to see a different pre-
sentation of the material. The lecture notes are based (in some places rather closely) on a previous
version prepared by Dr. Bärbel Finkelstadt. Any mistakes in the present version were undoubtedly
introduced by me; any errors should be reported to me (a.m.johansen@warwick.ac.uk).

Throughout the notes, exercises and examples are indicated in different colours in sans serif font
for easy identification.

mailto:a.m.johansen@warwick.ac.uk


6 Table of Contents

For the avoidance of doubt some parts of the lecture notes are marked NE in order to indicate
that they are not examinable (or, more accurately, will not be examined as a part of this course).
Other parts, maked, Background are background material provide to refresh your memory; in the
event that you haven’t seen this material before it’s your responsibility to familiarise yourself with
it: don’t expect it to be covered in detail in lectures.

Some of the notation used may not be familiar to you. Whilst every attempt has been made
to make these notes self contained, you may find http://en.wikipedia.org/wiki/Table_of_

mathematical_symbols a useful first reference if there is any symbolic notation which you’re not
comfortable with in these notes.

Exercises

Exercises are placed at appropriate points throughout these lecture notes. They aren’t intended to be
decorative: do them. This is by far the most effective way to learn mathematics. You’re encouraged
to answer the questions as soon as possible. The course contains a lot of material and you are
strongly encouraged to read ahead of the lectures and think about the exercises in advance. Some
of the exercises will be discussed in lectures — please be prepared to contribute your own thoughts
to these discussions. Once the material has been covered in lectures, try to make sure that you
understand how to answer these questions.

The relatively modest number of exercises present within the lecture notes provide a good start-
ing point, but it would be to your advantage to answer additional exercises. The recommended
textbooks (and many others that you’ll find in the library) contain appropriate exercises — it’s
always important to attempt the exercises in textbooks.

Assessment

Assessment of ST911 has a number of components.
Coursework: the coursework from the first half of the course on Monte Carlo Methods will make

up 30% of the module mark. An additional 20% will be provided by an assignment from this part
of the module:

Assignment Released Deadline

Assignment 23/11/2010 9/12/2010
The remainder of the marks will come from an oral examination to be conducted at the start of

term 2. Details will be made available later.

Office Hours and Contact Details

Dr. Adam Johansen
email a.m.johansen@warwick.ac.uk

Office C0.20 (Maths and Statistics)
Office hours Tuesday 9:30–10:30

Friday 10:30 – 11:30
Telephone 024 761 - 50919

http://en.wikipedia.org/wiki/Table_of_mathematical_symbols
http://en.wikipedia.org/wiki/Table_of_mathematical_symbols
mailto:a.m.johansen@warwick.ac.uk
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1. Probability

1.1 Motivation

Probability theory

– provides probabilistic models that try to explain the patterns observed in the data, and to provide
an answer to the question “Where did the data come from?”

– allows a mathematical analysis of many aspects of statistical inference under the assumption that
the model is correct.

Caveat:

– Every model is an idealised simplification of reality. We often assume that our model is adequate
for practical purposes.

– Always check that the model does not disagree violently with the actually observed data.

With this course, and these notes, we begin from the beginning. It is not assumed that you have
seen any formal probability or statistics before. However, if you really haven’t seen anything in this
course before it will be rather intense and you will find that there are areas in which you need to do
some background reading. It’s likely that ST911 students will already have seen much of the early
material before; if you’ve already had a course in measure theoretic probability then keep that in
mind and don’t worry about the less formal definitions given in this chapter.

1.2 Sets and Suchlike Background

This section is intended to serve as a reminder of a few basic mathematical concepts that will be
important throughout the course. If you don’t remember having seen them before then you might
find it helpful to consult a relevant book, such as “Set & Groups: A First Course in Algebra”, J. A.
Green, Routledge 1965. Reprinted: Chapman Hall (1995).

In mathematics a set is a collection of objects. The order of those objects is irrelevant and those
objects themselves may be sets of some sort.

The key concept when dealing with sets is membership. Object a is a member of a set A,
written a ∈ A if one of the objects contained in A is exactly a. This may equivalently be written as
A 3 a indicating that set A contains object a.

Specifying Sets. It’s important that we are precise when we specify which objects are in a particular
set. All sorts of problems can arise if we allow imprecise definitions (the Russell set paradox is such
an example: the set of all sets which do not contain themselves is not sufficiently precise because
we don’t have a full definition of the set of all sets). There are broadly two ways in which we can
specify the membership of a set:
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– Semantically (intensively) by specifying the defining property of members of the set, for example
A = {odd integers} or B = {rooms in the Zeeman building}.

– Extensively, by listing all members of the set, for example, A = {1, 3, 5} or B = {1, 2, 3, 4, . . . , 107}
or C = {2, 4, 6, 8, 10, 12, . . . }.

We will often find it useful to employ a formal form of semantic definition, specifying that we are
interested in all objects of a certain type which satisfy a particular condition, for example, the set
off all odd integers may be written as:

A = {2k − 1 : k ∈ N}

Whilst the set of all points in a plane within a distance of 1 of the origin may be written as:

B = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

One special set is the empty set, ∅ = {} which contains no points. Nothing is a member of ∅.
Comparing Sets. Given two sets, A and B, it’s possible that all of the members of one also belong
to the other. If all of the members of A are also members of B then we may write A ⊂ B indicating
that A is a subset of B. Similarly, if the converse were true and every member of B were a member
of A we might write A ⊃ B indicating that A is a superset of B. If A ⊂ B and B ⊂ A then we
say that the two sets are equal: A = B. Notice that none of these ideas have involved the order of
the members of A or B. Indeed, it’s meaningless to talk about the ordering of members of a set and
{1, 2, 3} = {3, 1, 2} = {2, 1, 3}.
Set Operations. There are a number of basic operations which its possible to perform when dealing
with sets and these will prove to be important:

– Those elements which are members of two sets. The intersection of A and B, written A ∩ B is
exactly the collection of objects which are members of both A and B:

A ∩B = {x : x ∈ A, x ∈ B}.

– Those elements which are members of at least one of a collection of sets. The union of A and B,
written A ∪ B is the collection of objects which are members of either A or B (including those
points which are in both A and B):

A ∪B = {x : x ∈ A or B}.

– The complement of a set is the collection of objects which are not members of that set. We write
a 6∈ A to indicate that a point a is not a member of set A. The complement:

Ā = {x : x 6∈ A}.

Some care is required here. The complement must always be taken with respect to the universe of
interest that is the set containing all points that we might be interested in. This is often specified
implicitly and will often be something like R. For the purposes of the current course we will
use the symbol Ω to denote this object (in some settings X is more commonly used). With this
convention:

Ā = {x ∈ Ω : x 6∈ A}.
– The difference between set A and B is the collection of points which are members of A but not

of B:
A \B = {x ∈ A : x 6∈ B}.

Notice that A \B 6= B \A in general: it’s an asymmetric definition. The complement of a set may
be written as the difference between the universe and the set of interest Ā = Ω \A.

– The symmetric difference makes symmetric the notion of the difference between two sets:

A∆B =(A \B) ∪ (B \A) = {x ∈ A ∪B : x 6∈ A ∩B}
=[A ∪B] \ [A ∩B].
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De Morgan’s Laws. There is a useful result which relates complements, intersections and unions in
a way which is often useful when manipulating algebraic expressions.

Theorem 1.1 (De Morgan’s Laws). For sets A and B:

(i)
(
A ∩B

)
= A ∪B

(ii)
(
A ∪B

)
= A ∩B

Singletons, Subsets and Membership. A singleton is a set containing a single object. Mathemati-
cally, a set A = {a} which contains one member, a, is different to the member itself: A 6= {a}. If
we have a larger set B = {a, b, c, d, e, f, . . . , z} then it is true to say that a ∈ B and that A ⊂ B.
However, it is not true that A ∈ B or that a ⊂ B. This seemingly pedantic point is actually rather
important.

This has close parallels in the real world. A box containing a cake is different to a cake and a box
containing four different sorts of cake need not contain four boxes which each contain a different
cake. Sets are really just a formal type of mathematical container.

1.3 Outcomes and Events

It’s convenient to begin with some definitions. We consider experiments, which comprise: a collection
of distinguishable outcomes, which are termed elementary events, and typically denoted Ω and a
collection of sets of possible outcomes to which we might wish to assign probabilities, A, the event
space.

It’s important to be careful when considering sets of sets. Notice that if A ∈ A then A ⊂ Ω — it
is not true that A ∈ Ω or that for ω ∈ Ω we can expect ω ∈ A although it is possible that {ω} ∈ A.
There is a difference between ω, a point in the space Ω and {ω} a set containing a single point, ω.

Example 1.1. Consider the experiment consisting of the tossing of a single die. Ω = {1, 2, 3, 4, 5, 6}.
Let A = {even number}. A is an event. It is a subset of Ω. A = {2, 4, 6}. Let Ai = {i showing}; i =
1, 2, ..., 6. Each Ai is an elementary event. If we are interested in all possible subsets of Ω, then there
are 26 = 64 events, of which only 6 are elementary, in A (including both the empty set and Ω). /

Exercise 1.3.1. Prove that a set of size M has 2M subsets. (Hint: either use binomial coefficients or
think of different representations of a subset of a set with M members).

In order to obtain a sensible theory of probability, we require that our collection of events A is
an algebra over Ω, i.e. it must possess the following properties

(i) Ω ∈ A
(ii) If A in A, then A ∈ A

(iii) If A1 and A2 ∈ A, then A1 ∪A2 ∈ A.

In the case of finite Ω, we might note that the collection of all subsets of Ω necessarily satisfies
the above properties and by using this default choice of algebra, we can assign probabilities to any
possible combination of elementary events.

Several results follow from the above properties

Proposition 1.1. If A is an algebra, then ∅ ∈ A.

Proof. By property (i) Ω ∈ A; by (ii) Ω ∈ A; but Ω = ∅; so ∅ ∈ A �

Proposition 1.2. If A1 and A2 ∈ A, then A1 ∩A2 ∈ A for any algebra A.

Proof. A1 and A2 ∈ A; hence A1 ∪A2, and (A1 ∪A2) ∈ A; but (A1 ∪A2) = A1 ∩A2 = A1 ∩A2 by
De Morgan’s law (theorem 1.1: “union and intersection interchange under complementation”). �
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Proposition 1.3. If A is an algebra and A1, A2, ..., An ∈ A, then
⋃n
i=1Ai and

⋂n
i=1Ai ∈ A.

Proof. This follows from property (iii) by induction for any finite n. �

Aside 1.1. Two problems arise, if we try to deal with general1 Ω:

– It is necessary to replace the third defining property of an algebra with a slightly stronger one:
(iii’) If A1, A2, . . . are a countable sequence of members of A, then ∪∞i=1Ai ∈ A.

Of course, (iii’)⇒(iii). If A satisfies (i)–(ii) and (iii’) then it is termed a σ-algebra.
– In such advanced settings, the set of all subsets (or power set) of Ω is simply too big and it isn’t

possible to construct probability distributions which can assign probabilities consistently to all
members of the power set. This is why σ-algebras are used.

The present course is not concerned with the technical details of probability but you may subse-
quently discover a need to familiarise yourself with it, depending upon the type of statistics in which
you are interested. A. N. Shiryaev’s book, “Probability”, published by Springer Verlag provides one
of many good references on the subject. J. Rosenthal’s “A First Look at Rigorous Probability”
provides a shorter introduction to the area which is very readable. The MA911 module will also
discuss probability at a rather higher level.

1.4 Probability Functions / Measures

Let Ω denote the sample space and A denote a collection of events assumed to be a σ-algebra (an
algebra will suffice if |Ω| <∞) of events that we shall consider for some random experiment.

Definition 1.1 (Probability function). A probability function P[·] is a set function with domain
A (a σ-algebra of events) and range [0,1], i.e., P : A → [0, 1], which satisfies the following axioms

(i) P[A] ≥ 0 for every A ∈ A
(ii) P[Ω] = 1

(iii) If A1, A2, . . . is a sequence of mutually exclusive events(i.e. Ai ∩Aj = ∅ for any i 6= j) in A and

if
∞⋃
i=1

Ai ∈ A, then

P

[ ∞⋃
i=1

Ai

]
=

∞∑
i=1

P[Ai]

Axioms (i) to (iii) are called Kolmogorov’s axioms or simply the axioms of probability.

Aside 1.2 (Measures). Some references refer to P[·] as a probability measure referring to the fact
that its a particular example of a class of set-functions termed measures which assign a “size” to
the sets upon which they operate. This is outside the scope of the present course, but it’s always
useful to at least be familiar with alternative terminology.

1.4.1 Properties of P[·]

A remarkably rich theory emerges from these three axioms (together, of course, with those of set
theory). Indeed, all formal probability follows as a logical consequence of these axioms. Some of
the most important simple results are summarised here. Throughout this section, assume that Ω is
our collection of possible outcomes, A is a σ-algebra over Ω and P[·] is an associated probability
distribution.

Many of these results simply demonstrate that things which we would intuitively want to be true
of probabilities do, indeed, arise as logical consequences of this simple axiomatic framework.

1 Such complex objects as R are uncountable and complicated enough to require this more sophisticated theory.
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Proposition 1.4. P[∅] = 0.

Proof. Take A1 = ∅, A2 = ∅, ....; then by axiom (iii)

P[∅] = P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P[Ai] =
∞∑
i=1

P[∅]

which, as ∀A : 0 ≤ P[A] ≤ 1 (eliminating infinite solutions), can only hold if P[∅] = 0. �

Proposition 1.5. If A1, A2, . . . , An are pairwise disjoint elements of A, corresponding to mutually
exclusive outcomes in our experiment, then

P[A1 ∪A2 ∪ . . . ∪An] =
n∑
i=1

P[Ai]

Proof. Let An+1 = ∅, An+2 = ∅, ... then the statement follows immediately from axiom (iii). �

Proposition 1.6. If A ∈ A then

P[Ā] = 1− P[A]

Proof. A∪Ā = Ω, and A∩Ā = ∅; so P[Ω] = P[A∪Ā] = P[A]+P[Ā] by proposition 1.5. But P[Ω] = 1
by axiom (ii); the result follows. �

Proposition 1.7. For any two events A,B ∈ A

P[A ∪B] = P[A] + P[B]− P[A ∩B]

Proof. A∪B = A∪(Ā∩B) and A∩Ā∩B = ∅; so P[A∪B] = P[A]+P[Ā∩B] = P[A]+P[B]−P[A∩B].
�

Proposition 1.8. If A,B ∈ A and A ⊂ B, then

P[A] ≤ P[B]

Proof. B = (B ∩ A) ∪ (B ∩ Ā), and B ∩ A = A; so B = A ∪ (B ∩ Ā), and A ∩ (B ∩ Ā) = ∅; hence
P[B] = P[A] + P[B ∩ Ā]. The statement follows by noting that P[B ∩ Ā] ≥ 0. �

Proposition 1.9 (Boole’s inequality). If A1, ..., An ∈ A, then

P[A1 ∪A2 ∪ ... ∪An] ≤ P[A1] + P[A2] + ...+ P[An].

Proof. P[A1 ∪ A2] = P[A1] + P[A2] − P[A1 ∩ A2] ≤ P[A1] + P[A2]. The proof is completed by using
mathematical induction. �

We are now ready to define arguably the most important object in probability:

Definition 1.2 (Probability Space). A probability space is the triple (Ω,A,P[·]), where Ω is
a sample space, A is a σ-algebra over Ω, and P[·] is a probability function with domain A.

Thus, a probability space is a single entity that gives us a convenient and compact way to specify
all of the components which we need to make use of probability.
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1.5 Conditional Probability and Independence

Sometimes it’s possible to observe that one event has occurred. In this situation, we wish to have
a model for the behaviour of the probability that other events compatible with B. Conditional
probability is the appropriate language.

Definition 1.3 (Conditional Probability). Let A and B be events in A of the given probability
space (Ω,A,P[·]). The conditional probability of event A given event B, denoted by P[A|B], is defined
as

P[A|B] =
P[A ∩B]

P[B]
if P[B] > 0,

and is left undefined when P[B] = 0.

Exercise 1.5.1. Consider the experiment of tossing two coins, Ω = {(H,H), (H,T ), (T,H), (T, T )},
and assume that each point is equally likely. Find

(i) the probability of two heads given a head on the first coin.
(ii) the probability of two heads given at least one head.

When speaking of conditional probabilities we are conditioning on some event B, i.e. we are assuming
that the experiment has (already) resulted in some outcome B. B, in effect, becomes our new sample
space. The following result allows us to break a probability up into smaller, perhaps more manageable
pieces.

Theorem 1.2 (Law of Total Probability). For a given probability space (Ω,A,P[·]), if B1, ..., Bn
is a collection of mutually disjoint events in A satisfying

Ω =
n⋃
j=1

Bj ,

i.e. B1, . . . , Bn partition Ω and P[Bj ] > 0, j = 1, . . . , n, then for every A ∈ A,

P[A] =
n∑
j=1

P[A ∩Bj ].

Proof. Note that A =
⋃n
j=1A ∩Bj and the A ∩Bj are mutually disjoint, hence

P[A] = P

 n⋃
j=1

A ∩Bj

 =
n∑
j=1

P[A ∩Bj ].

�

Conditional probability has a number of useful properties. The following elementary result is
surprisingly important and has some far-reaching consequences.

Theorem 1.3 (Bayes’ Formula). For a given probability space (Ω,A,P[·]), if A,B ∈ A are such
that P[A] > 0,P[B] > 0, then:

P[A|B] =
P[B|A]P[A]

P[B]

Proof.

P[A|B] =
P[A ∩B]

P[B]
=

P[B|A]P[A]

P[B]

by using both the definition of conditional probability twice (in particular, note that P[B|A] =
P[A ∩B]/P[A]). �
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Theorem 1.4 (Partition Formula). If B1, . . . , Bn ∈ A partition Ω, then for any A ∈ A:

P (A) =
n∑
i=1

P(A|Bi)P(Bi)

Proof: By the law of total probability:

P (A) =
n∑
i=1

P(A ∩Bi)

and P(A ∩Bi) = P(A|Bi)P(Bi) by definition of P(A|Bi).

Combining Bayes theorem with the partition formula provides the following useful result:

P[Bk|A] =
P[A|Bk]P[Bk]∑n
j=1 P[A|Bj ]P[Bj ]

for any partition, B1, . . . , Bn ∈ A of Ω.

Theorem 1.5 (Multiplication Rule). For a given probability space (Ω,A,P[·]), let A1, . . . , An be
events belonging to A for which P[A1, . . . , An−1] > 0, then

P[A1, A2, . . . , An] = P[A1]P[A2|A1] . . .P[An|A1 . . . An−1].

Proof. The proof follows from the definition of conditional probability by mathematical induction.�

Exercise 1.5.2. There are 5 urns, numbered 1 to 5. Each urn contains 10 balls. Urn i has i defective
balls, i = 1, . . . , 5. Consider the following experiment: First an urn is selected uniformly (i.e. each urn is
selected with the same probability) at random and then a ball is selected uniformly at random from the
selected urn. The experimenter does not know which urn was selected.

(i) What is the probability that a defective ball will be selected?
(ii) If we have already selected the ball and noted that it is defective, what is the probability that it

came from urn 5? Generalise to urn k; k = 1, . . . , 5.

Definition 1.4 (Independent Events). For a given probability space (Ω,A,P[·]), let A and B be
two events in A. Events A and B are defined to be independent iff one of the following conditions
is satisfied

(i) P[A ∩B] = P[A]P[B]
(ii) P[A|B] = P[A] if P[B] > 0

(iii) P[B|A] = P[B] if P[A] > 0.

Remark: to demonstrate the equivalence of (i) to (iii) it suffices to show that (i) implies (ii), (ii)
implies (iii), (iii) implies (i).

Exercise 1.5.3. Consider the experiment of rolling two dice. Let A = {total is odd}, B = {6 on the
first die}, C = {total is seven}.

(i) Are A and B independent?
(ii) Are A and C independent?
(iii) Are B and C independent?

Definition 1.5 (Independence of Several Events). For a given probability space (Ω,A,P[·]),
let A1, . . . , An be events in A. Events A1, . . . , An are defined to be independent iff

1. P[Ai ∩Aj ] = P[Ai]P[Aj ], i 6= j
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2. P[Ai ∩Aj ∩Ak] = P[Ai]P[Aj ]P[Ak], i 6= j, j 6= k, i 6= k
...

n. P [
⋂n
i=1Ai] =

∏n
i=1 P[Ai]

Exercise 1.5.4. Show that pairwise independence (the first condition in definition 1.5) does not imply
independence using the following events in the random experiment of rolling two unbiased dice:

(i) A1 = {odd face on first die}
(ii) A2 = {odd face on second die}
(iii) A3 = {odd total}



2. Random Variables

In statistics and other areas which deal routinely with uncertainty, it is useful to think of experiments
in which the outcome is more subtle than one of a collection of possible events occurring. In order to
deal with such experiments we do not need to depart far from the event-based probability introduced
in the previous chapter.

This chapter provides an introduction to the language of distribution theory. The principal rôle
of this chapter is to introduce some concepts and definitions that will be important throughout the
rest of the course. The notion of a random variable will be used to relate quantities of interest to
events and a distribution function will be used to give the probabilities of certain events defined in
terms of random variables.

2.1 Random Variables and cumulative distribution functions

We considered random events in the previous chapter: experimental outcomes which either do or
do not occur. In general we cannot predict whether or not a random event will or will not occur
before we observe the outcome of the associated experiment — although if we know enough about
the experiment we may be able to make good probabilistic predictions. The natural generalisation
of a random event is a random variable: an object which can take values in the set of real numbers
(rather than simply happening or not happening) for which the precise value which it takes is not
known before the experiment is observed.

The following definition may seem a little surprising if you’ve seen probability only outside of
measure-theoretic settings in the past. In particular, random variables are deterministic functions:
neither random nor variable in themselves. This definition is rather convenient; all randomness stems
from the underlying probability space and it is clear that random variables and random events are
closely related. This definition also makes it straightforward to define multiple random variables
related to a single experiment and to investigate and model the relationships between them.

Definition 2.1 (Random Variable). Given a probability space (Ω,A,P[.]), a random variable,
X, is a function with domain Ω and codomain R (the real line) (i.e. X : Ω → R).

We generally use capital letters to denote random variables and the corresponding lower case letter
to denote a realisation (or specific value) of the random variable. Some authors use the term random
variable a little more liberally and allow it to include functions with domain Ω and any codomain
whilst others refer to members of this more general class of objects as random elements.

Example 2.1. Roll 2 dice Ω = {(i, j); i, j = 1, ..., 6}. Several random variables can be defined, for
example X((i, j)) = i + j, also Y ((i, j)) = |i − j|. Both, X and Y are random variables. X can take
values 2, 3, ..., 12 and Y can take values 0, 1, ..., 5. /
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Definition 2.2 (Distribution Function). The distribution function of a random variable X,
denoted by FX(·) is defined to be the function FX : R→ [0, 1] which assigns

FX(x) = P[X ≤ x] = P[{ω : X(ω) ≤ x}]

for every x ∈ R.

The distribution function connects random variables to random events. It allows us to characterise
a random variable by talking about the probability of a class of events defined in terms of the lower
level sets of the random variable. Conveniently, this class of events is general enough that it allows
us to completely characterise the random variable as we shall see later.

Example 2.2. Toss a coin. Let X =number of heads. Then

FX(x) =


0 if x < 0
1
2 if 0 ≤ x < 1
1 if x ≥ 1.

/

Exercise 2.1.1. Consider the experiment in example 2.1. Sketch FY .

Properties of FX(·)

1. lim
x→−∞

FX(x) = 0 and lim
x→+∞

FX(x) = 1

2. FX(a) ≤ FX(b) for a < b (monotone and non-decreasing)
3. FX(·) is continuous from the right

lim
h↓0

FX(x+ h) = FX(x)

Any function F (·) with F : R → [0, 1] satisfying the above properties is a distribution function
for some random variable.

2.2 Density Functions

For two distinct classes of random variables, the distribution of values can be described more simply
by using density functions. These classes are termed ‘discrete’ and ‘continuous’.

Definition 2.3 (Discrete random variable). A random variable X is discrete if the range of
X is countable (i.e. it is finite or isomorphic to the natural numbers).

Definition 2.4 (Discrete density function). If X is a discrete random variable with distinct
values x1, x2, . . . , xn, . . ., then the discrete density function of X is defined by

fX(x) =

{
P[X = xj ] if x = xj , j = 1, 2, . . . , n, . . .

0 if x 6= xj

Remark: the xi are often called atoms, mass points or points of concentration. Other terms are
sometimes used instead of discrete density function, including probability function or probability
mass function.

Theorem 2.1. Let X be a discrete random variable. FX(·) can be obtained from fX(·) and vice
versa.
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Proof. Suppose fX(·) is given. Then

FX(x) =
∑
j:xj≤x

fX(xj).

Suppose FX(·) is given. Then

fX(xj) = FX(xj)− lim
h↓0

FX(xj − h).

�

Exercise 2.2.1. Consider the experiment of tossing two dice. Let X = {total of upturned faces} and
Y = {absolute difference of upturned faces}.

1. Give the probability function fX and sketch it.
2. Give fY .

Definition 2.5. Any function f : R→ [0, 1] is defined to be a discrete density function if for some
countable set x1, x2, . . . , xn, . . .

1. f(xj) ≥ 0 j = 1, 2, ...
2. f(x) = 0 for x 6= xj ; j = 1, 2, ...
3.
∑

j f(xj) = 1 where summation is over x1, x2, . . . , xn, . . .

Definition 2.6 (Continuous random variable). A random variable X is called continuous if
there exists a function fX(·) such that

FX(x) =

∫ x

−∞
fX(u)du for every x ∈ R.

Definition 2.7 (Probability density function of a continuous random variable). If X is a
continuous random variable, the function fX in FX(x) =

∫ x
−∞ fX(u)du is called the probability

density function of X.

Theorem 2.2. Let X be a continuous random variable. Then FX(·) can be obtained from fX(·),
and vice versa.

Proof. Suppose fX(·) is given, then

FX(x) =

∫ x

−∞
fX(u)du.

Suppose FX(·) is given, then

fX(x) =
dFX(x)

dx
.

�

Note: For discrete random variables fX(x) = P[X = x]. However, this is not true for continuous
random variables. In the continuous case:

fX(x) =
dFX(x)

dx
= lim

∆x→0

FX(x+∆x)− FX(x−∆x)

2∆x
,

hence, for sufficiently small ∆x,

fX(x)2∆x ≈ FX(x+∆x)− FX(x−∆x)

= P[x−∆x < X ≤ x+∆x].
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Definition 2.8. A function f : R→ [0,∞) is a probability density function iff

1. f(x) ≥ 0 ∀x
2.
∫ +∞
−∞ f(x)dx = 1.

Notice that the second of these requirements includes, implicitly, the existence of this integral.

2.3 Expectations and Moments

Definition 2.9 (Expectation, Mean). Let X be a random variable. The mean of X, denoted by
µX or E[X], is defined by

(i) E[X] =
∑

j xjfX(xj) if X is discrete with mass points x1, x2, . . . , xj , . . .

(ii) E[X] =
∫∞
−∞ xfX(x) dx if X is continuous with density fX(x).

Intuitively, E[X] is the centre of gravity of the unit mass that is specified by the density function.
Expectation in a formal mathematical sense does not necessarily coincide with what we would expect
in the ordinary sense of the word. It’s quite possible that the exepcted value of a random variable is
a value that the random variable can never take.

Exercise 2.3.1. Consider the experiment of rolling two dice. Let X denote the total of two dice and
Y their absolute difference. Compute E[X] and E[Y ].

Exercise 2.3.2. Let X be a continuous random variable with density

fX(x) =

{
λe−λx if 0 ≤ x <∞

0 otherwise.

Compute E[X] and FX(x).

Definition 2.10 (Variance). Let X be a random variable, and let µX = E[X]. The variance of
X, denoted by σ2

X or Var[X] is defined by

1. Var[X] =
∑

j(xj − µX)2fX(xj) if X is discrete with mass points x1, x2, . . . , xj , . . .

2. Var[X] =
∫∞
−∞(x− µX)2fX(x) dx for continuous X with density fX(x).

Variance is a measure of spread or dispersion. If the values of a random variable X tend to be
far from their mean, the variance of X will be larger than the variance of a comparable random
variable Y whose values are typically nearer to the mean. It is clear from (i) and (ii) that variance is
always non-negative (and is strictly positive for any random variable which has positive probability
of differing from its mean).

Definition 2.11 (Standard deviation). If X is a random variable, the standard deviation of
X, denoted by σX , is defined as +

√
Var[X].

Standard deviation is useful because it gives a quantification of the spread of a random variable
on the same scale as the random variable itself. Despite its convenient mathematical properties,
variance is essentially a squared distance and can be difficult to interpret.
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2.4 Expectation of a Function of a Random Variable

Definition 2.12 (Expectation of a Function of a Random Variable). Let X be a random
variable and g(·) a function g(·) : R → R. The expectation or expected value of the function g(·) of
the random variable X, denoted by E[g(X)] is defined by

1. E[g(X)] =
∑

j g(xj)fX(xj) if X is discrete with mass points x1, x2, . . . , xj , . . . and provided the
series is absolutely convergent

2. E[g(X)] =
∫∞
−∞ g(x)fX(x) dx, for continuous X with density fX(x), provided the integral exists.

If g(X) = X, then E[g(X)] = E[X] ≡ µX . If g(X) = (X−µX)2, then E[g(X)] = σ2
X . Furthermore,

as X : Ω → R and g : R → R, we can consider g ◦ X(ω) := g(X(ω)) : Ω → R to be a random
variable in its own right. That is, a real-valued function of a random variable defines a new random
variable.

Proposition 2.1 (Properties of Expectations). Expectations have a number of useful proper-
ties which are very often useful:

1. E[c] = c for a constant c
2. E[cg(X)] = cE[g(X)] for a constant c
3. E[c1g1(X) + c2g2(X)] = c1E[g1(X)] + c2E[g2(X)]
4. E[g1(X)] ≤ E[g2(X)] if g1(x) ≤ g2(x) ∀ x

The proof of these properties is left as an exercise (see lecture).

Proposition 2.2 (Variance in terms of expectations). If X is a random variable, then

Var[X] = E[(X − E(X)2)] = E[X2]− (E[X])2

Proof. See lecture. �

2.5 Two important inequality results

Theorem 2.3 (Chebyshev’s Inequality). Let X be a random variable and g(·) a non-negative
function, then

P[g(X) ≥ k] ≤ E[g(X)]

k
∀ k > 0.

Proof. If X is a continuous random variable with density fX(·), then
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E[g(X)] =

∫ +∞

−∞
g(x)fX(x)dx

=

∫
x:g(x)≥k

g(x)fX(x)dx+

∫
x:g(x)<k

g(x)fX(x)dx

≥
∫
x:g(x)≥k

g(x)fX(x)dx

≥
∫
x:g(x)≥k

kfX(x)dx

= kP[g(X) ≥ k].

Where the expression on the second line is an example of commonly-used notation indicating that
we integrate the argument of an integral over a set specified as the subscript of the integral. If
you’re more used to seeing integrals over intervals in the form

∫ b
a f(x)dx then this is only a slight

generalisation and
∫ b
a f(x)dx ≡

∫
[a,b] f(x)dx.

The result follows immediately. The discrete case is analogous (convince yourself that this is
true). �

Corollary 2.1. If X is a random variable with finite variance, σ2
X , then:

P[|X − µX | ≥ rσX ] = P[(X − µX)2 ≥ r2σ2
X ] ≤ 1

r2
.

Proof. Take g(X) = (X − µX)2 and k = r2σ2
X in theorem 2.3. �

Note, that the last statement can also be written as

P[|X − µX | ≤ rσX ] ≥ 1− 1

r2
.

Thus the probability that X falls within rσ units of µX is greater than or equal to 1 − 1
r2 . For

r = 2 one gets

P[µX − 2σX < X < µX + 2σX ] ≥ 3

4

or, for each random variable X having a finite variance, at least 3/4 of the mass of X falls within
two standard deviations of its mean. Chebyshev’s inequality gives a bound which does not depend
on the distribution of X. Despite its apparent simplicity, it is useful in a very wide range of settings,
for example, it plays an important role in proving the law of large numbers in these notes. Perhaps
even more widely used is the following result:

Theorem 2.4 (Jensen’s Inequality). For a RV X with mean E[X] and g(·) a convex continuous
function,

E[g(X)] ≥ g(E[X]).

Note, a convex function, g, is any function which lies beneath any of its chords. That is, given
points a and b, with a < b, for any λ ∈ [0, 1]:

g(a+ λ(b− a)) = g((1− λ)a+ λb) ≤ (1− λ)g(a) + λg(b).

This may alternatively be expressed in terms of continuity, and the second derivative of g, which
must satisfy:

d2g

dx2
(x) ≥ 0

everywhere where it is defined if g is convex.
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Proof. See lecture. �

2.6 Moments and Moment Generating Functions

Definition 2.13 (Moments and central moments). For a RV X, the rth moment of X is
given by

µ′r = E[Xr]

if the expectation exists. For a RV X, the rth central moment of X (the rth moment about µ′1) is
given by

µr = E[(X − µ′1)r] = E

[
r∑
i=1

(
r

i

)
(µ′1)r−iXi

]
=

r∑
i=0

(
r

i

)
[µ′1]r−iE[Xi]

where the right hand side is simply a binomial expansion. Thus the moments of a random variable
are the expectation of the powers of the random variable. Note that µ′1 = E[X] = µX , the mean of X.

The First Four Central Moments.

Zero µ1 = E[(X − µx)] = 0
Variance µ2 = E[(X − µx)2]

Skewness µ3

σ3
X

= E[(X−µx)3]
σ3
X

Kurtosis µ4

σ4
X

= E[(X−µx)4]
σ4
X

Note that all odd central moments of X about µX are 0 if the density function is symmetrical about
µX . The skewness is used to indicate whether a density is skewed to the left (value for skewness
is negative) or skewed to the right (value for skewness is positive). The kurtosis is sometimes used
to indicate that a density is more peaked (and heavier tailed) around its centre than the normal
density. The kurtosis of a normally distributed random variable (introduced next chapter) can be
shown to be 3. The normal distirbution is very widely used in statistics and is often taken as a
default assumption; it’s consequently common to compare properties of distributions with those of
the normal distribution and thus the quantity µ4

σ4
X
− 3 is known as the excess kurtosis.

The moments of a density function play an important rôle in statistics. If we believe that a
distribution must lie in a particular parametric family of distributions then it may be possible to
specify those parameters exactly if we know all (or in some cases just a subset) of the moments of
the distribution. The moment generating function gives us a function from which all the moments
can be reconstructed via differentiation.

Definition 2.14 (Moment Generating Function (MGF)). Let X be a RV with density fX(·).
We may define it’s moment generating function, m(t), as:
Discrete
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m(t) = E[etX ] =
∑
x

etxfX(x)

Continuous

m(t) = E[etX ] =

∫ ∞
−∞

etxfX(x) dx

The MGF has the property that

drm(t)

dtr

∣∣∣∣
t=0

= µ′r

The following useful result is stated without proof here. Although the proof of this result is beyond
the scope of this module (if you’re familiar with the Laplace transform then you might notice that
the moment generating function is essentially the Laplace transform of the density function and the
general argument holds) the result itself is of sufficient usefulness to justify its inclusion here.

Theorem 2.5 (Equality of distributions). Let X and Y be two random variables with densities
fX(·) and fY (·), respectively. Suppose that mX(t) and mY (t) both exist and are equal for all t. Then
the two distribution functions FX(·) and FY (·) are equal.

Exercise 2.6.1. Find the MGF of the binomial distribution

P(X = x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

Use it to show that the mean is np and the variance is np(1− p)

2.7 Other Distribution Summaries

Many other quantities are used as “summary statistics”, numbers which provide as much information
as possible about a distribution in as compact a form as possible. This section lists a few of the
more common such statistics:

Definition 2.15 (Quantile). For a RV X, the qth quantile ηq is the smallest number η satisfying

FX(η) ≥ q

Certain quantiles are often used in statistics and are given particular names: Median η0.5, a measure
of the location of the distribution’s centre. Lower Quartile η0.25 and Upper Quartile η0.75 can
be combined to give a measure of the spread of the distribution termed the Interquartile Range
η0.75 − η0.25 and together with the median provide some idea of the skewness of the distribution.

Another measure of the centre of a distribution is its mode: the point at which fX(·) obtains its
maximum.



3. Special Univariate Distributions

This chapter provides an overview of a number of parametric families of univariate density functions.
These distributions are often used to model particular physical systems and have standard names.
We consider discrete distributions and continuous distributions.

You might view this chapter as a taxonomy of useful building blocks from which sophisticated
statistical models may be built. In addition to their rôle in statistical models, these distributions will
arise directly in the probabilistic description of methods and situations of interest to the statistician.

3.1 Discrete Distributions

3.1.1 Discrete Uniform Distribution

f(x) = U (x; {1, . . . , N}) =

{
1
N x = 1, 2, 3, . . . , N
0 otherwise

E[X] =
N + 1

2
Var[X] =

N2 − 1

12

2 4 6 8 10

x

f(
x) 1/10

Discrete Uniform(10)

The discrete uniform distribution is an appropriate model when there are finitely many pos-
sible outcomes which are equally probable. If X has a discrete uniform distribution, we write
X ∼ U{1, . . . , N}.

3.1.2 Bernoulli Distribution

f(x) = Ber (x; p) =

{
px(1− p)1−x x = 0, 1 0 ≤ p ≤ 1

0 otherwise
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E[X] = p Var[X] = p(1− p) = pq

0.0 0.2 0.4 0.6 0.8 1.0

x

f(
x)

0.4

0.6

Bernoulli(0.4)

The Bernoulli distribution can be used to model random experiments with 2 possible outcomes
(usually termed success and failure). Written: X ∼ Ber (p).

3.1.3 Binomial Distribution

f(x) = Bin (x;n, p) =

{ (
n
x

)
px(1− p)n−x x = 0, 1, . . . , n 0 ≤ p ≤ 1

0 otherwise

E[X] = np Var[X] = np(1− p)
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Bin(20, 0.2)

The binomial distribution corresponds to a model for the number of “successes” which occur when
n independent Bernoulli random variables of probability p are generated. It also corresponds to
the distribution of the number of black balls drawn from an urn which contains balls of which a
proportion p are black if n balls are sampled with replacement (i.e. balls are removed from the
urn one at a time, inspected, and returned before another ball is drawn) from that urn. Written:
X ∼ Bin (n, p).

3.1.4 Hypergeometric Distribution

f(x; a, b, n) =


(
a
x

)(
b

n−x
)(

a+b
n

) x = max(0, n− b), 1, . . . ,min(n, a)

0 otherwise

E[X] = na/(a+ b) Var[X] =
nab

(a+ b)2

a+ b− n
a+ b− 1
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Hypergeometric(10, 5, 5)

The hypergeometric distribution corresponds to the distribution of the number of black balls
which are drawn from an urn which contains a + b balls of which a are black if they are sampled
without replacement (i.e. n balls are removed from the urn and not returned).

3.1.5 Poisson Distribution

f(x;λ) = Poi (x;λ) =

{
e−λλx

x! x = 0, 1, . . . λ > 0
0 otherwise

E[X] = Var[X] = λ
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Poisson(2)

Exercise 3.1.1. Prove that E[X] = Var[X] = λ using the MGF of the Poisson Distribution

Uses of the Poisson Distribution

– For large n, and small p, X ∼ Bin(n, p) is approximately distributed as Poi (np). this is sometimes
termed the “law of small numbers”.

– A Poisson Process with rate λ per unit time is such that
1. X, the number of occurrences of an event in any given time interval of length t is Poi (λt).
2. The number of events in non-overlapping time intervals are independent random variables (see

later).

Exercise 3.1.2. The number X of insect larvæfound on a cm2 on a petri plate is assumed to follow a
Poisson distribution with λ = 3. Find

– P (X ≤ 3)
– P (X > 1)
– P (2 ≤ X ≤ 4)
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– F (4.2)

Is the assumption of a Poisson distribution likely to be reasonable for the entire plate?

3.1.6 Geometric and Negative Binomial Distribution

f(x; r, p) = NB (x; r, p) =

{ (
x+r−1
r−1

)
pr(1− p)x x = 0, 1, . . .

0 otherwise

where 0 ≤ p ≤ 1, q = 1− p

E[X] =
rq

p
Var[X] =

rq

p2
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NB(1, 0.4) = Geometric(0.4)

This, negative binomial distribution, corresponds to that of the number of failures which occur
before the rth success occurs in a sequence of independent Bernoulli trials with common probability
p. In the case r = 1, the distribution is sometimes referred to as a geometric distribution and
corresponds to the distribution of the number of failures which occur before the first success.

Exercise 3.1.3. Let X ∼ NB (r, p). Find its MGF and use it to derive E[X] and Var[X].

3.2 Continuous Distributions

3.2.1 Uniform Distribution

f(x; a, b) = U (x; [a, b]) =

{
1
b−a a ≤ x ≤ b
0 otherwise

E[X] =
a+ b

2
Var[X] =

(b− a)2

12
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If any outcome within some region of the continuum is equally probable then a uniform distri-
bution is appropriate: it corresponds to assigning probabilities to sub-intervals which depend only
upon their length. Written X ∼ U[a, b].

3.2.2 Normal/Gaussian Distribution

f(x;µ, σ) = N
(
x;µ, σ2

)
=

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
x ∈ R, µ ∈ R, σ > 0

E[X] = µ Var[X] = σ2
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The normal distribution is ubiquitous throughout statistics (and many other fields). In some
instances it arises as a consequence of physical considerations; in others it can be justified by math-
ematical arguments. It arises as a consequence of theoretical arguments such as the central limit
theorem.

Standard Normal Distribution A standard normal random variable is simply a special case
of a normal random variable: X ∼ N (0, 1), which has distribution function Φ(x) = F (x; 0, 1).

For Z ∼ N
(
µ, σ2

)
:

P[a < Z < b] = Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
This is useful because statistical tables and approximations for the standard normal random

variable are readily available and via this representation it is possible to deal with any normal
random variable by representing it as a rescaled and shifted standard normal random variable.

Lognormal Distribution If log(X) ∼ N
(
µ, σ2

)
, then

f(x;µ, σ2) = logN
(
x;µ, σ2

) 1

(2π)
1
2σx

exp

{
− 1

2σ2
(log x− µ)2

}
, x > 0, µ ∈ R, σ > 0
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The lognormal distribution is widely used. It is particularly prevalent in settings in which one
knows that a random variable must be positive and would expect behaviour on a logarithmic scale
which can be adequately modelled by a normal random variable.

Exercise 3.2.1. Let X ∼ N (0, 1). Show that

β2 =
µ4

σ4
= 3

(i.e. the kurtosis of a standard normal is 3).

3.2.3 Exponential and Gamma Distribution

f(x; r, λ) = Gamma (x; r, λ) =

{
λ

Γ (r)(λx)r−1e−λx for 0 ≤ x <∞, r > 0, λ > 0

0 otherwise

E[X] =
r

λ
Var[X] =

r

λ2
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Gamma(1, 1) = Exp(1)
Gamma(2, 1)
Gamma(3, 1)

The exponential distribution of rate λ has density Exp (x;λ) = Gamma (x; 1, λ). It corresponds
to a “memoryless distribution” and has connections with Poisson processes. The general gamma
distribution can be interpreted, for integer r, as the distribution of the sum of r exponential random
variables.

3.2.4 Beta Distribution

f(x; a, b) = Beta (x; a, b) =

{ 1
B(a,b)x

a−1(1− x)b−1 for 0 ≤ x < 1, a > 0, b > 0

0 otherwise

E[X] =
a

a+ b
Var[X] =

ab

(a+ b+ 1)(a+ b)2
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The beta distribution provides a flexible parametric family of distributions over the unit interval.
These can be asymmetric (consider the mean) and may have mass concentrated around the mean
(when a and b are large) or pushed towards the edges of the interval (when a and b are both small).

3.3 Exercises

Exercise 3.3.1. Consider the shopping preferences of a person buying a bar of chocolate. Suppose on
the first purchase they are equally likely to choose a Mars or a Yorkie bar. They like a bit of variety, so
for each subsequent purchase the probability that they will switch brands is 2

3 whilst the probability of
purchasing the same brand as the preceding purchase is 1

3 .

1. What is the probability that the shopper buys a Mars bar on their first and second purchases and a
Yorkie on their third and fourth purchases?

2. Suppose now that the initial probability of purchasing a Mars bar is 3
4 . What is the probability that

the shopper’s second purchase will be a Yorkie bar?

Exercise 3.3.2. In a certain factory, four-packs of fruit-flavoured yoghurt are packaged on two produc-
tion lines. Records show that a small percentage of the yoghurt packs are not packaged properly for sale:
1% from the first production line and 2.5% from the second.

1. If the percentages of total output that have come from the production lines are 55% from the first
and 45% from the second, what is the probability that a yoghurt pack chosen at random from the
whole output is faulty?

2. If we find a box which is faulty, what is the probability that it came from the second production line?

Exercise 3.3.3. A firm is running 500 vending machines of canned drinks in a town. Every vending
machine (independently of the other vending machines) is defective within one week with probability 1

50 .
In that case the firm has to send out a mechanic. In order to decide whether or not a mechanic should
be employed permanently it is of interest to know the probability that the number of defective vending
machines X is between 5 and 15 during a week.

1. What is the distribution of X? Determine also the expected value and the variance of X.
2. Determine Pr[5 ≤ X ≤ 15] approximately with the Poisson distribution. Fix the parameter λ such

that the expected value of the Poisson distribution corresponds to the expected value of X.
3. Give a lower bound of Pr[5 ≤ X ≤ 15] by using Chebyshev’s inequality.

Exercise 3.3.4. A mutual fund has an annual rate of return that is assumed to be normally distributed
with mean 10% and standard deviation 4%.

1. Find the probability that the one-year return is negative.
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2. Find the probability that the one-year return exceeds 15%.
3. If the managers of the mutual fund modify the composition of its portfolio, they can raise its mean

annual return to 12% but will also raise the standard deviation to 5%. What would the probabilities in
parts (a) and (b) be for the modified portfolio? Would you advise the managers to make the change?



4. Joint and Conditional Distributions

In this chapter we review the concept of k-dimensional distribution functions (for k > 1), conditional
distributions, and independence of random variables.

4.1 Joint Distributions

Definition 4.1 (Joint Distribution Function). For random variables X1, . . . Xk all defined on
the same (Ω,A,P[.]), the function F : Rk → [0, 1]

FX1,...,Xk(x1, . . . , xk) = P[X1 ≤ x1; . . . ;Xk ≤ xk] ∀(x1, . . . , xk)

is called the joint distribution function.

Definition 4.2 (Marginal Distribution Function). For FX1,...,Xk and Xi1, . . . , Xin a strict sub-
set of X1, . . . , Xk, the function FXi1,...Xin is called a marginal distribution function.

Definition 4.3 (Joint Discrete Density Function). For a k-dimensional discrete random vari-
able (X1, . . . Xk), the function

fX1,...,Xk(x1, . . . , xk) = P[X1 = x1; . . . ;Xk = xk] ∀(x1, . . . , xk)

is called the joint discrete density function, joint density function, or joint probability function.

Definition 4.4 (Marginal Discrete Density Function). For the joint discrete density function
fX1,...,Xk and Xi1, . . . , Xin a strict subset of X1, . . . , Xk, the function fXi1,...Xin is called a marginal
discrete density function.

Given a collection of random variables, their joint distribution encodes information about the
full set of random variables simultaneously. If we are interested in only a subset of a collection of
random variables, then we can make use of the marginal distribution of that subset to consider the
properties of interest in a compact way.

Exercise 4.1.1. Consider the tossing of 3 different coins. Let X1: number of heads on the first and
second coin and X2: number of heads on the second and third coin.

– What is the joint density function of X1 and X2? Present it in a table.
– Find

– F (0.4, 1.3)
– F (0, 0)
– F (1.4, 2.1)
– F (−1, 2)
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– P (X1 = 1, X2 ≥ 1)

Definition 4.5 (Joint Continuous Density Function). For a k-dimensional random variable
(X1, . . . , Xk), the function fX1,...,Xk(x1, . . . , xk) ≥ 0 such that

FX1,...,Xk(x1, . . . , xk) =

∫ xk

−∞
· · ·
∫ x1

−∞
fX1,...,Xk(u1, . . . , uk) du1 . . . duk

for all (x1, . . . , xk) is called a joint probability density function.

Definition 4.6 (Marginal Density Function). For the joint continuous density function fX1,...,Xk

and Xi1, . . . , Xin a strict subset of X1, . . . , Xk, the function fXi1,...,Xin is called a marginal density
function.

Exercise 4.1.2. A random variable (X1, X2) has joint density

f(x1, x2) =

{
1
8(6−X1 −X2) for 0 ≤ X1 ≤ 2, 2 ≤ X2 ≤ 4

0 otherwise

– Show that f is a density function
– Find

1. F(1, 3)
2. F(0, 1)
3. F(3, 5)

Note that multivariate distribution functions and densities are exactly analogous to their univari-
ate equivalents. Distribution functions now correspond to the probability that all elements of a vec-
tor are inferior to their argument whilst densities are integrated over areas/volumes/hypervolumes
rather than intervals but nothing fundamental has changed.

4.2 Special Multivariate Distributions

There are many ways to construct multivariate distributions and a great many named multivariate
distributions exist. This section provides a brief summary of a small number of the most ubiquitous
multivariate distributions.

4.2.1 Multinomial Distribution

The multivariate distribution is a generalisation of the binomial distribution. It models the case of
iidrepeated trials with k + 1 distinct possible outcomes for each trial:

fX1,...,Xk(x1, . . . , xk) = Mult (x;n, p1, . . . , pk+1) =
n!∏k+1
i=1 xi!

k+1∏
i=1

pxii (4.1)

where xi = 0, . . . , n and
∑k+1

i=1 xi = n. (n is fixed, so the value of xk+1 is determined by values of
x1, . . . , xk).

If one has n iid trials, each of which produces outcome i with probability pi for any i ∈ {1, . . . , k+
1} then the k + 1-dimensional random vector, x = x1, . . . , xk+1, whose ith element corresponds to
the number of times that outcome i was observed has a multinomial distribution.

Note that the ith element of X, Xi, has a Bin (n, pi) marginal distribution.
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4.2.2 Bivariate Normal Distribution

The normal distribution can be straightforwardly extended to a bivariate random variable by con-
sidering to random variables which are correlated and which each is marginally normal:

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]}
for −∞ < x1, x2, µ1, µ2 <∞, σ1, σ2 > 0,−1 < ρ < 1.

– ρ is the correlation coefficient
– for ρ = 0 the bivariate normal density is the product of two univariate normal densities: this

corresponds to X1 and X2 being independent Normal random variables.

Extension to Multivariate Normal Distribution
In fact, it’s straightforward to extend the normal distribution to vectors or arbitrary length, the
multivariate normal distribution has density:

f(x;µ,Σ) = N (x;µ,Σ) =

(
1√
2π

)r
|Σ|−

1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where

x =

x1
...
xr

 , µ =

µ1
...
µr

 , Σ = E
[
(X − µ)(X − µ)T

]

Note that x is a vector; it has mean µ which is itself a vector and Σ is the variance-covariance
matrix. If x is k-dimensional then Σ is a k × k matrix.

The multivariate normal distribution is very important throughout statistics, probability and
related areas. It has a number of appealing properties, including the fact that its marginal and
conditional (see section 4.3) distributions are themselves all normal.

4.3 Conditional Distributions and Densities

Given several random variables how much information does knowing one provide about the others?
The notion of conditional probability provides an explicit answer to this question.

Definition 4.7 (Conditional Discrete Density Function). For discrete random variables with
X and Y with probability mass points x1, x2, . . . , xn and y1, y2, . . . , yn,

fY |X(yj |xi) =
P[X = xi;Y = yj ]

P[X = xi]
= P[Y = yj |X = xi]

is called the conditional discrete density function of Y given X = x.

Definition 4.8 (Conditional Discrete Distribution). For jointly discrete random variables X
and Y ,

FY |X(y|x) = P[Y ≤ y|X = x] =
∑
j:yj≤y

fY |X(yj |x)

is called the conditional discrete distribution of Y given X = x.
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Exercise 4.3.1. Let Y1 and Y2 be two random variables with joint density

0 1 2

0 q3 pq2 0
1 pq2 pq p2q
2 0 p2q p3

– Find the marginal densities of Y1 and Y2

– Find the conditional density function of y2 given y1

– Find
1. E[Y1 − Y2]
2. E[Y1 + Y2]
3. E[Y1]

Definition 4.9 (Conditional Probability Density Function). For continuous random variables
X and Y with joint probability density function fX,Y (x, y),

fY |X(y|x) =
fX,Y (x, y)

fX(x)
, if fX(x) > 0

where fX(x) is the marginal density of X.
Conditional Distribution For jointly continuous random variables X and Y ,

FY |X(y|x) =

∫ y

−∞
fY |X(z|x) dz ∀x such that fX(x) > 0.

4.4 Conditional Expectation

We can also ask what the expected behaviour of one random variable is, given knowledge of the
value of a second random variable and this gives rise to the idea of conditional expectation.

Definition 4.10 (Conditional Expectation). The conditional expectation in discrete and
continuous cases corresponds to an expectation with respect to the appropriate conditional proba-
bility distribution:

Discrete

E[Y |X = x] =
∑
all y

yPY |X(Y = y|X = x)

Continuous

E[Y |X = x] =

∫ ∞
−∞

yfY |X(Y |X = x) dy.

Exercise 4.4.1. A random variable (X1, X2) has joint density

f(x1, x2) =

{
1
8(6−X1 −X2) for 0 ≤ X1 ≤ 2, 2 ≤ X2 ≤ 4

0 otherwise

– Find fX1|X2
and fX2|X1

– Determine FX1|X2
and FX2|X1

– Find E[X1|X2 = x2]
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Note that before X is known to take the value x, E[Y |X] is itself a random variable being
a function of the random variable X. We might be interested in the distribution of the random
variable E[Y |X], and comparing it with the unconditional expectation E[X1]. The following is an
important result

Theorem 4.1 (Tower property of conditional expectation). For any two random variables
X1 and X2

E[E[X1|X2]] = E[X1]

Exercise 4.4.2. Prove theorem 4.1 for continuous random variables X1 and X2

Exercise 4.4.3. Suppose that the random variable X has a uniform distribution, X ∼ U[0, 1], and
that, once X = x has been observed, the conditional distribution of Y is [Y |X = x] ∼ U[x, 1]. Find
E[Y |x] and hence, or otherwise, show that E[Y ] = 3/4.

Exercise 4.4.4. Suppose that Θ ∼ U[0, 1] and (X|Θ) ∼ Bin (2, Θ).
Find E[X|Θ] and hence or otherwise show that E[X] = 1.

4.5 Conditional Expectations of Functions of random variables

By extending the theorem on marginal expectations we can relate the conditional and marginal
expectations of functions of random variables (in particular, their variances).

Theorem 4.2 (Marginal expectation of a transformed Random Variables). For any ran-
dom variables X1 and X2, and for any function h(·),

E
[
E[h(X1)|X2]

]
= E[h(X1)]. (4.2)

Exercise 4.5.1. Prove theorem 4.2 for discrete random variables X1 and X2.

Theorem 4.3 (Marginal variance). For any random variables X1 and X2,

Var(X1) = E
[
Var(X1|X2)

]
+ Var

(
E[X1|X2]

)
. (4.3)

Interpretation

“marginal variance = expectation of conditional variance + variance of conditional expectation”.
So: The uncertainty involved in predicting the value x1 taken by a random variable X1 can
be decomposed into two parts. One component is the unavoidable uncertainty due to random
variation in X1, but the other can be reduced by observing quantities (here the value x2 of X2)
related to X1.

Exercise 4.5.2. Prove theorem 4.3 for continuous random variables X1 and X2.
Expand E

[
Var(X1|X2)

]
and Var

(
E[X1|X2]

)
. Hence show that Var(X1) = E

[
Var(X1|X2)

]
+

Var
(
E[X1|X2]

)
.

Exercise 4.5.3. Continuing Exercise 4.4.4, in which Θ ∼ U[0, 1], (X|Θ) ∼ Bin (2, Θ), and E[X|Θ] =
2Θ, find Var

(
E[X|Θ]

)
and E

[
Var(X|Θ)

]
. Hence or otherwise show that Var[X] = 2/3, and comment

on the effect on the uncertainty in X of observing Θ.



38 4. Joint and Conditional Distributions

4.6 Independence of Random Variables

Whilst the previous sections have been concerned with the information that one random variable
carries about another, it would seem that there must be pairs of random variables which each provide
no information whatsoever about the other. It is, for example, difficult to imagine that the value
obtain when a die is rolled in Coventry will tell us much about the outcome of a coin toss taking
place at the same time in Lancaster.

There are two equivalent statements of a property termed stochastic independence which capture
precisely this idea. The following two definitions are equivalent for both discrete and continuous
random variables.

Definition 4.11 (Stochastic Independence). Definition 1 Random variables X1, X2, . . . , Xn

are stochastically independent iff

FX1,...,Xn(x1, . . . , xk) =
n∏
i=1

FXi(xi)

Definition 2 Random variables X1, X2, . . . , Xn are stochastically independent iff

fX1,...,Xn(x1, . . . , xk) =
n∏
i=1

fXi(xi)

If X1 and X2 are independent then their conditional densities are equal to their marginal densities

Exercise 4.6.1. – Show that for the bivariate normal distribution

ρ = 0⇒ f(x1, x2) = fX1(x1)fX2(x2)

– Consider the two-dimensional exponential distribution with distribution function

F (x1, x2) = 1− e−x1 − e−x2 + e−x1−x2−ρx1x2 , x1, x2 > 0

Under what condition are X1 and X2 independent? What are the marginal distributions Fx1 and Fx2

under independence?

4.7 Covariance and Correlation

Having established that sometimes one random variable does convey information about another and
in other cases knowing the value of a random variable tells us nothing useful about another random
variable it is useful to have mechanisms for characterising the relationship between pairs (or larger
groups) of random variables.

Definition 4.12 (Covariance and Correlation). Covariance: For random variables X and Y
defined on the same probability space

Cov[X,Y ] = E [(X − µX)(Y − µY )]

= E[XY ]− µXµY

Correlation: For random variables X and Y defined on the same probability space

ρ[X,Y ] =
Cov[X,Y ]

σXσY
=

Cov[X,Y ]√
Var[X]Var[Y ]

provided that σX > 0 and σY > 0.
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Exercise 4.7.1. Let

f(x1, x2) =

{
X1 +X2 for 0 < x1, x2 < 1,

0 otherwise

– Show that X1 and X2 are dependent
– Find Cov[X1, X2] and ρ[X1, X2]

The following theorem is really a particular example of a result from analysis which finds rather
wide application:

Theorem 4.4 (Cauchy-Schwarz Inequality). Let X and Y have finite second moments. Then

(E[XY ])2 = |E[XY ]|2 ≤ E[X2]E[Y 2]

with equality if and only if P[Y = cX] = 1 for some constant c.

Exercise 4.7.2. By considering E
(
(tX − Y )2

)
, or otherwise, prove the Cauchy Schwarz inequality.

Hence or otherwise prove that the correlation ρX,Y between X and Y satisfies |ρX,Y | ≤ 1. Under what
circumstances does ρX,Y = 1?

4.8 Sums of Random Variables

It’s very often necessary to combine random variables in various ways, in particular by summing
them or taking sample averages. It is possible to make a number of useful statements about the
sums of random variables, in particular about their expectation and variance:

For random variables X1, . . . , Xn, Y1, . . . , Ym and constants a1, . . . , an, b1, . . . , bm

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2
∑
i

∑
j<i

Cov [Xi, Xj ]

Cov

 n∑
i=1

aiXi

M∑
j=1

bjYj

 =

n∑
i=1

m∑
j=1

aibjCov[Xi, Yj ]

Exercise 4.8.1. Let X1, . . . , Xn be independent and identically distributed random variables with mean
µ and variance σ2. Let

Xn =
1

n

n∑
i=1

Xi.

Derive E
[
Xn

]
and Var

[
Xn

]
.

4.9 Transformation of Random Variables: Y = g(X)

Theorem 4.5 (Distribution of a Function of a Random Variable). Let X be a random vari-
able and Y = g(X) where g is injective (i.e. it maps at most one x to any value y). Then

fY (y) = fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
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given that (g−1(y))′ exists and (g−1(y))′ > 0 ∀ y or (g−1(y))′ < 0 ∀ y. If g is not bijective (one-
to-one) there may be values of y for which there exists no x such that y = g(x). Such points clearly
have density zero.

When the conditions of this theorem are not satisfied it is necessary to be a little more careful.
The most general approach for finding the density of a transformed random variable is to explicitly
construct the distribution function of the transformed random variable and then to use the stan-
dard approach to turn the distribution function into a density (this approach is discussed in Larry
Wasserstein’s “All of Statistics”).

Exercise 4.9.1. Let X be distributed exponentially with parameter α, that is

fX(x) =
αe−αx x ≥ 0

0 x < 0

Find the density function of

1. Y = g(X) with g(X) =

{
0 for x < 0

1− e−αx for x ≥ 0

2. Y = X
1
β , β > 0

3. Y = g(X) with g(X) =


0 for x < 0
x for 0 ≤ x ≤ 1
1 for x > 1

Theorem 4.6 (Probability Integral Transformation). If X is a random variable with contin-
uous FX(x), then U = FX(X) is uniformly distributed over the interval (0, 1).
Conversely if U is uniform over (0, 1), then X = F−1

X (U) has distribution function FX .

Exercise 4.9.2. Suppose that you wish to generate two independent values from a distribution whose
density function is

f(x) = x+
1

2
for 0 < x < 1.

Show how such values can be obtained from uniform [0, 1] random variables. Given the following values
generated by a uniform pseudo-random number generator over the range [0, 1]

x1 = 0.25, x2 = 0.46

what values would your method provide as samples of the desired type?

4.10 Moment-Generating-Function Technique

The following technique is but one example of a situation in which the moment generating function
proves invaluable. It’s very often much simpler to deal with the moment generating function of the
transformation of a random variable than to deal explicitly with the function itself and sums of
random variables can be dealt with especially easy via the moment generating function:

Function of a Variable. For Y = g(X) compute

mY (t) = E[etY ] = E[etg(X)]

If the result is the MGF of a known distribution then it will follow that Y has that distribution
(recall from Theorem 2.5 that random variables with equivalent moment generating functions have
the same distributions).
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Sums of Independent random variables. For Y =
∑

iXi, where the Xi are independent random
variables for which the MGF exists ∀ − h < t < h, h > 0

mY (t) = E[e
∑
i tXi ] =

∏
i

mXi(t) for − h < t < h

Thus
∏
imXi(t) may be used to identify the distribution of Y as above.

Exercise 4.10.1. Let Xi, i = 1, . . . , n be independent Poisson random variables with parameter λi.
Find the distribution of

∑
iXi using the MGF technique.

4.11 Exercises

Exercise 4.11.1. A small internet cafe has five computers available for use. For i = 1, . . . , 5, let pi
denote the probability that exactly i computers will be in use on any Tuesday evening at 8pm. Suppose
p0 = 0.05, p1 = 0.10, p2 = 0.20, p3 = 0.30, p4 = 0.25, and p5 = 0.10. Let X and Y denote the number
of computers that will be in use on two independent Tuesday evenings. Determine

1. the joint density of X and Y ,
2. P[X = Y ],
3. P[X > Y ].

Exercise 4.11.2. Let Y be the rate (calls per hour) at which calls are made to a customer helpline.
Let X be the number of calls during a two-hour period and suppose

f(x, y) =
(2y)x

x! e−3y if y > 0 and x = 0, 1, . . . ,
0 otherwise.

1. Verify that f is a joint density function.
2. Find P[X = 0].

Exercise 4.11.3. Consider a set of medium-quality bonds, rated according to Standard & Poor’s bond-
rating scheme, where in terms of risk B > Bb > Bbb. If X is the bond rating and Y is the bond yield
(%), suppose the joint density of X and Y is as follows

fX,Y (x, y) 1 (Bbb) 2 (Bb) 3 (B)

8.5 0.26 0.10 0.00
11.5 0.04 0.28 0.04
17.5 0.00 0.02 0.26

1. Find fX(x) and fY (y).
2. Find E(X) and E(Y ).
3. Are the bond rating and bond yield independent?
4. Find Cov(X,Y ) and ρ(X,Y ).
5. Find E[Y |X = 1].

Exercise 4.11.4. Suppose that the numbers X1 and X2 of male and female piglets in a litter follow
independent Poisson distributions with means λ1 & λ2 respectively. Find the joint probability function.

1. Let N denote the total number of piglets in a litter. Now assume the model N ∼ Poi (λ) and
(X1|N) ∼ Bin (N, θ). Again find the joint probability function.

2. Verify that the two models above give identical fitted values, and are therefore in practice indistin-
guishable.
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Exercise 4.11.5. Let Z denote the rate at which customers are served at a certain bank (customers
per minute). Assume that Z has the density function

f(z) =

{
5e−5z for z > 0,

0 otherwise.

1. Find the density function of the average waiting time T = 1
Z .

2. Find P[T > t] for t > 0. Hence find P[T > 5] and P[T > 10].

Exercise 4.11.6. Suppose that the random variables X and Y have a continuous joint distribution,
with pdf f(x, y), means µX & µY respectively, variances σ2

X & σ2
Y respectively, and correlation ρ.

Suppose also that

E[Y |x] = β0 + β1x

where β0 and β1 are constants.
Show that

1.
∫∞
−∞ yf(x, y)dy = (β0 + β1x)fX(x),

2. µY = β0 + β1µX , and
3. ρ σXσY + µXµY = β0µX + β1(σ2

X + µ2
X).

(Hint: use the fact that E[XY ] = E[E[XY |X]]).
4. Hence or otherwise express β0 and β1 in terms of µX , µY , σX , σY & ρ.



5. Inference

As noted in Chapter 3, probability theory provides the basis for statistical inference. Assuming a
probability model for a population we can infer characteristics of that population from a random
sample taken from it.

5.1 Sample Statistics

Suppose we select a sample of size n from a population of size N . For each i in {1, . . . , n}, let
Xi be a random variable denoting the outcome of the ith observation of a variable of interest. For
example, Xi might be the height of the ith person sampled. Under the assumptions of simple random
sampling, the Xi are independent and identically distributed (iid).

Therefore, if the distribution of a single unit sampled from the population can be characterised
by a distribution with density function f , the marginal density function of each Xi is also f and
their joint density function g is a simple product of their marginal densities:

g(x1, x2, . . . , xn) = f(x1)f(x2) . . . f(xn)

In order to make inferences about a population parameter, we use sample data to form an estimate
of the population parameter. We calculate our estimate using an estimator or sample statistic, which
is a function of the Xi. We saw examples of sample statistics in the first lecture, for example the
sample mean

X =
1

n

n∑
i=1

Xi

where n is the size of the sample is an estimator of the population mean, e.g. for discrete X

µX =
N∑
j=1

xjP[X = xj ]

where N is the number of distinct values which it is possible for an Xi to take.

5.2 Sampling Distributions

Since an estimator θ̂ is a function of random variables, it follows that θ̂ is itself a random variable
and possesses its own distribution. The probability distribution of an estimator itself is called a
sampling distribution. Note that the interpretation of this distribution is important and slightly
subtle. The original sample of random variables produces a single value for an estimator; any other
sample would also produce a value for the estimator. The sampling distribution of the estimator
describes the distribution of these values.
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Proposition 5.1 (Distribution of the sample mean). Let X denote the sample mean of a ran-
dom sample of size n from a normal distribution with mean µ and variance σ2. Then

X ∼ N

(
µ,
σ2

n

)
Proof.

mX(t) = E
[
etX
]

= E
[
exp

{
t
∑
Xi

n

}]
= E

[∏
i

exp

{
tXi

n

}]
=
∏
i

E
[
exp

{
tXi

n

}]

=
∏
i

mXi

(
t

n

)
=
∏
i

exp

{
µt

n
+

1

2

(
σt

n

)2
}

= exp

{
µt+

1
2(σt)2

n

}

which is the MGF of a normal distribution with mean µ and variance σ2

n . The result follows from
theorem 2.5. �

Exercise 5.2.1. Let X denote the number of miles per gallon achieved by cars of a particular model.
Suppose that X ∼ N

(
20, 22

)
. What is the probability that for a random sample of 25 cars, the average

miles per gallon will be greater than 21?

The following distributional result is a simple example of a Central Limit Theorem, one of the
most important classes of theorem to feature in statistics.

Theorem 5.1 (Central Limit Theorem). Let f be a density function with mean µ and finite
variance σ2. Let X be the sample mean of a random sample of size n from f and let

Zn =
X − E

[
X
]√

Var
[
X
] =

X − µ
σ√
n

.

Then the distribution of Zn approaches the standard normal distribution as n → ∞. This is often

written as: Zn
d−→ N (0, 1) with

d−→ denoting convergence in distribution.

Proof (for distributions for which MGF exists).

mzn(t) = E
[
etzn

]
= E

[
exp

{
t(X − µ)

σ√
n

}]

= E

[
exp

{
t

n

n∑
i=1

Xi − µ
σ√
n

}]
= E

[
n∏
i=1

exp

{
t

n

Xi − µ
σ√
n

}]

=

n∏
i=1

E

[
exp

{
t

n

Xi − µ
σ√
n

}]
=

n∏
i=1

E
[
exp

{
t√
n

Xi − µ
σ

}]

=

n∏
i=1

E
[
exp

{
t√
n
Yi

}]
where Yi =

Xi − µ
σ

=

n∏
i=1

mYi

(
t√
n

)
=

n∏
i=1

mY

(
t√
n

)
since Yi are iid.

=

[
mY

(
t√
n

)]n
.
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We may write

mY

(
t√
n

)
= 1 +

t√
n
m′Y (0) +

(
t√
n

)2

2!
m′′Y (0) + . . .

= 1 +
1

n

(
1

2
t2m′′Y (0) +

1

3!
√
n
t3m′′′Y (0) + . . .

)
since m′Y (0) = 0

=: 1 +
un
n

where the final equality defines un. Thus:

mZn =
[
1 +

un
n

]n
.

Now if limn→∞ an = b

lim
n→∞

(
1 +

an
n

)n
= eb

and

lim
n→∞

un =
t2

2

so

lim
n→∞

mzn(t) = lim
n→∞

[
1 +

un
n

]n
= e

1
2
t2

which can be recognised as the MGF of a standard normal. �

Thus, if the sample size is “large enough”, the sample mean (not the sample! just having lots
of samples from a distribution doesn’t change the distribution itself) can be assumed to follow a
normal distribution regardless of the population distribution. In practice, this assumption is often
taken to be valid for a sample size n > 30 (although the size of sample required for it to be a good
approximation depends to some extent upon the actual distribution of the sample).

Corollary 5.1. If X1, . . . , Xn is a random sample from a density function f with mean µ and
variance σ2 <∞, then the distribution of

Zn =
nX − nµ

n
(

σ√
n

) =

∑n
i=1Xi − nµ√

nσ

approaches the standard normal distribution as n→∞.

Exercise 5.2.2. Suppose a fair coin is tossed 900 times. Let Xi, i = 1, . . . , 900 denote a RV that takes
the value 1 if the ith outcome is a head and 0 otherwise, so that E(Xi) = 1

2 and Var(Xi) = 1
4 . What is

the probability of obtaining more than 495 heads?

The Chi-Squared Distribution

The chi-squared distribution is a special case of the gamma distribution. We shall see that, up to a
scale factor, the sample variance

s2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
of a standard normal distribution is χ2 with n− 1 degrees of freedom.
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Definition 5.1. If X is a random variable with density

f(x) = χk (x; =)

{
1

Γ( k2 )

(
1
2

) k
2 x

k
2
−1e−

1
2
x x > 0

0 otherwise

then X is defined to have a χ2 distribution with k degrees of freedom (χ2
k) where k is a positive

integer.

Thus the χ2
k density is a gamma density with r = k

2 , λ = 1
2 . Hence, if a RV X has a χ2

k distribution
then applying general results for the gamma distribution to these special cases:

E[X] =
k
2
1
2

= k

Var[X] =
k
2(

1
2

)2 = 2k

and mX(t) =

(
1
2

1
2 − t

) k
2

=

(
1

1− 2t

) k
2

, t <
1

2
.

Exercise 5.2.3. Show that for Xi ∼ χ2
ri∑

i

Xi ∼ χ2∑
ri

using the MGF technique.

Theorem 5.2. If the RVs Xi, i = 1, . . . , n are independently normally distributed with means µi
and variances σ2

i then

U =

n∑
i=1

(
Xi − µi
σi

)2

has a χ2
n distribution.

Proof Let Zi = Xi−µ
σi

, then Zi ∼ N (0, 1) and U =
∑n

i=1 z
2
i is the sum of n squared standard

normal RVs.
We have already shown that

mZ2
i
(t) =

(
1

1− 2t

) 1
2

.

Thus

mU (t) =

n∏
i=1

mz2
i
(t) =

(
1

1− 2t

)n
2

which is the MGF of a χ2
n distribution.

Corollary 5.2. If X1, . . . , Xn is a random sample from a normal distribution with mean µ and
variance σ2, then

U =

n∑
i=1

(Xi − µ)2

σ2
∼ χ2

n.
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Theorem 5.3. If X1, . . . , Xn is a random sample from a normal distribution with mean µ and
variance σ2 then

(i) X and
∑n

i=1

(
Xi −X

)2
are independent,

(ii)
∑n
i=1(Xi−X)

2

σ2 has a χ2
n−1 distribution.

Proof. Proof of i) is cumbersome and will not be given here.
For part ii) note that∑
i

X2
i =

∑
i

(Xi −X)2 + nX
2

and given part i) nX and
∑n

i=1

(
Xi −X

)2
are independent and so we can decompose the MGF as

m∑
Z2
i
(t) = m∑

i(Zi−Z)2(t)m
nZ

2(t)

m∑
i(Zi−Z)2 =

m∑
Z2
i
(t)

m
nZ

2(t)
=

(
1

1−2t

)n
2

(
1

1−2t

) 1
2

=

(
1

1− 2t

)n−1
2

, t <
1

2
.

Thus

∑
i

(Zi − Z)2 =

∑n
i=1

(
Xi −X

)2
σ2

has χ2
n−1 distribution. �

Corollary 5.3. If

s2 =
1

n− 1

∑
i

(Xi −X)2

is the sample variance of a random sample of size n from a normal distribution with mean µ and
variance σ2, then

(n− 1)s2

σ2
∼ χ2

n−1

N.B. The term “degrees of freedom” refers to the number of independent squares in the sum. The
sum

∑n
i=1(Xi− µ)2 has n independent summands. The sum

∑n
i=1(Xi−X)2 has n− 1 independent

summands because the relation
∑n

i=1(xi−X) = 0 determines any one of the Xi−X given the other
n− 1 of them.

Exercise 5.2.4. Consider the sample of cars from Exercise 5.2.1. What is the probability of observing
a sample variance greater than 8?

The t Distribution

The t distribution is closely related to the normal distribution and is needed for making inferences
about the mean of a normal distribution when the variance is also unknown.
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Definition 5.2. If Z ∼ N (0, 1), U ∼ χ2
k and Z and U are independent of one other, then

X =
Z√
U
k

∼ tk

where tk denotes a t distribution with k degrees of freedom.
The density of the tk distribution is:

f(x) = tk (x) =
Γ
[
k+1

2

]
Γ
[
k
2

] 1√
kπ

1

(1 + x2

k )
k+1

2

.

for −∞ < x <∞.

The MGF for the t distribution does not exist1, but

E[X] = 0

as the distribution is symmetric (actually the expectation only exists when k > 1 although an
extension known as the Cauchy principle value can be defined more generally), and it can be shown
that

Var[X] =
k

k − 2
, for k > 2.

Theorem 5.4. If X ∼ tk then

f(x) =
Γ
[
k+1

2

]
Γ
[
k
2

] 1√
kπ

1

(1 + x2

k )
k+1

2

→ 1√
2π
e
−x2

2

as k →∞. That is, as k →∞ the density approaches the density of a standard normal.

Proof (Outline). Since

lim
k→∞

((
1 +

x2

k

)k)− 1
2

= e−
x2

2

and

lim
k→∞

(
1 +

x2

k

)− 1
2

= 1

it can be seen that

1

(1 + x2

k )
k+1

2

=

(
1 +

x2

k

)− k
2
(

1 +
x2

k

)− 1
2

→ e−
x2

2

as k →∞. It can also be shown that
√

2Γ
[
k+1

2

]
√
kΓ
[
k
2

] → 1

as k →∞, and the result follows. �

1 This is because the t distribution decays at a polynomial, rather than exponential rate and so the expectation of
any exponential of a t-distributed random variable is undefined.
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Previously we saw that

Z =

√
n(X − µ)

σ
∼ N (0, 1)

and

U =
(n− 1)s2

σ2
∼ χ2

n−1

when X̄ is the sample mean and s2 the sample variance of a sample from a normal population with
mean µ and variance σ2. Hence

T =
Z√
U
n−1

∼ tn−1

=

√
n(X − µ)

σ

/√
(n− 1)s2

(n− 1)σ2
∼ tn−1

=

√
n(X − µ)

s
∼ tn−1.

Example 5.1. Suppose that X, the life of a candle, follows a normal distribution with a mean of 8.6
hours. In a random sample of 10 candles, the sample mean was 8.2 and the sample variance was 0.4.
What is the probability of observing a mean of 8.2 or lower?

/

Suppose we have two independent random samples

X1, . . . , Xn1 ∼ N
(
µ1, σ

2
)

Y1, . . . , Yn2 ∼ N
(
µ2, σ

2
)

We can use the result that for Xi ∼ N
(
µi, σ

2
i

)
∑

aiXi ∼ N
(∑

aiµi,
∑

a2
iσ

2
i

)
to give

Z =
X − Y − (µ1 − µ2)

σ
(√

1
n1

+ 1
n2

) ∼ N (0, 1)

and the result that for Xi ∼ χ2
ri∑

Xi ∼ χ2∑
ri

to give

U =
1

σ2

[
(n1 − 1)s2

X + (n2 − 1)s2
Y

]
∼ χ2

n1+n2−2

from which we can establish, by the same arguments as were used previously, that

T =
X − Y − (µ1 − µ2)

sp

(√
1
n1

+ 1
n2

) ∼ tn1+n2−2

where s2
p is the pooled variance

s2
p =

(n1 − 1)s2
X + (n2 − 1)s2

Y

n1 + n2 − 2
.

Convince yourself that these steps all make sense.
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Exercise 5.2.5. Consider two brands of washing powder. Suppose 15 random samples were taken and
tested for each powder, giving the following results

Mean Score (Variance)

Brand A 17.89 (3.43)
Brand B 16.97 (4.76)

Assuming the scores are normally distributed and that there is no difference in population means, what
is the probability of observing a difference in sample means of 17.89 - 16.97 = 0.92 or greater?

The F Distribution

The distribution of the difference in sample means derived in the last section was based on the
simplifying assumption that the variances of the two populations were equal. The F Distribution is
useful for making inferences about the ratio of two unknown variances.

Definition 5.3. Suppose U and V are independently distributed with U ∼ χ2
m and v ∼ χ2

n. Then
the random variable

X =
U

m

/
V

n

is distributed according to an F distribution with m and n degrees of freedom.
The density of X is given by

f(x) = Fm,n (x) =
Γ
(
m+n

2

)
Γ
(
m
2

)
Γ
(
n
2

) (m
n

)m
2 x

m−2
2[

1 + m
n x
]m+n

2

, x > 0

The proof of this uses a multivariate version of Theorem 4.5 given in the previous chapter. Writing
X = g(U, V ) it is possible to express the density of X in terms of those of U and V as well as the
derivatives of g(u, v) = u/v.

Returning to the case of two independent random samples from normal populations of common
variance, but differing means:

X1, . . . , Xn1 ∼ N
(
µ1, σ

2
)

Y1, . . . , Yn2 ∼ N
(
µ2, σ

2
)

we have

(n1 − 1)s2
X

σ2
∼ χ2

n1−1 and
(n2 − 1)s2

Y

σ2
∼ χ2

n2−1

so that

(n1−1)s2X
σ2 /(n1 − 1)

(n2−1)s2Y
σ2 /(n2 − 1)

=
s2
X

s2
Y

∼ Fn1−1,n2−1.

5.3 Point Estimation

The sample mean and variance are examples of point estimators, because the estimates they produce
are single point values, rather than a range of values. For a given parameter there are an infinite
number of possible estimators, hence the question arises: what makes a “good” estimator? This
section describes two properties of “good” estimators.
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Definition 5.4 (Unbiasedness). Let X be a random variable with pdf f(x; θ), where θ ∈ Ω ⊂ Rp
is some unknown parameter, p ≥ 1. Let X1, . . . , Xn be a random sample from the distribution of X
and let θ̂ denote a statistic. θ̂ is an unbiased estimator of θ if

E[θ̂] = θ ∀ θ ∈ Ω

where the expectation is with respect to f(x; θ).
If θ̂ is not unbiased, we say that θ̂ is a biased estimator of θ, with

Bias(θ̂) = E[θ̂]− θ.

If Bias(θ̂)→ 0 when n→∞ then we say that θ̂ is asymptotically unbiased.

Exercise 5.3.1. Consider a random sample X1, . . . , Xn from a population with unknown mean µ and
variance σ2. Consider the following estimators for µ

1. µ̂1 = X = 1
n

∑n
i=1Xi

2. µ̂2 = X1+X2
2

Determine whether or not these estimators are unbiased.

Example 5.2. Consider the following estimator of the population variance

σ̂2 =
1

n

n∑
i=1

(Xi −X)2

We find that

E[σ̂2] = E

[
1

n

n∑
i=1

(Xi −X)2

]

=
1

n
E

[
n∑
i=1

X2
i − nX

2

]

=
1

n

(
n∑
i=1

E[X2
i ]− nE[X

2
]

)

=
1

n

(
nσ2 + nµ2 − n

(
σ2

n
+ µ2

))
=
n− 1

n
σ2

So this estimator is biased with bias equal to −σ
2

n . As this decays to zero as n→∞ it is an asymptotically
unbiased estimator. However, we can see that the sample variance

s2 =
1

n− 1

n∑
i=1

(Xi −X)2

is unbiased. /

Consistency

In order to define a consistent estimator, we first define convergence in probability.
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Definition 5.5 (Convergence in probability). Let {Xn} be a sequence of random variables and
let X be a random variable. We say that Xn converges in probability to X if ∀ ε > 0

lim
n→∞

P [|Xn −X| ≥ ε] = 0, or equivalently lim
n→∞

P [|Xn −X| < ε] = 1.

If so, it is common to write Xn
p−→ X.

In statistics the limiting variable X is often a constant, say a (i.e. it is a degenerate random

variable, one which places probability 1 on a single value). In this case we write Xn
p−→ a.

Definition 5.6 (Consistent estimator). Let X1, . . . , Xn be a sample from the distribution of X
where X is a random variable with distribution function F (x; θ). Let θ̂ denote a statistic. θ̂ is a
consistent estimator of θ if, whatever the value of θ,

θ̂
p−→ θ.

A particular case of consistency is often used to justify using sample averages:

Theorem 5.5 (Weak Law of Large Numbers). Let X = 1
n

∑n
i=1Xi with X1, . . . , Xn iid. Then

X
p−→ µ,

i.e. X is a consistent estimator of µ.

Proof. Recall E[X] = µ; Var[X] = σ2
X

= σ2

n . By Chebyshev’s inequality (Theorem 2.3) we have for
any ε > 0

P
[
|X − µ| ≥ ε

]
= P

[
|X − µ| ≥

(
ε

σX

)
σX

]
≤
σ2
X

ε2
=

σ2

nε2
→ 0

�

Theorem 5.6. Suppose Xn
p−→ a and the real function g is continuous at a. Then g(Xn)

p−→ g(a).

Proof. Let ε > 0. Then since g is continuous at a, there exists δ > 0 such that if |x − a| < δ, then
|g(x)− g(a)| ≤ ε. Thus (using the contrapositive)

|g(x)− g(a)| ≥ ε⇒ |x− a| ≥ δ.

Substituting Xn for x we obtain

P[|g(Xn)− g(a)| ≥ ε] ≤ P[|Xn − a| ≥ δ.]

Since Xn
p−→ a, the last term goes to 0 as n→∞. �

As a result of this theorem, if Xn
p−→ a, then

X2
n

p−→ a2 1

Xn

p−→ 1

a
, a 6= 0

√
Xn

p−→
√
a, a ≥ 0.

Using this, we can show that as n→∞, X
2 p−→ µ2 and:

S2
n =

1

n− 1

n∑
i=1

(Xi −X)2 =
n

n− 1

(
1

n

∑
X2
i −X

2
)

p−→ E[X2
1 ]− µ2 = σ2.

thus the sample variance is a consistent estimator of σ2.
Consistency according to the definition above may be hard to prove, but it turns out that a

sufficient (though not necessary) condition for consistency is that Bias(θ̂) → 0 and Var(θ̂) → 0 as
n→∞.
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Definition 5.7 (Consistency in Mean-Squared Error). If θ̂ is an estimator of θ, then the
mean squared error of θ̂ is defined as

MSE(θ̂) = E[(θ̂ − θ)2]

and θ̂ is said to be consistent in MSE if MSE(θ̂) → 0 as the size of the sample on which θ̂ is based
increases to infinity.

It can be shown (for example, by Chebyshev’s inequality) that

P
[
|θ̂ − θ| > ε

]
≤
∫ ∞
−∞

(θ̂ − θ)2

ε2
f(θ̂) dθ̂ =

1

ε2
MSE(θ̂).

where f(·) denotes the density function of the sampling distribution of θ̂.

So P
[
|θ̂ − θ| > ε

]
→ 0 as n → ∞ if MSE(θ̂) → 0 as n → ∞. i.e. Consistency in MSE implies

consistency.

Exercise 5.3.2. Show that

MSE(θ̂) = Var(θ̂) +
[
Bias(θ̂)

]2
.

Using this equality determine whether the estimators from Exercise 5.3.1 are consistent in MSE.

5.4 Interval Estimation

When a sample is drawn it is unlikely that the value of a point estimate θ̂ is equal to the true θ.
In fact if X is continuous then it’s generally the case that for any finite sample size P (θ̂ = θ) = 0.
An alternative approach is to estimate an interval for θ. This section describes confidence intervals
which are intervals constructed such that they contain θ with some level of confidence.

Definition 5.8 (Confidence interval). Let X1, . . . , Xn be a random sample from a distribution
with pdf f(x; θ) where θ is an unknown parameter in the parameter space Ω. If L and U are statistics
such that

P[L ≤ θ ≤ U ] = 1− α

then the interval (L,U) is a 100(1− α)% confidence interval for θ.
1− α is known as the confidence coefficient and α is the level of significance.

Note that the confidence interval defined above is a random interval because it is a function of the
statistics U and L which are random variables. The parameter θ on the other hand, is fixed. Therefore
it is misleading to say that θ lies in the interval with probability (1 − α). Rather the probability
that the interval contains θ is (1 − α). Thus, if we conducted a large number of replications of an
experiment which produced such a confidence interval, then we would expect 100(1 − α) of those
confidence intervals to contain θ.

There are several ways in which confidence intervals can be constructed. The basic procedure we
shall use to construct a 100(1− α)% confidence interval for a parameter is as follows

1. Select a sample statistic to estimate the parameter.
2. Identify the sampling distribution for the statistic.
3. Determine the bounds within which the sample statistic will reside with probability 1− α.
4. Invert these bounds to obtain an expression in terms of θ.

For step 2 we shall often invoke the Central Limit Theorem to approximate the sampling dis-
tribution of a statistic and hence obtain an approximate confidence interval. The following section
shows how a confidence interval may be constructed in such a case.
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Confidence Intervals based on the CLT

Suppose that we are interested in the population mean θ and we wish to use the sample mean X as
an estimator for θ. Then if the population density has variance σ2 the CLT states that

Zn =
X − θ

σ√
n

d−→ N (0, 1)

where n is the sample size.
Hence P (−1.96 < Z < 1.96) = 0.95 and we can construct a 95% confidence interval as follows

0.95 = P

(
−1.96 <

√
n(X − θ)
σ

< 1.96

)
= P

(
X − 1.96

σ√
n
< θ < X + 1.96

σ√
n

)
In the above derivation it was assumed that the variance σ2 was known. If the variance is

unknown, but we estimate σ with a consistent estimator s, then it can be shown that

√
n(X − θ)

s

d−→ N (0, 1)

and hence

X ± 1.96
s√
n

would be the endpoints of an approximate 95% CI for θ.
More generally the endpoints of a 100(1− α)% CI for θ are given by

X ± zα
2

s√
n

where zα
2

is such that

P
(
Z > zα

2

)
= 1− Φ

(
zα

2

)
=
α

2

The statistic s√
n

is known as the standard error.

Note that the confidence interval satisfies a number of intuitively logical requirements:

– a higher confidence coefficient leads to a longer CI,
– a larger sample size leads to a shorter CI,
– a larger variance leads to a longer CI.

We now consider four cases where the CI is found using the CLT approach.

CI for the Mean

Let X1, . . . , Xn be a random sample from the distribution of an RV X with unknown mean µ and
variance σ2. Let X and s2 denote the sample mean and variance. We have shown that s2 is a
consistent estimator for σ2 and hence
√
n(X − θ)

s

d−→ N (0, 1) .

Thus the endpoints of an approximate 100(1− α)% CI for µ are

X ± zα
2

s√
n
.
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CI for a Proportion

Let X ∼ Ber (p) and let X1, . . . , Xn be a random sample from the distribution of X. Let p̂ = X be
the sample proportion of successes. By the CLT we have

p̂
d−→ N

(
p,
p(1− p)

n

)
.

By the weak law of large numbers p̂ is a consistent estimator of p and by Theorem 5.6 p̂(1− p̂) is a
consistent estimator of p(1− p). Hence, an approximate 100(1− α)% CI for p is

p̂± zα
2

√
p̂(1− p̂)

n
.

Exercise 5.4.1. In a random sample 136 of 400 people given a flu vaccine experienced some discomfort.
Construct a 95% CI for the true proportion of people who will experience discomfort from the vaccine.

CI for Differences in Means

Suppose we have two random variables X and Y and we are interested in comparing their means,
µ1 and µ2 respectively. We shall derive a CI for ∆ = µ1 − µ2. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be
random samples from the distributions ofX and Y respectively and let σ1 = Var[X] and σ2 = Var[Y ].
Suppose we estimate ∆ by the unbiased estimator X−Y and estimate σ1 and σ2 by the appropriate
sample variances. Then because

X
d−→ N

(
mu1,

s2
1

n

)
and

Y
d−→ N

(
µ2,

s2
2

n

)
the endpoints of an approximate 100(1− α)% CI for ∆ are

X − Y ± zα
2

√
s2

1

n1
+
s2

2

n2

CI for Differences in Proportions

For differences in proportions where X ∼ Ber (p1) and Y ∼ Ber (p2) the approximate CI from the
CLT is

p̂1 − p̂2 ± zα
2

√
p̂1(1− p̂1)

n
+
p̂2(1− p̂2)

n
.

Exercise 5.4.2. If 132 of 200 male voters and 90 out of 159 female voters favour a certain candidate
running for governor of Illinois, find a 99% CI for the difference between the actual proportions of male
and female voters who favour the candidate.

Note that whenever a CI is obtained via the CLT it holds exactly only asymptotically; such
confidence intervals are only approximations for finite samples although the approximations can be
extremely good for even moderately large samples.

CIs for Normal Populations

We now consider the special case of sampling from normal populations. In this case we can use the
exact sampling distribution to derive confidence intervals as shown in the following examples.
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CI for the Mean of a Normal Distribution Suppose X1, . . . , Xn are a random sample from a
N
(
µ, σ2

)
distribution. In Section 5.2 we saw that

T =

√
n(X − µ)

s
∼ tn−1.

Hence the exact 100(1− α)% CI for µ has endpoints

X ± tα
2
,n−1

s√
n
.

Remember that tα
2
,n−1 → zα

2
as n → ∞. In practice, if n ≥ 120, the quantiles of the standard

normal can be used instead (they are essentially indistinguishable from those of the t distribution
in this regime).

Exercise 5.4.3. Suppose we observe the following data on lactic acid concentrations in cheese

0.86 1.53 1.57 1.81 0.99 1.09 1.29 1.78 1.29 1.58

Assuming that these data are a random sample from a normal distribution, calculate a 90% CI for the
mean of this distribution.

CI for Differences in Means of Normal Populations with Equal Variance

Suppose we have two independent random samples

X1, . . . , Xn1 ∼ N
(
µ1, σ

2
)

Y1, . . . , Yn2 ∼ N
(
µ2, σ

2
)
.

In Section 5.2 we saw that

T =
X − Y − (µ1 − µ2)

sp

(√
1
n1

+ 1
n2

) ∼ tn1+n2−2,

where s2
p is the pooled variance

s2
p =

(n1 − 1)s2
X + (n2 − 1)s2

Y

n1 + n2 − 2

which can be shown to be an unbiased estimator of σ2.
Therefore the exact 100(1− α)% CI for µ1 − µ2 in this case is

X − Y ± tα
2
,n1+n2−2

√
1

n1
+

1

n2
sp.

In the case of unequal variances, an exact CI cannot be derived.

Exercise 5.4.4. Consider a study to compare the nicotine contents of two brands of cigarettes. 10
cigarettes of Brand A had an average nicotine content of 3.1 milligrams with a standard error of 0.5 mg,
while 8 cigarettes of Brand B had an average nicotine content of 2.7 mg with a standard error of 0.7 mg.

Assuming that the 2 data sets are independent random samples from normal populations with equal
variances, construct a 95% confidence interval for the difference between the mean nicotine contents of
the two brands.
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CI for the Variance of a Normal Population

Suppose X1, . . . , Xn are iidnormal with unknown µ and σ2. From the Corollary of Theorem 5.3 we
know that

Q =
(n− 1)s2

σ2
∼ χ2

n−1.

Therefore

P

(
χ2

1−α/2,n−1 <
(n− 1)s2

σ2
< χ2

α/2,n−1

)
= 1− α

where P (Q < χ2
α/2,n−1) = 1− α

2 . Hence an exact 100(1− α)% CI for σ2 is given by(
(n− 1)s2

χ2
α/2,n−1

,
(n− 1)s2

χ2
1−α/2,n−1

)
Note that the χ2 distribution is asymmetric, hence this CI is asymmetric, unlike the previous CIs we
have defined. This illustrates an important point: any interval which has the appropriate coverage
probability can be used as a confidence interval and there is no unique (1 − α) confidence interval
for a statistic (imagine shifting the left endpoint of the interval slightly towards the centre; the right
endpoint could then be moved a small amount away from the centre to compensate). Symmetry is
one of the properties which is often considered desirable when dealing with confidence intervals, but
it’s certainly not essential.

CI for the Ratio of Variance of Normal Populations

Suppose we have two independent random samples

X1, . . . , Xm ∼ N
(
µ1, σ

2
1

)
Y1, . . . , Yn ∼ N

(
µ2, σ

2
2

)
where µ1, µ2, σ1 and σ2 are unknown. Let

Q =
s2

1/σ
2
1

s2
2/σ

2
2

In Section 5.2 we found that

s2
X

s2
Y

∼ Fn1−1,n2−1

Thus we have

P (Fn1−1,n2−1,1−α
2
< Q < Fn1−1,n2−1,α/2) = 1− α

P

(
1

Fn2−1,n1−1,α
2

< Q < Fn1−1,n2−1,α/2

)
= 1− α

from which we derive the following exact CI for
σ2

1

σ2
2(

s2
1

s2
2

1

Fn2−1,n1−1,α
2

,
s2

1

s2
2

Fn1−1,n2−1,α
2

)
.

Note this CI is also asymmetric.

Example 5.3. Consider the study described in Exercise 5.4.4. A 95% CI for the ratio of the variances
of the two populations is given by(

0.52

0.72

1

F7,9,0.025
,

0.52

0.72
F9,7,0.025

)
=

(
0.52

0.72

1

4.197
,

0.52

0.72
(4.823)

)
= (0.122, 2.46)

which includes 1, so the assumption of equal variances seems reasonable in this case. /
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5.5 Exercises

Exercise 5.5.1. Suppose that a random sample is to be taken from a normal distribution for which the
value of the mean θ is unknown and the standard deviation is 2. How large a random sample must be
taken in order that

P[|X − θ| < 0.1] ≥ 0.95

for every possible value of θ?

Exercise 5.5.2. Suppose that a random sample is to be taken from a Bernoulli distribution for which
the value of the parameter p is unknown. Suppose also that it is believed that the value of p is in the
neighbourhood of 0.2. Use the central limit theorem to find approximately the size of a random sample
that must be taken in order that

P[|X − p| < 0.1] ≥ 0.75

when p = 0.2.

Exercise 5.5.3. Let X1, . . . , Xn be a random sample from the distribution of X. Let E[X] = µ and
Var[X] = σ2. Consider the following estimators for µ

1. µ̂1 = aX, 0 < a < 1;
2. µ̂2 =

∑n
i=1 aiXi with

∑n
i=1 ai = 1.

3. µ̂3 = 1
n2

∑n
i=1Xi

4. µ̂4 = 1
n−1

∑n
i=1Xi

Which of these estimators are unbiased? If they are not unbiased, are they asymptotically unbiased?
Which estimators are consistent in MSE?

Exercise 5.5.4. Let X1, . . . , Xn be a random sample from the distribution of X. Let E[X] = µ and
Var[X] = σ2. Prove that X is the unbiased linear estimator with the smallest variance.

Note: the class of all linear estimators is

X̃ =

n∑
i=1

aiXi with Var[X̃] = σ2
n∑
i=1

a2
i

Exercise 5.5.5. Let Xn, n = 1, 2, 3, . . . be a sequence of random variables with

P (Xn = a) = 1− 1

n
, a ∈ R

P (Xn = nk) =
1

n
, k > 1, k fixed.

Show that Xn is a consistent (in probability, Definition 5.5) estimator for a. Is Xn also consistent in
MSE?

Exercise 5.5.6. The following table gives the weight in grams of 100 airmail envelopes

weight frequency weight frequency weight frequency

1.80 1 1.89 5 1.98 4
1.81 0 1.90 7 1.99 3
1.82 1 1.91 6 2.00 7
1.83 1 1.92 8 2.01 2
1.84 1 1.93 8 2.02 4
1.85 1 1.94 9 2.03 5
1.86 1 1.95 4 2.04 1
1.87 2 1.96 11 2.05 2
1.88 3 1.97 3
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Assuming that these data are a random sample from a normal population, give 95% confidence intervals
for

1. µ, with σ = 0.05,
2. µ, with σ unknown,
3. σ, with µ unknown.

Exercise 5.5.7. A sample was taken of 40 eligible voters. 12 of these said they were going to vote
for party A. Give 90% and 99% confidence intervals for the proportion p of voters of party A in the
population

1. using the binomial distribution,
2. using the normal distribution as an approximation.
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6. Maximum Likelihood Estimation

The construction of estimators for individually problems is made much simpler by the existence of
some general techniques for doing so. One of the most widely used approaches in statistics centres
around the likelihood function.

6.1 Likelihood Function and ML estimator

Suppose we have a simple random sample X1, . . . , Xn from a density f(x; θ) parameterised by some
possibly unknown parameter θ.

The the joint pdf of the entire data set is

f(x; θ) =
n∏
i=1

f(xi; θ)

with x = (x1, . . . , xn)T .
The likelihood function L(θ; x) is this joint pdf viewed as a function of θ with x fixed to the

observed data. It is often more convenient to work with the log-likelihood

l(θ; x) = log [L(θ; x)]

which in the simple random sampling case above yields:

l(θ; x) =
n∑
i=1

log f(xi; θ).

The maximum likelihood estimator (MLE) is the value θ̂ which maximises L(θ; x). The
MLE also maximises l(θ; x) because log(·) is a monotonic function. Usually it is easier to maximise
l(θ; x), so we work with this.

Actually finding the maximum of the likelihood function is an optimization problem. For simple
cases we can find closed-form expressions for θ̂ as a function of x. However, this is often not possible
and it is necessary to result to numerical approximations: often in the form of iterative numerical
optimisation procedures.

It can be useful to plot (log-)likelihood surface to identify potential problems as complicated
optimisation algorithms can go rather badly wrong if applied without considering the function
being optimised.

Example 6.1. Suppose X1, . . . , Xn is a random sample from the exponential distribution with pdf

f(x; θ) =

{
θe−θx x > 0,

0 otherwise.
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L(θ; x) = θne−θ
∑n
i=1 xi , so l(θ; x) = n log(θ)− θ

n∑
i=1

xi

∂l

∂θ
=
n

θ
−

n∑
i=1

xi = 0 gives the MLE θ̂ =
1

X

Check:
∂2l

∂θ2
=
−n
θ2

< 0, so θ̂ does correspond to a maximum.

/

Exercise 6.1.1. Suppose X1, . . . , Xn form a random sample from the Poisson distribution Poisson(θ).
Derive the ML estimator for θ.

A widely accepted idea in statistics, known as the likelihood principle is that: all information
about the parameters contained within the data is contained within the likelihood function. Although
not universally accepted it’s a principle which one would at least need a reason to deviate from.

6.2 MLE and Exponential Families of Distributions

Definition 6.1 (The Exponential Family of Distributions). The RV X belongs to the k-parameter
exponential family of distributions iff its pdf can be written in the form

f(x; θ) = exp


k∑
j=1

Aj(θ)Bj(x) + C(x) +D(θ)

 (6.1)

where

A1(θ), . . . , Ak(θ), D(θ) are functions of θ alone.

B1(x), . . . , Bk(x), C(x) are functions of x alone.

Example 6.2.

Exponential (k = 1): θe−θx = exp {(−θ)(x) + log θ}

i.e. A(θ) = −θ,B(x) = x,C(x) = 0 and D(θ) = log θ.

Normal (k = 2):(2πσ2)−
1
2 exp

{
− 1

2σ2
(x− µ)2

}
= exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
− 1

2
log(2πσ2)

}
i.e. A1(θ) = − 1

2σ2 , A2(θ) = µ
σ2 , B1(x) = x2, B2(x) = x,C(x) = 0 and D(θ) = − µ2

2σ2 − 1
2 log(2πσ2). /

Table 6.1 shows that many well known distributions belong to the exponential family.

Exercise 6.2.1. Fill in the gaps in table 6.1 for the following:

Poisson:
e−θθx

x!
.

Gamma (two parameters):
βαxα−1e−βx

Γ (α)
.
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Distribution f(x; θ) A(θ) B(x) C(x) D(θ)
k = 1
Binomial

(
n
x

)
px(1 − p)n−x log(p/(1 − p)) x ln

(
n
x

)
n log(1 − p)

Poisson

Exponential θ exp−θx −θ x 0 log θ

N(0, σ2) (2πσ2)−1/2 exp
− x2

2σ2 − 1
2σ2 x2 0 − 1

2
log(2πsigma2)

N(µ, 1) (2π)−1/2 exp−
(x−µ)2

2 µ x −x2

2
− 1

2
log(2π) − µ2

2

Gamma θrxr−1 exp−θx /(r − 1)! −θ x (r − 1) log x r log θ − log((r − 1)!)
(1 param)
k = 2

N(µ, σ2) (2πσ2)−1/2 exp
− (x−µ)2

2σ2 A1(θ) = − 1
2σ2 B1(x) = x2 0 − 1

2
log(2πsigma2)

A2(θ) = µ
σ2 B2(x) = x − 1

2
µ2/σ2

Gamma
(2 param)

Table 6.1. Some members of the exponential family of distributions

Natural Parameterization

Letting φj = Aj(θ), j = 1, . . . , k, the exponential form becomes

f(x;φ) = exp


k∑
j=1

φjBj(x) + C(x) +D(φ)

 .

The parameters φ1, . . . , φk are called natural or canonical parameters.
The exponential density in terms of its natural parameter φ = −θ is:

−φeφx.

Whilst the normal density in terms of its natural parameters φ1 = − 1
2σ2 , φ2 = µ

σ2 :

exp

(
φ1x

2 + φ2x+
φ2

2

4φ
− 1

2
log

(
− π

φ1

))
.

Theorem 6.1 (MLEs of Natural Parameters). Suppose X1, . . . , Xn form a random sample
from a distribution which is a member of the k-parameter exponential family with pdf

f(x;φ) = exp

 k∑
j=1

φjBj(x) + C(x) +D(φ)


then the MLEs of φ1, . . . , φk are found by solving the equations

tj = E[Tj ], j = 1, . . . , k

where Tj =

n∑
i=1

Bj(Xi), j = 1, . . . , k and tj =

n∑
i=1

Bj(xi).

Proof. The likelihood function is
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L(φ; x) =

n∏
i=1

f(xi;φ) =

n∏
i=1

exp


k∑
j=1

φjBj(xi) + C(xi) +D(φ)


= exp


k∑
j=1

φj

n∑
i=1

Bj(xi) +

n∑
i=1

C(xi) + nD(φ)


= exp


k∑
j=1

φjtj +
n∑
i=1

C(xi) + nD(φ)


⇒ l(φ; x) = constant +

k∑
j=1

φjtj + nD(φ)

The log likelihood function is

l(φ; x) = constant +

k∑
j=1

φjtj + nD(φ)

⇒ ∂l

∂φj
= tj + n

∂D(φ)

∂φj

Furthermore,

E
[
∂l

∂φj

]
= 0, so E[Tj ] = −n∂D(φ)

∂φj
,

hence
∂l

∂φj
= tj − E[Tj ]

and so solving
∂l

∂φj
= 0 is equivalent to solving tj = E[Tj ].

�

Moreover, it can be shown (not here) that if these equations have a solution then it is the unique MLE
(thus there is not need to check second derivatives). See Bickel and Doksum, 1977, “Mathematical
Statistics, Basic Ideas and selected Topics”, Holden Day, San Francisco.

Example 6.3. For the N(µ, 1) distribution,

A(θ) = µ and B(x) = x

Therefore T =
∑n

i=1Xi and

E[T ] = nE[Xi] = nµ.

Setting t = E[T ] gives

n∑
i=1

xi = nµ̂

and solving for µ̂ gives the MLE µ̂ = X. /

Although these canonical parameterisations are useful for applying general results concerning
exponential family distributions to a particular distribution of interest, the commonly used pa-
rameterisations can be rather easier to interpret and are often rather more closely related to a
distribution’s interesting statistical properties.
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6.3 The Cramer-Rao Inequality and Lower Bound

Theorem 6.2 (The Cramer-Rao Inequality and Lower Bound). Suppose X1, . . . , Xn form
a simple random sample from the distribution with pdf f(x; θ). Subject to certain regularity con-
ditions on f(x; θ), we have that for any unbiased estimator θ̂ for θ,

Var[θ̂] ≥ I−1
θ

where Iθ is the Fisher Information about θ

Iθ = E

[(
∂ log[L(θ; x)]

∂θ

)2
]

= E

[(
∂l

∂θ

)2
]
.

This is known as the Cramer-Rao lower bound and I−1
θ is the minimum variance achievable by

any unbiased estimator.

Proof (Outline). For unbiased θ̂

E[θ̂] =

∫
x
θ̂L(θ; x) dx = θ

Under regularity conditions (essentially, to allow the interchange of integration and differentiation):∫
θ̂
∂L

∂θ
dx = 1

Now

∂l

∂θ
=
∂ logL

∂θ
=

1

L

∂L

∂θ
⇒ ∂L

∂θ
= L

∂l

∂θ
.

Therefore

1 =

∫
θ̂
∂L

∂θ
dx = E

[
θ̂
∂l

∂θ

]
.

We can then prove the result using the Cauchy-Schwarz inequality. Let U = θ̂ and V = ∂l
∂θ . Then

E[V ] =

∫
∂l

∂θ
Ldx =

∫
∂L

∂θ
=

∂

∂θ

[∫
Ldx

]
= 0

Therefore

Cov[U, V ] = E[UV ]− E[U ]E[V ] = E[UV ] = E
[
θ̂
∂l

∂θ

]
= 1

Also

Var[V ] = E[V 2] = E

[(
∂l

∂θ

)2
]

= Iθ

So by theorem 4.4, we have:

(Cov[U, V ])2 ≤ Var[U ]Var[V ]⇒ 1 ≤ Var(θ̂)Iθ

�

Comments:
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The larger Iθ is, the more informative a typical observation is about the parameter θ, and the
smaller the attainable variance of θ̂.
Regularity conditions required to justify the exchange integration and differentiation in the proof
include that the range of values of X must not depend on θ.
An unbiased estimator θ̂ whose variance attains the Cramer-Rao lower bound is called efficient.

Example 6.4. Suppose X1, . . . , Xn form a random sample from N ∼ (µ, σ2) with µ unknown.

L =

n∏
i=1

f(xi, µ) =

n∏
i=1

(2πσ2)−
1
2 exp

{
− 1

2σ2
(xi − µ)2

}

⇒ l = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

⇒ ∂l

∂µ
=

1

σ2

n∑
i=1

(xi − µ) =
n

σ2
(x− µ)

∴ µ̂ = X is MLE.

Iθ = E

[(
∂l

∂µ

)2
]

= E
[
n2

σ4
(X− µ)2

]
=
n2

σ4
E
[
(X− µ)2

]
=
n2

σ4
Var[X] =

n2

σ4

σ2

n
=

n

σ2
.

Thus the lower bound is I−1
θ = σ2

n , which is attained by µ̂ = X, hence µ̂ is an efficient estimator.
µ̂ may also be referred to as a minimum variance unbiased estimator (MVUE) and in some sense

it is the best unbiased estimator available. /

There are a number of situations in statistics in which it is possible to reduce variance at the
expense of an increased bias. As was shown in the previous chapter, the mean squared error may
be expressed as the sum of the variance and the bias squared. In some settings, it may make more
sense to look for an estimator which minimise this quantity rather than an unbiased estimator which
minimises the variance. However, the property of unbiasedness is naturally appealing.

Exercise 6.3.1. Under the same regularity conditions as before, and the additional assumption that `
is twice continuously differentiable, show that Iθ can be expressed in the more useful form

Iθ = −E
[
∂2`

∂θ2

]
.

Using this result show that the ML estimator obtained earlier for the parameter of a Poisson distribution
attains the Cramer-Rao lower bound.

6.4 Properties of MLEs

The maximum likelihood estimator has a number of useful properties. In particular, it doesn’t really
matter how we choose to parameterise a distribution as any two parameterisations which really
describe the same distribution will lead to the same conclusions.

Theorem 6.3. Suppose θ and φ represent two alternative parameterizations and that φ is a one-
to-one function of θ (more formally, there exists a bijective mapping, g, from θ to φ), so we can
write
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φ = g(θ), θ = h(φ)

for appropriate g and h = g−1.
Then if θ̂ is the MLE of θ, then the MLE of φ is g(θ̂).

Proof. Suppose the value of φ that maximises L corresponds to θ̃ 6= θ̂, so that

L(g(θ̃); x) > L(g(θ̂); x)

Taking the inverse function h(.) we have, noting that the likelihood of a point does not depend
upon the parameterisation used to describe that point, that

L(θ̃; x) > L(θ̂; x)

so θ̂ is not the MLE. Which is a contradiction. �

Corollary 6.1 (Invariance of MLE). Let θ̂1, . . . , θ̂k be a MLE for θ1, . . . , θk . If

T (θ) = (T1(θ), . . . , Tr(θ))

is a sufficiently regular transformation of the parameter space Ω, then

T (θ̂) = (T1(θ̂), . . . , Tr(θ̂))

is a MLE of T (θ).

Example 6.5. Consider X1, . . . , Xn ∼ N(µ, σ2), µ, σ2 both unknown. Then the log-likelihood is

l = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Could find σ̂2 from

∂l

∂σ2
=
−n
2σ2

+
1

2σ4

n∑
i=1

(xi − µ)2

or

∂l

∂σ
=
−n
σ

+
1

σ3

n∑
i=1

(xi − µ)2

note: this is okay here: g : σ → (σ2) is a bijection because we require that σ > 0 but in general it’s
important to verify that the conditions of theorem 6.3 hold.

Substituting µ̂ = X and setting the second equation to zero:

1

σ̂3

n∑
i=1

(xi −X)2 =
n

σ̂

Could solve for σ̂ and square but easier to solve for σ̂2 directly:

σ̂2 =

∑n
i=1(xi −X)2

n
.

/

By invariance, we can find MLEs for parameters of distributions in the exponential family via
the natural parameterisation.
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Example 6.6 (The Poisson Distribution).

A(θ) = log θ and B(x) = x

Therefore T =
∑n

i=1Xi and

E[T ] = nE[Xi] = nθ

Setting t = E[T ] gives

n∑
i=1

xi = nθ̂

and solving for θ̂ gives the MLE θ̂ = X. /

Exercise 6.4.1. According to a genetic theory, the 3 blood types A, B and O occur in a population
with probabilities Pr[A] = p2, Pr[B] = 2p(1 − p) and Pr[O] = (1 − p)2. A sample of 200 randomly
selected individuals gave the following result:

Blood Type Frequency
A 60
B 130
O 10

Derive the ML estimates for the three probabilities.

The MLE has been very extensively studied and its properties have been characterised rather
well. The following two results provide an example of some useful results; they are presented without
proof and we do not dwell upon the regularity conditions under which they hold.

Lemma 6.1. Suppose there exists an unbiased estimator, θ̃, which attains the Cramer-Rao bound.
Suppose that θ̂, the MLE is a solution to

∂l

∂θ
= 0.

Then θ̃ = θ̂.

Lemma 6.2. Under fairly weak regularity conditions, MLE’s are consistent. If θ̂ is the MLE for θ,
then asymptotically

θ̂ ∼ N(θ, I−1
θ ).

Example 6.7. For the normal distribution N(µ, σ2)

– the MLE µ̂ is an efficient estimator for µ
– the MLE σ̂2 is asymptotically efficient for σ2, but not efficient for finite sample sizes.

/

6.5 MLE and properties of MLE for the multi-parameter Case

Let X1, ..., Xn be iid with common pdf f(x; θ), where θ ∈ Ωθ ⊂ Rp.
Likelihood function:

L(θ) =

n∏
i=1

f(xi; θ)
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l(θ) = logL(θ) =

n∑
i=1

log f(xi; θ).

Under mild regularity conditions the maximum likelihood estimator (MLE) θ̂ solves the vector
equations

∂

∂θ
l(θ) = 0.

The following properties extend to θ from the scalar case:

– The value of θ at which L(θ) is maximized is an unbiased estimator of the true θ;
– Invariance: let η = g(θ), then η̂ = g(θ̂) is MLE of η.

Theorem 6.4 (Properties of MLE, multi-parameter case). Under a set of regularity condi-
tions

1. Consistency: the likelihood equation
∂

∂θ
l(θ) = 0

has a solution θ̂n such that

θ̂n
P→ θ.

2. Asymptotic normality:
√
n(θ̂n − θ)

d−→ N
(
0, I−1(θ)

)
.

I(θ) is the Fisher Information matrix with entries

Iii(θ) := Var

[
∂ log f(X; θ)

∂θi

]
(6.2)

= −E
[
∂2

∂θ2
i

log f(X; θ)

]
Ijk(θ) = Cov

[
∂ log f(X; θ)

∂θj
,
∂ log f(X; θ)

∂θk

]
:= −E

[
∂2

∂θjθk
log f(X; θ)

]
for i, j, k = 1, ..., p.

Exercise 6.5.1. Derive the equalities stated in 6.2.

Exercise 6.5.2. Find the MLE and Fisher information for the case in which f is normal with parameter
vector θ = (µ, σ)′.

Comments

Cramer-Rao bound in the multi-parameter case:
Let θ̂n,j be an unbiased estimator of θj . Then it can be shown that

Var(θ̂n,j) ≥
1

n
I−1
jj (θ).

The unbiased estimator is efficient if it attains the lower bound.
θ̂n are asymptotically efficient estimators, that is, for j = 1, ..., p

√
n(θ̂n,j − θj)

d−→ N
(
0, I−1

jj (θ)
)
.
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Theorem 6.5 (Transformation). Let g be a transformation g(θ) = (g1(θ), ..., gk(θ))
T such that

1 ≤ k ≤ p and that the k × p matrix of partial derivatives

B =

[
∂gi
∂θj

]
, i = 1, ..., k; j = 1, ..., p,

has continuous elements and does not vanish in the neighbourhood of θ. Let η̂ = g(η). Then η̂ is
MLE of η = g(θ) and

√
n(η̂ − η)

d−→ N
(
0,BI−1(θ)B′

)
.

Exercise 6.5.3. Use the theorem above to derive the asymptotic variance of the MLE σ̂2 for transfor-
mation σ2 = g(µ, σ) in the case of a Normal density.

6.6 Computation of MLEs

As was noted above, determining the MLE for a particular model and data set is simply a matter of
finding the parameter value which maximises the likelihood function for that data set. Unfortunately,
optimisation is a rather difficult thing to do in general. We have seen that in some simple cases it is
possible to obtain, by analysis, general expressions for the MLE as a function of the observed data.
Unfortunately, it is often impossible to obtain such an analytic solution and considerable efforts
have been made to develop robust numerical techniques for estimating the maximisers. This section
summarises some of the simpler techniques which are commonly used. In more difficult problems still
it may be possible to resort to Monte Carlo algorithms to obtain estimates (including the simulated
annealing method). See “Monte Carlo Statistical Methods”, Robert and Casella, Springer, 2004 for
an introduction.

All of the techniques described here have limitations and will fail in some situations. It’s always
important to be aware of the methods that software uses in order to calculate quantities of interest
and to be aware of the limitations of those methods: the mere fact that a computer has returned a
value can inspire more confidence than is justified.

6.6.1 The Newton-Raphson Method

Let g(θ) be the gradient of l(θ, ; x) and let H(θ) denote the matrix of 2nd derivatives (i.e. the Hessian
matrix). Suppose θ0 is an initial estimate of θ and θ̂ is the MLE. Expanding g(θ) about θ0 using the
Taylor expansion gives the following multivariate equation:

g(θ) = g(θ0) + (θ − θ0)TH(θ0) + . . .

⇒ 0 = g(θ0) + (θ̂ − θ0)TH(θ0) + . . .

Therefore θ̂ is approximated by

θ1 = θ0 − g(θ0)H−1(θ0) (6.3)

This would be exact if g was a linear function of θ (i.e. if l(θ; (x)) were quadratic in θ). However,
it can be used as an approximation (which becomes good close to the true value of the maximum
under regularity conditions which allow the higher order terms in the Taylor expansion to become
negligible throughout a neighbour of the optimum). In order to exploit this property, the Newton-
Raphson method takes an initial value, θ0, uses equation 6.3 to obtain a hopefully improved estimate
and this improved estimate is used as the starting point for the next iteration. This procedure is
repeated until convergence of some sort is observed (actually, this method does not always converge,
even to a local maximum).
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6.6.2 Fisher’s Method of Scoring

A simple modification of N-R in which the H(θ) are replaced by its expectation

E[H(θ)] = −Iθ

(where the expectation is respect to the data, X, which is generated from f(x; θ)). Now (under the
usual regularity conditions)

E

[(
∂l

∂θ

)2
]

= −E
[
∂2l

∂θ2

]
and so E

[
∂2l

∂θi∂θj

]
= −E

[
∂l

∂θi

∂l

∂θj

]
.

therefore we need only calculate the score vector of 1st derivatives.
Also E[H(θ)] is positive definite, thus eliminating possible non-convergence problems of N-R.

6.6.3 Newton-Raphson and the Exponential Family of Distributions

When the likelihood is a member of the exponential family, the Newton-Raphson algorithm and
Fisher’s method of scoring are equivalent. This can be seen by considering the derivatives of the
likelihood with respect to the natural parameterisation:

l(φ; x) = constant +

k∑
j=1

φjtj + nD(φ)

thus
∂l

∂φj
= tj + n

∂D(φ)

∂φj

and
∂2l

∂φi∂φj
= n

∂2D(φ)

∂φi∂φj

As D(φ) does not depend on x, H(θ) and E(H(θ)) are identical.

6.6.4 The Expectation-Maximisation (EM) Algorithm

Suppose data is decomposed into observed (incomplete data) and missing (augmented data) values

x = (x0,xm)

L(θ|x0) = g(X0|θ)︸ ︷︷ ︸
incomplete data likelihood

=

∫
f(x0,xm|θ)︸ ︷︷ ︸

complete data likelihood

dxm

This sort of structure is rather common in statistical problems. We would like to maximise L(θ x0)
but this may be difficult to obtain (doing so analytically is often impossible).

The EM algorithm maximises L(θ x0) by working with f(x0,xm|θ).
We have (note that this follows from the definition of the conditional distribution; k is simply

the conditional distribution of the missing data given both the observed data and the parameter
vector):

f(x0,xm|θ)
g(x0|θ)

= k(xm|θ,x0)

so g(x0|θ) =
f(x0,xm|θ)
k(xm|θ,x0)
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Taking logs

log g(x0|θ) = log f(x0,xm|θ)− log k(xm|θ,x0)

or l(θ|x0) = l(θ|x0,xm)− log k(xm|θ,x0)

Now taking the expectation with respect to the missing data under k(xm|θi,x0)

l(θ|x0) = E[l(θ|x0,xm)|θi,x0]− E[log k(xm|θ,x0)|θi,x0]

We seek to maximise E[l(θ|x0,xm)|θi,x0].
The E-step of the EM algorithm calculates the expected log-likelihood

E[l(θ|x0,xm)|θi,x0] =

∫
l(θ|x0,xm)k(xm|θi,x0) dxm

and the M-step mazimises it w.r.t. θ giving θi+1.
We then iterate through the E- and M-steps until convergence to the incomplete data MLE.

Actually, the EM algorithm will always converge to something but it is possible that it may only
reach a local maximum of the likelihood function. It is common practice to consider several runs of
an EM algorithm with different initial values in order to investigate its sensitivity. This algorithm is
the most common of a class of optimization techniques which allow the maximisation of non-convex
functions via a convex surrogate which matches the function of interest locally.

6.7 Exercises

Exercise 6.7.1.
Let X1, ..., Xn be i.i.d. random variables with probability distribution F . Derive the MLE of the parameters
for each of the following distributions:

(a) F is N (µ, 1).
(b) F is N

(
µ, σ2

)
.

(c) F is Exp (λ).
(d) F is Poi (λ).
(e) F is Ber (p).
(f) F is U[1, b].

Exercise 6.7.2. A garage assumes that the minimal time necessary for an oil change is α. Let X denote
the time for an oil change in a garage which varies from client to client. Assume that X is exponentially
distributed with pdf

f(x) = exp (α− x) for x ≥ α

In order to estimate α the following data on time to change oil was collected:
4.2 3.1 3.6 4.5 5.1 7.6 4.4 3.5 3.8
3.9 4.1 4.3 4.4 3.7 3.5 3.8 3.9

(a) Derive the MLE for α and give the estimate for the above data.
(b) Derive an MLE for the mean time necessary to change the oil and give an estimate.
(c) Give an ML estimate for the probability that an oil change takes longer than 5 minutes.



7. Hypothesis Testing

7.1 Introduction

A hypothesis is a falsifiable claim about the real world; a statement which if true will explain some
observable quantity. Statisticians will be interested in hypotheses like:

1. “The probabilities of a male panda or a female panda being born are equal’,
2. “The number of flying bombs falling on a given area of London during World War II follows a

Poisson distribution”,
3. “The mean systolic blood pressure of 35-year-old men is no higher than that of 40-year-old

women”,
4. “The mean value of Y = log(systolic blood pressure) is independent of X = age”

(i.e. E[Y |X = x] = constant).

These hypotheses can be translated into statements about parameters within a probability model:

1. ‘p1 = p2’,
2. ‘N ∼ Poi (λ) for some λ > 0’, i.e. : pn = P(N = n) = λn exp(−λ)/n! (within the general

probability model pn ≥ 0 ∀n = 0, 1, . . . ;
∑
pn = 1),

3. ‘θ1 ≤ θ2’ and
4. ‘β1 = 0’ (assuming the linear model E[Y |x] = β0 + β1x).

Definition 7.1 (Hypothesis test). A hypothesis test is a procedure for deciding whether to
accept a particular hypothesis as a reasonable simplifying assumption, or to reject it as unreasonable
in the light of the data.

Definition 7.2 (Null hypothesis). The null hypothesis H0 is the default assumption we are
considering making.

Definition 7.3 (Alternative hypothesis). The alternative hypothesis H1 is the alternative
explanation(s) we are considering for the data.

Ordinarily, the null hypothesis is what we would assume to be true in the absence of data which
suggests that it is not. Ordinarily, H0 will explain the data in at least as simple a way as H1.

Definition 7.4 (Type I error). A type I error is made if H0 is rejected when H0 is true. In
some situations this type of error is known as a false positive.

Definition 7.5 (Type II error). A type II error is made if H0 is accepted when H0 is false.
This may also be termed a false negative.

Example 7.1. – In the first example above (pandas) the null hypothesis is H0 : p1 = p2.
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– The alternative hypothesis in the first example would usually be H1 : p1 6= p2, though it could also be
(for example)

1. H1 : p1 < p2,
2. H1 : p1 > p2, or
3. H1 : p1 − p2 = δ for some specified δ 6= 0.
each of these alternative hypotheses makes a slightly different statement about the collection of sit-
uations which we believe are possible. A statistician needs to decide which type of hypothesis test is
appropriate in any real situation.

/

7.2 Simple Hypothesis Tests

The simplest type of hypothesis testing occurs when the probability distribution giving rise to the
data is specified completely under the null and alternative hypotheses.

Definition 7.6 (Simple hypotheses). A simple hypothesis is of the form Hk : θ = θk, where θ
is the parameter vector which parameterises the probabilistic model for the data. A simple hypothesis
specifies the precise value of the parameter vector (i.e. the probability distribution of the data is
specified completely).

Definition 7.7 (Composite hypotheses). A composite hypothesis is of the form Hk : θ ∈ Ωk,
i.e. the parameter θ lies in a specified subset Ωk of the parameter space ΩΘ. This type of hypothesis
specifies an entire collection of values for the parameter vector and so specifies a class of probabilistic
models from which the data may have arisen.

Definition 7.8 (Simple hypothesis test). A simple hypothesis test tests a simple null hy-
pothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1, where θ parameterises the distribution
of our experimental random variables X = X1, X2, . . . Xn.

Although simple hypothesis tests seem appealing, there are many situations in which a statistician
cannot reduce the problem at hand to a clear dichotomy between two fully-specified models for the
data-generating process.

There may be many seemingly sensible approaches to testing a given hypothesis. A reasonable
criterion for choosing between them is to attempt to minimise the chance of making a mistake:
incorrectly rejecting a true null hypothesis, or incorrectly accepting a false null hypothesis.

Definition 7.9 (Size). A test of size α is one which rejects the null hypothesis H0 : θ = θ0 in
favour of the alternative H1 : θ = θ1 iff

X ∈ Cα where P(X ∈ Cα | θ = θ0) = α

for some subset Cα of the sample space S of X.

The size, α, of a test is the probability of rejecting H0 when H0 is in fact true; i.e. size is the
probability of type I error if H0 is true. We want α to be small (α = 0.05, say).

Definition 7.10 (Critical region). The set Cα in Definition 7.9 is called the critical region or
rejection region of the test.

Definition 7.11 (Power & power function). The power function of a test with critical region
Cα is the function

β(θ) = P(X ∈ Cα | θ),

and the power of a simple test is β = β(θ1), i.e. the probability that we reject H0 in favour of H1

when H1 is true.
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Thus a simple test of power β has probability 1− β of a type II error occurring when H1 is true.
Clearly for a fixed size α of test, the larger the power β of a test the better.

However, there is an inevitable trade-off between small size and high power (as in a jury trial:
the more careful one is not to convict an innocent defendant, the more likely one is to free a guilty
one by mistake).

A hypothesis test typically uses a test statistic T (X), whose distribution is known under H0,
and such that extreme values of T (X) are more compatible with H1 that H0.

Many useful hypothesis tests have the following form:

Definition 7.12 (Simple likelihood ratio test). A simple likelihood ratio test (SLRT) of
H0 : θ = θ0 against H1 : θ = θ1 rejects H0 iff

X ∈ C∗α =
{

x
∣∣∣ L(θ0; x)

L(θ1; x)
≤ Aα

}
where L(θ; x) is the likelihood of θ given the data x, and the number Aα is chosen so that the size
of the test is α.

Exercise 7.2.1. Suppose that X1, X2, . . . , Xn
iid∼ N (θ, 1). Show that the likelihood ratio for testing

H0 : θ = 0 against H1 : θ = 1 can be written

λ(x) = exp
[
n
(
x̄− 1

2

)]
.

Hence show that the corresponding SLRT of size α rejects H0 when the test statistic T (X) = x̄ satisfies
T > Φ−1(1− α)/

√
n.

A number of points should be borne in mind:

– For a simple hypothesis test, both H0 and H1 are ‘point hypotheses’, each specifying a particular
value for the parameter θ rather than a region of the parameter space.

– In practice, no hypothesis will be precisely true, so the whole foundation of classical hypothesis
testing seems suspect! Actually, there is a tendency to overuse hypothesis testing: it is appropriate
only when one really does wish to compare competing, well-defined hypotheses. In many problems
the use of point estimation with an appropriate confidence interval is much easier to justify.

– Regarding likelihood as a measure of compatibility between data and model, an SLRT compares
the compatibility of θ0 and θ1 with the observed data x, and accepts H0 iff the ratio is sufficiently
large.

– One reason for the importance of likelihood ratio tests is the following theorem, which shows that
out of all tests of a given size, an SLRT (if one exists) is ‘best’ in a certain sense.

Theorem 7.1 (The Neyman-Pearson lemma). Given random variables X1, X2, . . . , Xn, with
joint density f(x|θ), the simple likelihood ratio test of a fixed size α for testing H0 : θ = θ0 against
H1 : θ = θ1 is at least as powerful as any other test of the same size.

Proof. Fix the size of the test to be α.
Let A be a positive constant and C0 a subset of the sample space satisfying

(a) P(X ∈ C0 | θ = θ0) = α,

(b) X ∈ C0 ⇐⇒ L(θ0; x)

L(θ1; x)
=
f(x|θ0)

f(x|θ1)
≤ A.

Suppose that there exists another test of size α, defined by the critical region C1, i.e.

Reject H0 iff x ∈ C1, where P(x ∈ C1|θ = θ0) = α.
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ΩX

C0

C1

B1
B2

B3

Fig. 7.1. Proof of Neyman-Pearson lemma

Let B1 = C0 ∩ C1, B2 = C0 ∩ Cc1, B3 = Cc0 ∩ C1.
Note that B1 ∪B2 = C0, B1 ∪B3 = C1, and B1, B2 & B3 are disjoint.
Let the power of the likelihood ratio test be I0 = P(X ∈ C0 | θ = θ1),

and the power of the other test be I1 = P(X ∈ C1 | θ = θ1).
We want to show that I0 − I1 ≥ 0.

But

I0 − I1 =
∫
C0
f(x|θ1)dx−

∫
C1
f(x|θ1)dx

=
∫
B1∪B2

f(x|θ1)dx−
∫
B1∪B3

f(x|θ1)dx

=
∫
B2
f(x|θ1)dx−

∫
B3
f(x|θ1)dx.

Also B2 ⊆ C0, so f(x|θ1) ≥ A−1f(x|θ0) for x ∈ B2,

similarly B3 ⊆ Cc0, so f(x|θ1) ≤ A−1f(x|θ0) for x ∈ B3,
Therefore

I0 − I1 ≥ A−1
[∫
B2
f(x|θ0)dx−

∫
B3
f(x|θ0)dx

]
= A−1

[∫
C0
f(x|θ0)dx−

∫
C1
f(x|θ0)dx

]
= A−1[α− α] = 0

as required. �

7.3 Simple Null, Composite Alternative

Suppose that we wish to test the simple null hypothesis H0 : θ = θ0 against the composite alternative
hypothesis H1 : θ ∈ Ω1.

The easiest way to investigate this is to imagine the collection of simple hypothesis tests with
null hypothesis H0 : θ = θ0 and alternative H1 : θ = θ1, where θ1 ∈ Ω1. Then, for any given θ1, an
SLRT is the most powerful test for a given size α. The only problem would be if different values of
θ1 result in different SLRTs.

Definition 7.13 (UMP Tests). A hypothesis test is called a uniformly most powerful test of
H0 : θ = θ0 against H1 : θ = θ1, θ1 ∈ Ω1, if

1. There exists a critical region Cα corresponding to a test of size α not depending on θ1,
2. For all values of θ1 ∈ Ω1, the critical region Cα defines a most powerful test of H0 : θ = θ0

against H1 : θ = θ1.

Exercise 7.3.1. Suppose that X1, X2, . . . , Xn
iid∼ N

(
0, σ2

)
.



7.4 Composite Hypothesis Tests 79

(a) Find the UMP test of H0 : σ2 = 1 against H1 : σ2 > 1.
(b) Find the UMP test of H0 : σ2 = 1 against H1 : σ2 < 1.
(c) Show that no UMP test of H0 : σ2 = 1 against H1 : σ2 6= 1 exists.

There are several points to notice:

– If a UMP test exists, then it is clearly the appropriate test to use. It’s the “best” test for comparing
H0 with any alternative consistent with H1.

– Often UMP tests don’t exist! The requirements above are actually rather strong: in particular,
requiring that a test is the most powerful test for a complicated class of alternative hypotheses
limits the circumstances in which it is possible to specify such a test.

– Sufficient statistics are summaries of data which have the property that the distribution of the
data, given the statistic, is conditionally independent of the data itself (i.e. P[X = x|T (x) = t, θ] =
P[X = x|T (x) = t]). A UMP test involves the data only via a likelihood ratio, so is a function of
the sufficient statistics.

– As a result of the previous point, when a UMP test does exist, the critical region Cα often has a
simple form, and is usually easily found once the distribution of the sufficient statistics have been
determined (hence the importance of the χ2, t and F distributions).

– The above three examples illustrate how important is the form of alternative hypothesis being
considered. The first two are one-sided alternatives whereas H1 : σ2 6= 1 is a two-sided
alternative hypothesis, since σ2 could lie on either side of 1.

7.4 Composite Hypothesis Tests

The most general situation we’ll consider is that in which the parameter space Ω is divided into two
subsets: Ω = Ω0 ∪Ω1, where Ω0 ∩Ω1 = ∅, and the hypotheses are H0 : θ ∈ Ω0, H1 : θ ∈ Ω1.

For example, one may want to test the null hypothesis that the data come from an exponential
distribution against the alternative that the data come from a more general gamma distribution. In
this case, the class of exponential distributions corresponds to the class of gamma distributions in
which the shape parameter is required to be 1. Note that Ω0 is a one-dimensional subspace of Ω,
whilst Ω1 is the remainder of the two-dimensional parameter space of the gamma distribution: here,
as in many other cases, dim(Ω0) < dim(Ω1) = dim(Ω).

One possible approach to this situation is to regard the maximum possible likelihood over θ ∈ Ωi
as a measure of compatibility between the data and the hypothesis Hi (i = 0, 1).

It is convenient to define the following:

– θ̂ is the MLE of θ over the whole parameter space Ω,
– θ̂0 is the MLE of θ over Ω0, i.e. under the null hypothesis H0, and
– θ̂1 is the MLE of θ over Ω1, i.e. under the alternative hypothesis H1.

Note that θ̂ must therefore be the same as either θ̂0 or θ̂1, because Ω = Ω0 ∪Ω1.
One might consider using the likelihood ratio criterion L(θ̂1; x)/L(θ̂0; x), by direct analogy with

the SLRT. However, it is generally easier to use the related ratio L(θ̂; x)/L(θ̂0; x). Note that this
agrees with the likelihood ratio criterion above when θ̂1 has the higher likelihood and is otherwise
equal to 1. This avoids the calculation of the MLE under the constraint that θ ∈ Ω1 which will
generally be somewhat more difficult than the calculation of the unconstrained MLE.

Definition 7.14 (Likelihood Ratio Test (LRT)). A likelihood ratio test rejects H0 : θ̂ ∈ Ω0

in favour of the alternative H1 : θ̂ ∈ Ω1 = Ω \Ω0 iff

λ(x) =
L(θ̂; x)

L(θ̂0; x)
≥ λ, (7.1)

where θ̂ is the MLE of θ over the whole parameter space Ω, θ̂0 is the MLE of θ over Ω0, and the
value λ is fixed so that
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sup
θ∈Ω0

P(λ(X) ≥ λ|θ) = α

where α, the size of the test, is some chosen value.

It is possible to define an equivalent criterion in terms of the log likelihood and the log likelihood
ratio test statistic:

r(x) = `(θ̂; x)− `(θ̂0; x) ≥ λ′, (7.2)

where `(θ; x) = `(θ; x), and λ′ is chosen to give chosen size α = supθ∈Ω0
P(r(X) ≥ λ′|θ). As is

often the case, taking logarithms can simplify computations. Equation 7.2 is often easier to work
with than Equation 7.1—see the exercises and problems.

As ever, the size α is typically chosen by convention to be 0.05 or 0.01.
High values of the test statistic λ(x), or equivalently of r(x), are taken as evidence against the

null hypothesis H0. If λ(x) = 1 or equivalently r(x) = 0 then the null hypothesis explains the
observed data at least as well as the alternative hypothesis.

A note on terminology: The test given in Definition 7.14 is sometimes referred to as a general-
ized likelihood ratio test, and Equation 7.1 a generalized likelihood ratio test statistic. When this
terminology is used the simple likelihood ratio test defined here in definition 7.12 may be referred
to as a likelihood ratio test.

These abstract tests may seem far removed from real statistical problems. However, as the follow-
ing exercises demonstrate, standard widely-used procedures can be readily obtained as particular
cases of the type of procedure introduced above. An understanding of the general case can be
invaluable when trying to interpret or apply specific examples.

Exercise 7.4.1 (Paired t-test). Suppose that X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
, and let X̄ =

∑
Xi/n,

S2 =
∑

(Xi − X̄)2/(n− 1). What is the distribution of T = X̄/(S/
√
n)?

Is the test based on rejecting H0 : µ = 0 for large T a likelihood ratio test?
Assuming that the observed differences in diastolic blood pressure (after–before) are iid and Normally

distributed with mean δD, use the captopril data (Table 7.1) to test the null hypothesis H0 : δD = 0
against the alternative hypothesis H1 : δD 6= 0.

This procedure is known as the paired t test.

Patient Systolic Diastolic
Number before after change before after change

1 210 201 -9 130 125 -5
2 169 165 -4 122 121 -1
3 187 166 -21 124 121 -3
4 160 157 -3 104 106 2
5 167 147 -20 112 101 -11
6 176 145 -31 101 85 -16
7 185 168 -17 121 98 -23
8 206 180 -26 124 105 -19
9 173 147 -26 115 103 -12

10 146 136 -10 102 98 -4
11 174 151 -23 98 90 -8
12 201 168 -33 119 98 -21
13 198 179 -19 106 110 4
14 148 129 -19 107 103 -4
15 154 131 -23 100 82 -18

Table 7.1. Supine systolic and diastolic blood pressures of 15 patients with moderate hypertension (high blood
pressure), immediately before and 2 hours after taking 25 mg of the drug captopril.

Exercise 7.4.2 (Two sample t-test). SupposeX1, X2, . . . , Xm
iid∼ N

(
µX , σ

2
)

and Y1, Y2, . . . , Yn
iid∼

N
(
µY , σ

2
)
.
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(a) Derive the LRT for testing H0 : µX = µY versus H1 : µX 6= µY .
(b) Show that the LRT can be based on the test statistic

T =
x̄− Ȳ

Sp

√
1
m + 1

n

. (7.3)

where

S2
p =

m∑
i=1

(Xi − x̄)2 +
n∑
i=1

(Yi − Ȳ )2

m+ n− 2
. (7.4)

(c) Show that, under H0, T ∼ tm+n−2.
(d) Two groups of female rats were placed on diets with high and low protein content, and the gain

in weight (grammes) between the 28th and 84th days of age was measured for each rat, with the
following results:

High protein diet
134 146 104 119 124 161 107 83 113 129 97 123

Low protein diet
70 118 101 85 107 132 94

Using the test statistic T above, test the null hypothesis that the mean weight gain is the same
under both diets.

Comment: this is called the two sample t-test, and S2
p is the pooled estimate of variance.

Exercise 7.4.3 (F -test). Suppose X1, X2, . . . , Xm
iid∼ N

(
µX , σ

2
X

)
and Y1, Y2, . . . , Yn

iid∼ N
(
µY , σ

2
Y

)
,

where µX , µY , σX and σY are all unknown.
Suppose we wish to test the hypothesis H0 : σ2

X = σ2
Y against the alternative H1 : σ2

X 6= σ2
Y .

(a) Let S2
X =

m∑
i=1

(Xi − x̄)2 and S2
Y =

n∑
i=1

(Yi − Ȳ )2.

What are the distributions of S2
X/σ

2
X and S2

Y /σ
2
Y ?

(b) Under H0, what is the distribution of the statistic

V =
S2
X/(m− 1)

S2
Y /(n− 1)

?

(c) Taking values of V much larger or smaller than 1 as evidence against H0, and given data with
m = 16, n = 16,

∑
xi = 84,

∑
yi = 18,

∑
x2
i = 563,

∑
y2
i = 72, test the null hypothesis H0.

With the alternative hypothesis H1 : σ2
X > σ2

Y , the above procedure is called an F test.

Even in simple cases like this, the null distribution of the log likelihood ratio test statistic r(x)
(7.2) can be difficult or impossible to find analytically. Fortunately, there is a very powerful and
very general theorem that gives the approximate distribution of r(x):

Theorem 7.2 (Wald’s Theorem). Let X1, X2, . . . , Xn
iid∼ f(x|θ) where θ ∈ Ω, and let r(x) denote

the log likelihood ratio test statistic

r(x) = `(θ̂; x)− `(θ̂0; x),

where θ̂ is the MLE of θ over Ω and θ̂0 is the MLE of θ over Ω0 ⊂ Ω.
Then (under reasonable conditions on the pdf (or pmf) f(·|·) which are very often satisfied in

practice), the distribution of 2r(x) converges to a χ2 distribution of dim(Ω) − dim(Ω0) degrees of
freedom as n→∞.
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A proof of this theorem is somewhat beyond the scope of this course, but may be found in
e.g. Kendall & Stuart, ‘The Advanced Theory of Statistics’, Vol. II.

Wald’s theorem implies that, provided the sample size is large, you only need tables of the χ2

distribution to find the critical regions for a wide range of hypothesis tests.

Exercise 7.4.4. Suppose X1, X2, . . . , Xn
iid∼ N (θ, 1), with hypotheses H0 : θ = 0 and H1 : θ arbitrary.

Show that 2r(x) = nx̄2, and hence that Wald’s theorem holds exactly in this case.

Exercise 7.4.5. Suppose now that Xi ∼ N (θi, 1), i = 1, . . . , n are independent, with null hypothesis
H0 : θi = θ ∀i and alternative hypothesis H1 : θi arbitrary.

Show that 2r(x) =
n∑
i=1

(xi − x̄)2. and hence (quoting any other theorems you need) that Wald’s

theorem again holds exactly.

7.5 Exercises

This is a good point to consider the following three problems concerning general hypothesis tests.

Exercise 7.5.1. Suppose X1, X2, . . . , Xn
iid∼ N

(
µ, σ2

)
with null hypothesis H0 : σ2 = 1 and alternative

H1 : σ2 is arbitrary. Show that the LRT will reject H0 for large values of the test statistic 2r(x) =

n(v̂ − 1− log v̂), where v̂ =
n∑
i=1

(xi − x̄)2/n.

Exercise 7.5.2. Let X1, . . . , Xn be independent each with density

f(x) =

{
λx−2e−λ/x if x > 0,

0 otherwise,

where λ is an unknown parameter.

(a) Show that the UMP test of H0 : λ = 1
2 against H1 : λ > 1

2 is of the form:

‘reject H0 if
n∑
i=1

X−1
i ≤ A∗’, where A∗ is chosen to fix the size of the test.

(b) Find the distribution of
n∑
i=1

X−1
i under the null & alternative hypotheses.

(c) You observe values 0.59, 0.36, 0.71, 0.86, 0.13, 0.01, 3.17, 1.18, 3.28, 0.49 for X1, . . . , X10.
Test H0 against H1, and comment on the test in the light of any assumptions made.

Exercise 7.5.3. Assume that a particular bus service runs at regular intervals of θ minutes, but that
you do not know θ. Assume also that the times you find you have to wait for a bus on n occasions,
X1, . . . , Xn, are independent and identically distributed with density

f(x|θ) =

{
θ−1 if 0 ≤ x ≤ θ,
0 otherwise.

(a) Discuss briefly when the above assumptions would be reasonable in practice.
(b) Find the likelihood L(θ; x) for θ given the data (X1, . . . , Xn) = x = (x1, . . . , xn).
(c) Find the most powerful test of size α of the hypothesis H0 : θ = θ0 = 20 against the alternative

H1 : θ = θ1 > 20.
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7.6 The Multinomial Distribution and χ2 Tests

Although we have focused on continuous distributions in this section, we can also apply the same
ideas to discrete distributions. Recall the Multinomial distribution which was defined in section
4.2.1.

Exercise 7.6.1. By partial differentiation of the likelihood function, show that the MLEs θ̂i of the
parameters θi of the Mult (n, θ) distribution satisfy the equations

xi

θ̂i
− xk

1−
k−1∑
j=1

θ̂j

= 0, (i = 1, . . . , k − 1)

and hence that θ̂i = xi/n for i = 1, . . . , k.

7.6.1 Chi-Squared Tests

Suppose one wishes to test the null hypothesis H0 that, in the multinomial distribution 4.1, θ is
some specified function θ(φ) of another parameter φ. The alternative hypothesis H1 is that θ is
arbitrary.

Exercise 7.6.2. Suppose H0 is that X1, X2, . . . Xn
iid∼ Bin (3, φ). Let Yi (for i = 1, 2, 3, 4) denote the

number of observations Xj taking value i− 1. What is the null distribution of Y = (Y1, Y2, Y3, Y4) (i.e.
the distribution of this vector under the assumption that the null hypothesis holds)?

The log likelihood ratio test statistic r(X) is given by

r(X) =
k∑
i=1

Yi log θ̂i −
k∑
i=1

Yi log θi(φ̂) (7.5)

where θ̂i = yi/n for i = 1, . . . , k.
By Wald’s theorem (Theorem 7.2), under H0, 2r(X) has approximately a χ2 distribution for

sufficiently large samples:

2
k∑
i=1

Yi[log θ̂i − log θi(φ̂)] ∼ χ2
k1−k0

(7.6)

where

θ̂i = Yi/n,
k0 is the dimension of the parameter φ, and

k1 = k − 1 is the dimension of θ under the constraint
k∑
i=1

θi = 1.

It is straightforward to check, using a Taylor series expansion of the log function, that provided
E[Yi] is large ∀ i,

2

k∑
i=1

Yi[log θ̂i − log θi(φ̂)] ≈
k∑
i=1

(Yi − µi)2

µi
, (7.7)

where µi = nθi(φ̂) is the expected number of individuals (under H0) in the ith category.
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Definition 7.15 (Chi-squared Goodness of Fit Statistic).

X2 =
k∑
i=1

(oi − ei)2

ei
, (7.8)

where oi is the observed count in the ith category and ei is the corresponding expected count under
the null hypothesis, is called the χ2 goodness-of-fit statistic.

Under H0, X2 has approximately a χ2 distribution with number of degrees of freedom being
(number of categories) - 1 - (number of parameters estimated under H0).

This approximation works well provided all the expected counts are reasonably large (in practice,
it’s often employed when the expected number of counts are all at least 5 and works tolerably well
even here).

This χ2 test was suggested by Karl Pearson before the theory of hypothesis testing was fully
developed.

Test of Independence in a Contingency Table The same test statistic can also be used to test
for independence of variables in a contingency table. In this case, the row and column totals are
fixed in addition to the grand total, hence we lose 1 + (r − 1) + (c− 1) degrees of freedom, leaving
rc− r − c+ 1 = (r − 1)(c− 1) degrees of freedom.

Example 7.2. Use the following 3 × 3 contingency table to test at the 0.01 level of significance whether
a person’s ability in mathematics is independent of her/his interest in statistics.

Ability in Maths
Low Average High Totals

Interest in Stats Low 63 42 15 120
Average 58 61 31 150
High 14 47 29 90

Totals 135 150 75 360

H0 : Ability in maths and interest in statistics are independent.

versus H1 : Ability in maths and interest in statistics are not independent.

Decision rule: reject H0 if X2 > χ2
0.01,4 = 13.277 where

X2 =

r∑
i=1

c∑
j=1

(observedij − expectedij)
2

expectedij

Under H0, i.e. independence, the expected frequencies are given by the product of corresponding marginal
estimated probabilities times the total number of individuals. For example for the first row these are(

120
360

) (
135
360

)
360 = 45,

(
120
360

) (
150
360

)
360 = 50, and 120− 45− 50 = 25. Thus

X2 =

r∑
i=1

c∑
j=1

(63− 45)2

45
+

(42− 50)2

50
+ · · ·+ (29− 18.75)2

18.75
= 32.14

Since 32.14 > 13.277 the null hypothesis must be rejected. /
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7.7 Exercises

Exercise 7.7.1. The random variables X1, X2, . . . , Xn are iid with P(Xi = j) = pj for j = 1, 2, 3, 4,
where

∑
pj = 1 and pj > 0 for each j = 1, 2, 3, 4.

Interest centres on the hypothesis H0 that p1 = p2 and simultaneously p3 = p4.

(a) Define the following terms
i. a hypothesis test,
ii. simple and composite hypotheses, and
iii. a likelihood ratio test.

(b) Letting θ = (p1, p2, p3, p4), X = (X1, . . . , Xn)T with observed values x = (x1, . . . , xn)T, and letting
yj denote the number of x1, x2, . . . , xn equal to j, what is the likelihood L(θ|x)?

(c) Assume the usual regularity conditions, i.e. that the distribution of −2`(θ|x) tends to χ2
ν as the

sample size n→∞. What are the dimension of the parameter space Ωθ and the number of degrees
of freedom ν of the asymptotic chi-squared distribution?

(d) By partial differentiation of the log-likelihood, or otherwise, show that the maximum likelihood
estimator of pj is yj/n.

(e) Hence show that the asymptotic test statistic of H0 : p1 = p2 and p3 = p4 is

2r(x) = 2

4∑
j=1

yj log(yj/mj),

where m1 = m2 = (y1 + y2)/2 and m3 = m4 = (y3 + y4)/2.
(f) In a hospital casualty unit, the numbers of limb fractures seen over a certain period of time are:

Side
Left Right

Arm 46 49
Leg 22 32

Using the test developed above, test the hypothesis that limb fractures are equally likely to occur on
the right side as on the left side.
Discuss briefly whether the assumptions underlying the test appear reasonable here.

Exercise 7.7.2. Suppose 200 students are selected at random at a large university and each student in
the sample is classified both according to the faculty in which he/she is enrolled and according to his/her
preference for either of two candidates A and B in a forthcoming election.

Candidate preferred
A B Undecided Totals

Curriculum Engineering
& Science

24 23 12 59

Humanities
& Social Science

24 14 10 48

Fine Arts 17 8 13 38
Industrial

& Public Administration
27 19 9 55

Totals 92 64 44 200

Test the hypothesis

H0 : pij = pi+p+j for i = 1, . . . , R; j = 1, . . . , C

versus H1 : H0 is not true.
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where
pij : probability that an individual selected at random will be classified with the i′th row and the j′th
column of the table,
pi+ : marginal probability that individual will be classified in the i′th row,
p+j : marginal probability that individual will be classified in the j′th column.



8. Simulation for Inference

You will already be familiar with the material in this chapter from the first half of the lecture course.
This chapter is, intentionally, rather more verbose than much of the rest of the lecture notes. This
is to allow students taking ST903 who have not previously encountered Monte Carlo methods to
familiarise themselves with the material. You will find that the notes you took in that part of the
course cover what you need to know about Monte Carlo methods for the entirety of this course. It
is hoped that you will find this brief precis of the fundamentals useful. Rest assured, only a short
amount of time will be spent on it.

You may find that section 8.3 is rather different to the simulation-based techniques covered in
the first part of the course. It’s certainly worth making sure that this material makes sense, even if
you’re confident that you have a firm grasp of Monte Carlo methods.

The Monte Carlo method is used to estimate features of distributions that we cannot compute
analytically. It is particularly well suited to the approximation of expectations with respect to a
particular distribution, but can also be used for optimisation, the approximation of quantiles and a
host of other tasks.

Values are generated from a specified distribution, simulating a random sample from a specified
population. The properties of the sample are then used to approximate the properties of that pop-
ulation. Note that this is in some ways an inversion of the usual statistical use of sampling theory:
rather than using knowledge of distributions to make inferences about a realised sample, the same
connection is used to write down quantities of interest in probabilistic terms and then to use a
related sample to approximate that probabilistic representation.

8.1 Background and History

Monte Carlo methods may be thought of as a collection of computational techniques for the (usually
approximate) solution of mathematical problems, which make fundamental use of random samples.
Two classes of statistical problems are most commonly addressed within this framework: integration
and optimisation. The next few sections will concentrate on the former: it is the (approximate)
calculation of integrals using collections of random samples that people usually think of when they
refer to the Monte Carlo Method. Monte Carlo methodology is also widely used in the simulation
of physical, chemical and biological systems.

In the field of statistics, Monte Carlo methods are most interesting as a computational device
for performing statistical inference. Many interesting models have extremely complex structures and
cannot easily be dealt with using traditional techniques. Within the Bayesian paradigm, all infor-
mation upon which inference can be based is encoded within the posterior probability distribution
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(see chapter 9). Using Monte Carlo methods we are able to characterise these distributions, and
calculate expectations under them: the primary inferential technique.

8.1.1 A Simple Example

Monte Carlo methods invert the usual problem of statistics: rather than estimating random quanti-
ties in a deterministic manner, random quantities are employed to provide estimates of deterministic
quantities.

Example 8.1 (Estimating π). One simple Monte Carlo experiment considers rain which falls uni-
formly at random (i.e. the location of any raindrop may be interpreted as a realisation of a uniformly
distributed random variable) over some square region of space, and a circle inscribed within that square.
Without reference to any formal probability theory, it is intuitive that the probability of a uniform raindrop
falling in any region within the square must be proportional to the area of that region and independent
of its location. Consequently, the probability, p, that a raindrop lies within the inscribed circle may be
expressed in terms of their areas. If the square has sides of length 2r the circle must be of radius r and:

p =
πr2

(2r)2
=
π

4
.

In itself this may not seem particularly interesting. However, having expressed π as a function of this
probability its estimators can be used to approximate π. Proceeding analytically is not possible: obtaining
the probability requires knowledge of π. Intuitively, it is possible to estimate this probability by counting
the proportion of raindrops which lie within the circle: if n raindrops are observed and m of those lie
within the circle then one may estimate p, using p̂ = m/n.

Figure 8.1 shows a computer simulation in which 500 raindrops were distributed uniformly over a
square — in this case p̂ = 383/500 and, defining π̂ via the relationship between p and π, π̂ = 383/125 =
3.064. A poor estimate of π, considering the computational effort used, but an estimate nonetheless. m
is, in fact, a realisation of a Bin (n, p) random variable.

Fig. 8.1. Estimating π: 383 of the 500 samples lie within the circle.

This table shows results of this Monte Carlo simulation for increasing n

n 100 500 1000 10000 100000
4m 3.28 3.064 3.132 3.138 3.13828

1.96 · 4 ·
√

x̄(1−x̄)
n

0.308 0.148 0.102 0.032 0.010
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Using the fact that m is a realisation of a binomial random variable, M , together with the large values
of n used, we can employ a CLT to argue that 4M is approximately distributed according to a normal
distribution:

4M ∼ N

(
π,

16π4 (1− π/4)

n

)
leading to the estimate for the standard error used in the table. /

8.1.2 History

Whilst there is some debate about the nature of the first Monte Carlo computations ever carried
out (with some authors arguing that they date back as far as the times of ancient Babylon), it
is generally agreed that the first modern Monte Carlo experiments were carried out in the latter
decades of the nineteenth century and, like the above example, were concerned with the estimation
of π.

Example 8.2 (Buffon’s Needle). Consider dropping a needle of length l uniformly onto an array of
parallel lines separated from one another by a distance, d > l. Figure 8.2 illustrates this. Originally, the
question was what is the probability that the needle intersects a line? This question is relatively easy to
answer. Assume that the array is large enough that edge effects are negligible, and assume that the x
and y coordinates of the needles centre are uniform over the array and the orientation of the needle is
uniformly distributed over the interval [0, π).

d

l

θ

l sin θ

Fig. 8.2. Buffon’s needles: thicker needles intersect the grid lines.

As figure 8.2 illustrates, the needle intersecting a line is equivalent to a rectangle of width l sin θ
intersecting that line. This happens, for given θ, with probability

P[intersection|θ] =
l sin θ

d
.

The angle θ is uniform on [0, π), hence:
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P[intersection] =

∫ π

0
P[intersection|θ] 1

π
dθ

=
l

πd

∫ π

0
sin θ dθ =

2l

πd
.

Consequently, if n needles are dropped then the average number which would intersect a line if the
experiment were carried out many times is 2nl/dπ.

In a Monte Carlo setting, this means that π may be estimated using:

π̂ =
2nl

Md
,

where M is the number of needles crossing a line when n are dropped. In 1901 Mario Lazzarini reported
carrying this experiment out using a 2.5cm long needle and lines separated by d = 3cm. 1808 of his 3408
needles crossed a line, suggesting

π ≈ 2× 3408× 2.5

1808× 3
=

355

133
,

which, remarkably, corresponds to the best rational approximation to π with denominator below 16,000
leading to suggestions that this was an early example of fabricated data. /

Although these early examples of Monte Carlo techniques were in some sense successful, the cost
of carrying out the experiments rendered them largely impractical and of only specialist interest.
This began to change in Los Alamos in the 1940s, when physicists working on particle transport
problems began solving them using something which they termed the “Monte Carlo method”. The
precise origin of the name varies from one account to another, but there is general agreement that
it stems from its relationship with the games of chance played in the casinos of Monte Carlo. The
revolutionary step introduced at this time was the use of random number generators (and latterly
digital computers producing pseudorandom numbers) in place of physical experiments to perform
the calculation. The physics community has continued to contribute to the development of Monte
Carlo methodology to the present day.

Perhaps the final revolution in Monte Carlo methodology occurred during the 1980s, during which
the increasing use of Bayesian methods (see chapter 9) and the associated need to evaluate complex
high-dimensional integrals led to interest in and development of the methods by the statistics com-
munity. This was the point at which the use of Monte Carlo methods to approximate general integral
expressions became widespread. The increased interest also drove — and continues to drive — the
development of methodology and theory amongst researchers outside of the traditional application
domains of Monte Carlo integration.

8.2 Basic Monte Carlo Inference

In order to develop some theory, it’s useful to have some simple examples to refer to. The following
toy example supplements the estimation of π and Buffon’s needle experiment described previously.

Example 8.3. Consider an experiment where a fair-sided die is rolled and

X =

{
1 if the die shows a 1 or a 2
0 otherwise.

Let U ∼ U(0, 1). Then X can be simulated as

X =

{
1 if 0 < U ≤ 1

3
0 if 1

3 < U < 1
.

For example, we might generate the following
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Ui 0.47 0.78 0.55 0.96 0.029 0.84 0.60 0.10 0.05 0.46
Xi 0 0 0 0 1 0 0 1 1 0

From which we can estimate x̄ = 0.3. Note that x̄ is a consistent estimator of µ = E[X]: x̄
p−→ µ. /

Exercise 8.2.1. Suppose a computer programme has been written to

1. Draw 60 x values from a distribution uniform between 0 and 100.
2. Count the number g of x values less than 20.
3. Repeat this procedure to get 5000 g values, g1, . . . g5000.
4. Calculate the average gav and the variance gvar of the g values.

(i) What is this Monte Carlo study designed to investigate?
(ii) What number should gav be close to? Explain your logic.
(iii) What number should gvar be close to? Explain your logic.

8.2.1 Monte Carlo Integration

Suppose we want to evaluate
∫ b
a g(x) dx a continuous function g over the closed and bounded [a, b].

We can use the Monte Carlo method to evaluate this integral numerically when the anti-derivative
of g is not available analytically. Note that∫ b

a
g(x) dx = (b− a)

∫ b

a
g(x)

1

b− a
dx = (b− a)E[g(X)]

where X ∼ U(a, b). Thus we proceed as follows

1. Generate a random sample X1, . . . , Xn from U(a, b).
2. Compute Yi = (b− a)g(Xi).

3. Compute Ȳ — a consistent estimator of
∫ b
a g(x) dx.

In fact, this is a particular case of a more general principle. If we can write an integral of interest
as the expectation of a function of some random variable then we can use sampled realisations of
that random variable in order to approximate the expectation.

If X ∼ fX for some density fX over a space X and we have ϕ : X → R then we can approximate

E[ϕ(X)] =

∫
X
ϕ(x)fX(x)dx

in the following way:

1. Generate a random sample X1, . . . , Xn from fX .
2. Compute Yi = ϕ(Xi).
3. Compute Ȳ — an unbiased and consistent estimator of E[ϕ(X)].

Note that, if Yi has finite second moment, then the CLT (theorem 5.1) also tells us that Ȳ is
asymptotically normal with known variance.

Example 8.4 (Example 8.1 contd.). This Monte Carlo integration argument can be used to for-
mally justify the approach used to estimate π in example 8.1 by considering a function which takes a
value of one within the circle and 0 outside and calculating its expectation under the distribution of the
coordinates which is uniform over the square. To see this explicitly, writing this function as

Icircle(x, y) =

{
1 if x2 + y2 ≤ r2

0 otherwise
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it is clear that the area of the circle of interest is equal to the integral of this function over any region
which includes the circle: such as the square in which it is inscribed. Consequently, our representation for
π may be written in the form

π/4 = p =

∫ r
−r
∫ r
−r Icircle(x, y)dxdy

(2r)2

=

∫ r

−r

∫ r

−r

1

(2r)2
Icircle(x, y)dxdy = E[Icircle(X,Y )].

where the expectation is with respect to the uniform distribution over the square [−r, r]× [−r, r] which
has density (2r)−2 over that square and 0 elsewhere.

Approximating the final line in this expression via the simple Monte Carlo method would give exactly
the same estimator as that described above. The integral may be approximated by sampling pairs of
points (X,Y ) from this distribution and calculating the mean value of the function Icircle at the sampled
points. /

Example 8.5. (A More Realistic Simulation Application) Consider a stock whose current price is S0

and suppose that the price at u years in the future is

Su = S0e
(r−σ2/2)u+σu1/2Z

where

Z ∼ N(r − σ2/2, σ2u)

and r is the risk-free interest rate.
Suppose we need to price the option to buy one share for price q at a particular u.
The value of the option at time u will be h(Su) where

h(s) =

{
s− q if s > q,

0 otherwise.

The Black-Scholes formula for pricing options suggests that fair price for the option is the value of
E[h(Su)], which is e−ruE[h(Su)] (the exponential term provides discounting to compensate for the fact
that the money used to buy the option could also produce a profit if invested in “risk-free” investments).

For example, suppose that q = S0, r = 0.06, u = 1, and σ = 0.1.
Then the Black-Scholes formula says the option price should be 0.0726S0.
But what if σ is unknown? Here we consider a simple model for this sort of problem; the mathematical

finance literature contains rather more sophisticated approaches to the problem.
Suppose that both Z and σ are independent random variables.
Let Z ∼ N(0, 1) and let

τ =
1

σ2
∼ Gamma (α, β)

α and β might be obtained by estimating the variance of stock prices based on historical data combined
with expert opinion.

The Black-Scholes formula tells us that the fair price, given σ is just the conditional mean of
e−ruh(Su). If we don’t know σ then calculating the expectation of this fair price with respect to σ
(which we assumed we knew the distribution of) would tell us what we want to know.

To estimate this marginal mean of e−ruh(Su) , we can simulate a large number of σ(i), evaluate the
Black-Scholes formula in each case and average the results.

As before, let q = S0, r = 0.06, and u = 1, but now

1

σ2
∼ Gamma (2, 0.0127)
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Thus E[σ] = 0.1 but σ has substantial variablity.
We sample 1,000,000 values of σ from this distribution and compute the Black-Scholes formula for

each value.
The average, is 0.0756S0 with standard error 1.814S0 × 10−5, only slightly larger than when we

assumed σ = 0.1.
This method can be rather easily extended. For example, we might have a much more complicated

model for σ. As we only need to be able to simulate values of σ to calculate expectations of this sort,
this doesn’t dramatically increase the complexity of the problem. When the price process Su is even more
complicated, we can simulate Su directly and estimate the mean of h(Su). /

In order to employ simple Monte Carlo to calculate an expectation with respect to a distribution,
it is necessary to be able to sample from the distribution of interest. This requirement is not neces-
sarily easily satisfied: Monte Carlo methods are generally used to deal with complicated distributions
which do not admit tractable analytic solutions and it can be very difficult to obtain samples from
such distributions. Two generally-applicable methods for obtaining samples from known distribu-
tions are introduced below, and this is followed by a method for estimating expectations under a
distribution using samples from a different distribution.

8.2.2 Inversion Sampling

Assume that the distribution of interest is univariate and has known distribution function F (x) =
P[X ≤ x]. The generalised inverse of a distribution function, F , may be defined as:

F−(p) = inf {x : F (x) ≥ p} ,

that is, F−(p) is the smallest value of x such that F (x) is at least p. This allows us to talk about
“the inverse” of the distribution function when it isn’t bijective (F may map a range of values to
the same value if there’s a interval with zero probability).

Inversion sampling transforms a random variable, U , with a uniform distribution on the interval
[0, 1] (i.e. , a random variable with density 1 over [0, 1] and 0 elsewhere), by setting X = F−(U). If
F− is the generalised inverse of the distribution function of interest, then X has the distribution of
interest:

P[X ≤ x] =P[F−(U) ≤ x]

=P[U ≤ F (x)] by monotonicity

=F (x).

Note that this method follows essentially automatically from theorem 4.6 and, indeed, provides a
solution to exercise 4.9.2. Figure 8.3 illustrates the method. The hollow circles on the vertical axis
correspond to three realisations of U and the filled circles on the horizontal axis are the corresponding
realisations of X. This method can be used to sample realisations of any one-dimensional real-valued
random variable, provided that the inverse of the distribution function is known.

8.2.3 Rejection Sampling

Unfortunately, the conditions given in the final sentence of the previous section very often fail to be
met in practice: many interesting distributions are multivariate and it’s very often not practical to
obtain the inverse of the distribution function even in univariate cases.

A more general approach is motivated by the fact that sampling a collection of random variables
according to a given density is equivalent to sampling uniformly in the area under the density
graph and discarding the additional dimension. More formally, sampling uniformly from the region
{(x, u) : u < f(x)} and retaining only x is equivalent to sampling x according to f(x). Rejection
sampling provides samples uniformly under the graph of the density of interest by sampling from
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Fig. 8.3. Inversion sampling. Filled circles illustrate samples from the illustrated distribution function.
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Fig. 8.4. Rejection sampling. Filled circles indicate accepted samples; hollow circles rejected proposals.

a larger area and rejecting those samples which fall outside the region of interest. Formally, given
a density, g, from which it is possible to obtain samples and some known constant, M ≥ supx

f(x)
g(x) ,

one can consider the following algorithm to obtain a sample from f :

1. Sample X from g.
2. Sample U from U(0,M).
3. If U > f(X)/g(X) reject X and go to 1.
4. Accept X as a sample from f .

Figure 8.4 illustrates the principle: the filled circles indicate accepted samples (which are distributed
uniformly beneath the bimodal density) the hollow circles were rejected (samples were generated
uniformly in the area under the rescaled unimodal density).

The above algorithm is constructed such that given a sampled value, x, the probability that it
will be accepted is:

P[Xaccepted|X = x] =P[U ≤ f(x)/g(x)] =

∫ f(x)/g(x)

0
1/Mdx = f(x)/Mg(x).
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Notice that, on average 1 sample in M is accepted:

P[XAccepted] =P[U ≤ f(X)/g(X)] =

∫
P(X Accepted|X = x)P(X = x)dx

=

∫
g(x) · f(x)

Mg(x)
dx =

1

M
.

Consequently, for this to be an efficient strategy it must be possible to sample from a distribution
for which a small value of this constant can be found.

Proposition 8.1 (Correctness of Rejection Sampling). The distribution of the accepted sam-
ples is, indeed, f .

Proof. The proof follows by considering the distribution function of the accepted samples.

P
[
X ≤ x

∣∣∣∣U ≤ f(X)

g(X)

]
=P
[
X ≤ x, U ≤ f(X)

g(X)

]/
P
[
U ≤ f(X)

g(X)

]
=

∫ x

−∞
g(x) · f(x)

Mg(x)
dx
/ 1

M

=
1

M

∫ x

−∞
f(x)dx ·M = F (x).

The equivalance of distributions with identical distribution functions completes the proof. �

Example 8.6. Suppose we wish to simulate a random variable X having a Beta
(

1
2 ,

1
2

)
distribution, i.e.

f(x) =
1

π
x−

1
2 (1− x)−

1
2 for 0 < x < 1

Note that

f(x) ≤ 1

π
(x−

1
2 + (1− x)−

1
2 ) for 0 < x < 1

The RHS can be written as Mg(x) with M = 4
π and

g(x) =
1

2

[
1

2x
1
2

+
1

2(1− x)
1
2

]
.

which is a half-and-half mixture of two pdf’s g1, g2

g1(x) =
1

2
√
x
, 0 < x < 1 and g2(x) =

1

2
√

(1− x)
, 0 < x < 1.

It is easy to generate observations from g1 and g2 using the probability integral transformation (PIT).
Thus we can use the following acceptance/rejection algorithm

1. Simulate 3 independent random variables U1, U2, U3 from U(0, 1).
2. If U1 ≤ 1

2 simulate a value from g1 using the PIT applied to U2. Otherwise simulate a value from g2

using PIT applied to U2. This gives a proposal Y from pdf g(y).

3. If U3 ≤ f(y)
Mg(y) , accept the proposal and set X = Y . Otherwise repeat the process.

/

Exercise 8.2.2. Suppose you want to simulate values of a random variable with pdf

f(x) = (2π)−
1
2 exp

(
−x

2

2

)
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Fig. 8.5. Importance sampling: ten samples and their weights (green vertical lines) from a proposal distribution (blue)
weighted according to the weight function (solid line) appropriate for the target distribution (red).

using the Cauchy distribution with pdf

g(x) = π−1(1 + x2)−1

as the instrumental distribution in an rejection sampler. Describe how to do it. What it the value of M
and the probability of acceptance? How would things change if you could sample from f(x) but were
interested in g(x)?

Various techniques to improve the computational efficiency of the method have been devleoped,
but these do not qualitative change the implementation or behaviour of the approach. In some
sources rejection sampling is referred to as the accept-reject method.

8.2.4 Importance Sampling

Rejection sampling can work well if it is possible to find a proposal g which is everywhere similar
to f and such that M can be found and is small. However, it suffers from a number of deficiencies:

– To work efficiently it requires that f is nowhere much greater than g (so that M can be small);
this can be difficult to arrange, particularly in multivariate settings.

– An explicit (and ideally tight) bound on f/g must be available; again, this can be all but impossible
in high-dimensional problems.

– We must know the normalising constant of both f and g (or, at least, be able to incorporate
these into M). As will become apparent in chapter 9 we often know f only up to an unknown
normalising constant in problems of statistical interest.

– It seems somewhat wasteful to simply discard all of those reject samples (some other approaches
do exist to make use of these samples to some extent).

Another technique which makes use of a distribution other than that of interest, but which is
used specifically for calculating expectations, is known as importance sampling, as it attaches
a weight to each sample based on its significance to the integral of interest. If f is the density of
interest, we wish to calculate the expectation of ϕ under that distribution:

E(ϕ(X)) =

∫
ϕ(x)f(x)dx

=

∫
ϕ(x)

f(x)

g(x)
g(x)dx,
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provided that f(x)/g(x) <∞ (more formally, we require that f is absolutely continuous with respect
to g, meaning that any set which has positive probability under f also has positive probability
under g). An importance sampling estimate of the expectation of ϕ with respect to f is obtained by
calculating the simple Monte Carlo estimate of ϕf/g with samples from g. So, given X1, . . . , Xn ∼ g
we have if we set Yi = f(Xi)/g(Xi)ϕ(Xi) that:

Y =
1

n

n∑
i=1

Yi =
1

n

n∑
i=1

f(Xi)

g(Xi)
ϕ(Xi).

is an unbiased and consistent estimate of E[ϕ(X)].
As presented above, it is necessary to know f(x)/g(x) pointwise. A simple modification to the

algorithm (which leads to an estimator which is biased for finite samples, but consistent) allows for
situations in which f(x)/g(x) is only known up to a normalising constant. If w(x) = Cf(x)/g(x),
then

∫
w(x)ϕ(x)g(x)dx = CE(ϕ) and so, if we let 1 denote the unit function (the function which

maps every point to 1), then we know that:∫
w(x)ϕ(x)g(x)dx∫
w(x)1(x)g(x)dx

=
CE(ϕ)

CE(1)
= E(ϕ)

and so, by approximating both the numerator and denominator using a collection of samples from
g, an estimator for E(ϕ) is given by:

n∑
i=1

w(Xi)ϕ(Xi)

n∑
i=1

w(Xi)

.

in this case, the estimate is biased. The ratio of two unbiased estimators is not generally itself
unbiased. However, the consistency property of the two estimators is transferred to their ratio
and this self-normalised importance sampling estimator is consistent (and asymptotically
unbiased) — this can be proved by considering a multivariate analogue of theorem 5.6. As the
two estimators in the ratio are typically positive correlated it’s very often the case that the self-
normalised estimator has lower variance than the properly normalised form: another example of a
bias-variance trade-off. As such, the self-normalised form is often used (and produces estimates with
smaller MSE) even when the normalising constants are known.

8.3 Bootstrap Procedures

The previous sections of this chapter have been concerned with techniques known as Monte Carlo
methods. Although the techniques discussed in the present section are motivated by similar ideas,
they are generally regarded as being qualitatively different. Rather than attempting to calculate
expectations with respect to a distribution of interest by employing samples from that distribution,
we will consider what we can tell about the distribution of functions of a sample we really have (e.g.
the sampling distribution of an estimator) based upon subsets of the sample drawn by sampling
with replacement from within the original sample.

Suppose we have a sample of i.i.d. RV’s X1, . . . , Xn and suppose inferences about a parameter θ
are to be made on the basis of this sample.

Qualitatively, Bootstrap procedures simulate additional samples based on the observed sample.
From each sample set an estimate of θ is determined and inferences are drawn from these estimates.

The Bootstrap Method

Let F denote the distribution of the population and let x1, . . . , xn be the observed data. The (non-
parametric) bootstrap method proceeds as follows
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1. Construct an empirical distribution function, i.e. estimate F via F̂ with P (xi) = 1
n

F̂ (x) =
1

n

n∑
i=1

I[xi,∞)(x) =
“Number of xi ≤ x”

n

where

I(−∞,xi](x) =

{
1 if x ∈ (∞, xi]
0 otherwise

This is a formal way of describing a (random) discrete probability distribution which places a
mass of 1/n n each of the n values in the sample.

2. For i = 1, . . . , B:
– Draw samples of size n from F̂ (x) Xi

1, . . . , X
i
n, (bootstrap samples). This process is some-

times termed resampling as it amounts to sampling from a sample.
– For each bootstrap sample, Xi

1, . . . , X
i
n evaluate an estimator of θ, to obtain an estimate θ̂?i

3. The set {θ̂?i }Bi=1 is a sample from the distribution of θ̂? — the bootstrap distribution.

Motivating hypothesis: The relationship between θ̂ and F is similar to the relationship be-
tween θ̂? and F̂ , so that the distribution of θ̂ − θ is similar to the bootstrap distribution of θ̂? − θ̂.

If this hypothesis is true (which, in some sense it is) we can learn about θ by learning about the
bootstrap distribution of θ̂?.

Estimating Variance and Bias of θ̂

Suppose we draw B bootstrap samples, giving estimates θ̂?i , i = 1, . . . , n. We compute

θ̄? =
1

B

B∑
i=1

θ̂?i

and σ̂2(θ̂?) =
1

B − 1

B∑
i=1

(θ̂?i − θ̄?)2

to give estimates of the variance and bias:

Var[θ̂] ≈ σ̂2(θ̂?) and Bias[θ̂] ≈ θ̄? − θ̂

From this we obtain a bias-adjusted estimate of θ:

ˆ̂
θ := θ̂ − (θ̄? − θ̂) = 2θ̂ − θ̄?

Example 8.7. Consider the following random sample from a population with unknown mean

7.0 19.8 12.8 6.0 15.2 5.1 15.0 7.6

Suppose we are interested in the 25% trimmed mean:

θ̂ =
1

6
(7.0 + 12.8 + 6.0 + 15.2 + 15.0 + 7.6) = 10.6

We obtain 10 bootstrap samples by using uniform random numbers to sample with replacement from
the observed sample and calculate the 25% trimmed mean in each case.

We obtain the results

θ̂?1 = 13.43, θ̂?2 = 9.68, . . . , θ̂?10 = 11.53

The mean and variance of these estimates are

θ̄? = 10.904 and σ̂2(θ̂?) = 4.604

The latter estimates the variance of θ̂ and the bias-adjusted estimate is

2θ̂ − θ̄? = 2 · 10.6− 10.904 = 10.296

/
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Bootstrap Confidence Interval

One common method of forming a bootstrap confidence interval is the percentile method which
simply equates quantiles of the distribution of θ̂ to the equivalent quantiles of the bootstrap distri-
bution of θ̂?.

Thus the (1− α)100% percentile interval is(
θ̂?(α2 ), θ̂

?
(1−α

2 )

)
Under certain mild assumptions it can be shown that the percentile inteval has the correct

coverage probability.

Example 8.8. (Example contd) We generate 1000 bootstrap samples and calculate the 25% trimmed
mean for each. The 50th smallest and the 50th largest θ̂∗ are 7.517 and 14.50 respectively, i.e.

θ̂?(0.05) = 7.517 and θ̂?(0.95) = 14.50

Hence the 90% bootstrap confidence interval is (7.517, 14.50). /

Hypothesis Testing

The equivalence between confidence intervals and hypothesis tests may be used to implement a
(two-sided) bootstrap hypothesis test.

In the example above the 90% CI is

(7.517, 14.50)

Hence if we were to test

H0 : θ = 6.5

versus H1 : θ 6= 6.5

we would reject H0 in favour of H1 at the 10% significance level.

Exercise 8.3.1. Explain how bootstrapping could be used to test whether a population is symmetric

based on the sample skewness µ3/µ
3/2
2 .

Example 8.9. (Application: Difference in Means) Frisby and Clatworthy (1975) studied the time that
it took people to fuse random-dot stereograms: pairs of images that at first appearance seem to be
random dots, but when viewed at a certain distance fuse to appear as a recognisable object.

The experimenters were concerned with the extent to which prior information about the recognisable
object affected the time it took to fuse the images.

The conducted an experiment in which 43 subjects were not shown a picture of the object before
being asked to fuse the images, whilst a second group of 35 were.

The results of the experiment were as follows:

Mean Variance
Group 1 8.560 2745.7
Group 2 5.551 783.9

We would like to test whether or not the mean time taken without prior information is no worse than
the mean time taken with prior information.

H0 : µ1 ≤ µ2

versus H1 : µ1 > µ2

One approach would be to use a two-sample t-test. This assumes the two samples are drawn from
normal populations with equal variances. We plot the data from each group:
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Since the two-sample t-test is not appropriate, we use a bootstrap hypothesis test instead. Given the
sample data (x1,x2) we proceed as follows

1. Draw 1000 bootstrap samples consisting of
– a sample x?1 of size 43 drawn with replacement from x1,
– a sample x?2 of size 35 drawn with replacement from x2.

2. Evaluate x̄?1b and x̄?2b, b = 1, . . . , 1000 and compute

θ̂?b = x̄?1b − x̄?2b

Then to test

H0 : µ1 ≤ µ2

versus H1 : µ1 > µ2

at the 5% level we find the 95th percentile of the bootstrap distribution and reject H0 if µ̂1 − µ̂2 =
8.560 − 5.551 = 3.009 is greater than this statistic. We find the 95th percentile is 5.373, so we accept
H0 at the 5% significance level. /

8.4 Notes

Monte Carlo methods have advanced a great deal since their inception. This chapter has provided
a brief summary of some of the simplest techniques which are available.

Having motivated the need for more sophisticated methods, we will touch on one class of algo-
rithms which have been very widely used in modern statistics in section 9.6.



9. Elements of Bayesian Inference

Thus far we have considered only the so-called classical or frequentist approach to statistical
inference. In the classical paradigm, unknown parameters are treated as fixed but unknown constants
which are to be estimated. Probabilistic statements are made only about “true” random variables
and observed data is assumed to correspond to a sampled set of realisations of random variables.
Bayesian inference provides an alternative approach.

9.1 Introduction

In the Bayesian approach to inference, parameters are treated as random variables and hence
have a probability distribution.

Prior information about θ is combined with information from sample data to estimate the
distribution of θ.

This distribution contains all the available information about θ so should be used for making
estimates or inferences.

We have prior information about θ given by the prior distribution, p(θ), and information
from sample data given by the likelihood L(θ;x) = f(x; θ). By Bayes Theorem the conditional
distribution of θ given X = x is

q(θ|x) =
f(x; θ)p(θ)

h(x)
=
L(θ;x)p(θ)

h(x)
∝ L(θ;x)p(θ)

where h(x) is the marginal distribution of x. We call q(θ|x) the posterior distribution.
Actually, a Bayesian would most probably have written:

q(θ|x) =
f(x|θ)p(θ)
h(x)

.

There is no need to distinguish between parameters and random variables in notation and it’s
perfectly reasonable to condition upon the parameters within the Bayesian framework.

Note: A Bayesian statistician does not necessarily believe that all parameter values are classical
random variables. The Bayesian interpretation of probability itself is different from the frequentist
interpretation. Viewing probabilistic statements as quantifications of uncertainty without explicit
reference to relative frequencies of occurrence allows their use much more widely. In the subjective
Bayesian framework, probabilities are quantifications of personal belief in a statement.

Prior Distributions

The prior distribution p(θ) quantifies information about θ prior to the gathering of the current data.



102 9. Elements of Bayesian Inference

Sometimes p(θ) can be constructed on the basis of past data. More commonly, p(θ) must be
based upon an expert’s experience and personal judgement. The following three examples give some
simplified examples of the procedures by which such distributions can be obtained.

Example 9.1. Suppose that the proportions θ of defective items in a large manufactured lot is unknown.
The prior distribution assigned to θ might be U(0, 1), i.e.

p(θ) =

{
1 for < θ < 1
0 otherwise.

/

Example 9.2. Suppose that the lifetimes of lamps of a certain type are to be observed. Let X be the
lifetime of any lamp and let X ∼ Exp(β), where β is unknown.

On the basis of previous experience the prior distribution of β is taken as a gamma distribution with
mean 0.0002 and standard deviation 0.0001, i.e.

p(β) =

{
200004

3! β3e−20000β, β > 0
0 otherwise.

/

Example 9.3. A medical researcher was questioned about θ, the proportion of asthma sufferers who
would be helped by a new drug.

She thought that

P[θ > 0.3] = P[θ < 0.3]

i.e. that the median θ0.5 = 0.3.
Similarly, she thought that

θ0.25 = 0.2 and θ0.75 = 0.45

From tables giving quantiles of beta distributions, the researcher’s opinion could be represented by
Beta(α = 2, β = 4) for which

θ0.25 = 0.194, θ0.5 = 0.314 and θ0.75 = 0.454.

/

Note that fusing information from different sources and extracting the knowledge of domain
experts in order to produce prior distributions which genuinely encode the state of knowledge prior
to the gathering of a first data set is a difficult problem. A large amount of research has been done on
the area which is termed prior elicitation. If one conducts a series of experiments concerned with
the same parameter then the situation is improved a little as we shall see the posterior distribution
p(θ|x1) can be used as the prior distribution when the next data set x2, say, is obtained and this
procedure can be applied iteratively as we learn progressively more about the parameter.

9.2 Parameter Estimation

Suppose we wish to estimate a parameter θ. We define a loss function

Ls(θ, θ̂)

which measures the loss which would be suffered as a result of using θ̂ as an estimator when the
true value is θ. This is a formal way of encoding how bad various types of possible error in the
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estimation are to us. For instance, it can encode the difference between type I and type II errors if
we are interested in estimating a binary indicator of disease status.

The Bayes estimator minimises the expected loss:

E
[
Ls(θ, θ̂)|x

]
=

∫ ∞
−∞

Ls(θ, θ̂)q(θ|x)dθ

for the observed value of x.
The form of the Bayes estimator depends on the loss function that is used and the prior that is

assigned to θ.
For example, if the loss is the absolute error

Ls(θ, θ̂) = |θ − θ̂|

then the Bayes estimator θ̂B(x) is the median of the posterior distribution.
For other loss functions the minimum might have to be numerically estimated.

Exercise 9.2.1. A commonly used loss function is the squared error loss function

Ls(θ, θ̂) = (θ − θ̂)2

Show that the corresponding Bayes estimator θ̂B is equal to the mean of the posterior distribution.

θ̂B(x) = E[θ|x]

What is the minimum expected loss?

Example 9.4 (Continuing example 9.1.). Suppose that a random sample of n items is taken from
the lot of manufactured items. Let

Xi =

{
1 if ith item is defective
0 otherwise.

then X1, . . . , Xn is a sequence of Bernoulli trials with parameter θ. The pdf of each Xi is

f(x|θ) =

{
θx(1− θ)1−x for x = 0, 1

0 otherwise.

Then the joint pdf of X1, . . . , Xn is

fn(x|θ) = θ
∑
xi(1− θ)n−

∑
xi .

Since the prior pdf p(θ) is uniform it follows that

fn(x|θ)p(θ) = θ
∑
xi(1− θ)n−

∑
xi , 0 ≤ θ ≤ 1.

This is proportional to a beta distribution with parameters α = y+1 and β = n−y+1, where y =
∑
xi.

Therefore the posterior has pdf

q(θ|x) =
Γ (n+ 2)

Γ (y + 1)Γ (n− y + 1)
θy(1− θ)n−y, 0 ≤ θ ≤ 1.

/
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Example 9.5. (Example 9.2 cont’d.) Suppose that the lifetimes X1, . . . , Xn of a random sample of n
lamps are recorded. The pdf of each xi is

f(xi, β) =

{
βe−βxi x > 0,

0 otherwise.

The joint pdf of x1, . . . , xn|β is

f(x|β) = βne−βy, where y =
n∑
i=1

xi.

with a gamma specified for p(β) we have

f(x|β)p(β) ∝ βn+3e(−y+20000)β

where a factor that is constant w.r.t. β has been omitted. The RHS is proportional to a Gamma (n+ 4, y + 20000),
hence

q(β|x) =
(y + 20000)n+4

(n+ 3)!
βn+3e−(y+20000)β.

/

9.3 Conjugate Prior Distributions

A conjugate prior distribution when combined with the likelihood function, produces a posterior
distribution in the same family as the prior.

If we find a conjugate prior distribution which adequately fits our prior beliefs regarding θ, we
should use it because it will simplify computations considerably. However, one should not employ a
conjugate prior distribution for computational convenience if it does not represent those prior beliefs
reasonably closely.

Example 9.6 (Sampling from a Bernoulli Distribution). Suppose X1, . . . , Xn are a random
sample from Ber (θ) , 0 < θ < 1. Let p(θ) be Beta (α, β).

Then q(θ|x) is Beta (α+
∑n

i=1 xi, β + n−
∑n

i=1 xi) .
The proof of this claim is analogous to Example 9.4 (note U[0, 1] ≡ Beta (1, 1))). /

Exercise 9.3.1 (Sampling from a Poisson Distribution). Suppose X1, . . . , Xn are a random
sample from Poi (θ) Let p(θ) be Gamma (α, β).

Show that the posterior density, q(θ|x), is

Gamma

(
α+

n∑
i=1

xi, β + n

)
.

Example 9.7 (Sampling from a Normal Distribution with known σ2). SupposeX1, . . . , Xn

are a random sample from N
(
θ, σ2

)
. with σ2 known. Let p(θ) be N

(
φ, τ2

)
.

Then q(θ|x) is

N

(
φσ2 + nx̄τ2

σ2 + nτ2
,

(
σ2 + nτ2

σ2τ2

)−1
)
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Proof.

q(θ|x) ∝ p(θ)L(θ;x)

= (2πτ2)−
1
2 exp

{
−1

2

(
θ − φ
τ

)2
}

×
n∏
i=1

(2πσ2)−
1
2 exp

{
−1

2

(
xi − θ
σ

)2
}

∴ q(θ|x) ∝ exp

{
−1

2

[
θ2

(
1

τ2
+

n

σ2

)
− 2θ

(
φ

τ2
+

∑
xi

σ2

)]}
= exp

{
−σ

2 + nτ2

2σ2τ2

[
θ − φσ2 + nx̄τ2

σ2 + nτ2

]2

+ constant

}

i.e. q(θ|x) is the pdf of N

(
φσ2+nx̄τ2

σ2+nτ2 ,
(
σ2+nτ2

σ2τ2

)−1
)

as required. �

Precision Note that the posterior variance(
σ2 + nτ2

σ2τ2

)−1

=

(
1

τ2
+

n

σ2

)−1

i.e. the reciprocal of the sum of the reciprocals of the prior variance and the variance of the sample mean,
respectively.

Because of this reciprocal relationship

precision =
1

variance

is sometimes quoted instead of the variance.

Posterior Mean The posterior mean

φσ2 + nx̄τ2

σ2 + nτ2
=

φ
τ2 + x̄

σ2/n

1
τ2 + 1

σ2/n

i.e. a weighted average of the prior mean φ and the sample mean x̄, with weights proportional to the
prior precision and the precision of the sample mean.

This type of relationship holds for several sampling distributions when a conjugate prior is used. /

Example 9.8 (Sampling from an Exponential Distribution). Suppose X1, . . . , Xn are a ran-
dom sample from Exp (θ). Let p(θ) be Gamma (α, β).

Then q(θ|x) is

Gamma

(
α+ n, β +

n∑
i=1

xi

)
.

See example 9.5 for a proof of this claim. /
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9.4 Uninformative Prior Distributions

One possible criticism of Bayesian inference is that it’s not clear what to do when we don’t have any
prior information. In fact, Bayesian inference is really just a rule for updating our beliefs in light of
new data. One way to deal with this is to attempt to employ priors which encode our ignorance.

An uninformative prior is one which attempts to encode as little information as possible about
the value of a parameter

The simplest approach to the construction of uninformative priors is the flat prior which has
p(θ) = constant ∀ θ.

Flat priors can sometimes be obtained as special or limiting cases of conjugate priors, e.g.

– using a Beta (1, 1) ≡ U[0, 1] prior for the Bernoulli parameter
– letting τ2 →∞ in the N

(
φ, τ2

)
prior for the mean of N

(
µ, σ2

)
with known σ2.

Other types of uninformative prior can also sometimes be obtained by procedures such as these.
If the prior is approximately constant over the range of θ for which the likelihood is appreciable,

then approximately

q(θ|x) ∝ L(θ;x)

and inference becomes similar to ML estimation. Note that even here there is a difference as a
Bayesian would make parametric inference on the basis of a loss function and it is not necessarily
(or in fact often) the case that minimising expected loss occurs when one chooses the maximum of
the posterior density as the estimator.

In fact, the estimator which takes the maximum of the posterior density is the Bayesian estimator
obtained as the limit of a sequence of loss functions and corresponds essentially to dealing with a
loss which is zero if one estimates the parameter exactly correctly and one if there is any error at all.
There are perhaps some situations in which this is justifiable, but one must think carefully about
the choice of loss function when making decisions or inferences in a Bayesian framework.

Problems with Flat Priors

If the prior range of θ is infinite, a flat prior cannot integrate to 1. Such an improper prior may
lead to problems in finding a “proper” posterior (i.e. one which can be normalised to integrate to
unity as any probability density must).

We usually have some prior knowledge of θ and if we do we should use it, rather than claiming
ignorance. In fact, one could argue that there are essentially no cases in which we really believe that
any value in an unbounded set is not only possible but equally plausible.

Jeffreys Prior

Another issue is whether an informative prior should be flat for θ or some function of θ, say θ2 or
log θ. We will draw different inferences for a prior which is flat over any one of these functions. In
some sense, this demonstrates that flat priors do not really encode complete ignorance at all.

One solution is to construct a prior which is flat for a function φ(θ) whose Fisher information Iφ
is constant. This leads to the Jeffreys prior which is proportional to

I
1
2
θ = E

[(
∂ ln[L(θ;x)]

∂θ

)2
] 1

2

=

[
−E

(
∂2 ln[L(θ;x)]

∂θ2

)] 1
2

.

Example 9.9. Suppose we are sampling from a Bernoulli distribution so that the likelihood is binomial.
Show that in this case, the Jeffreys prior is proportional to

[θ(1− θ)]−
1
2

which is a Beta
(

1
2 ,

1
2

)
distribution. /
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Note: Harold Jeffreys was a physicist who made substantial contributions to the theory and
philosophy of Bayesian inference. His original motivation when developing this class of prior distri-
butions was to develop a way of encoding a belief that the distribution should be invariant under
a particular type of transformation: location parameters should have a prior invariant under shifts;
scale parameters should have a prior invariant under scaling etc..

Perhaps the biggest problem with uninformative priors is that there’s really no way to represent
total ignorance. Saying that a prior is flat over the real line is arguably a very strong statement. It
says that a priori you believe there’s a very significant possibility that the value is arbitrarily large,
for example.

9.5 Hierarchical Models

Bayesian inference treats unknown parameters as variables with a probability distribution. Hierar-
chical models exploit the flexibility this gives.

Consider the following three-stage hierarchical model. The data x have density

f(x; θ) [stage 1]

where θ is unknown. Denote the prior distribution for θ by

p(θ, ψ) [stage 2]

where ψ is also unknown, with prior distribution (sometimes known as a hyper-prior)

g(ψ) [stage 3].

Example 9.10. Suppose θ1, . . . , θk are the average reading abilities of 7-year-old children in each of k
different schools.

Samples of 7-year-olds are to be given reading tests to estimate θi. Let Xi1, . . . , Xini be the reading
abilities of a sample of ni children from school i.

Suppose

Xij |θi ∼ N
(
θi, σ

2
)

[stage 1]

where σ2 is the same for all schools and is assumed known.
Then let each θi be normally distributed, so that

p(θ1, . . . , θk;ψ) =
k∏
i=1

(2πτ2)−
1
2 exp

{
− 1

2τ2
(θi − φ)2

}
[stage 2]

where ψ = (φ, τ). Finally assign an uninformative prior to φ and τ2

g(φ, τ2) = g1(φ)g2(τ2) = constant [stage 3].

/

Note that information about some of the θi provides information about the remainder (borrowing
strength).

For example, if we had data from k − 1 schools, then we could estimate the average reading
abilities θ1, . . . , θk−1. Hence we could estimate φ and τ2, the mean and variance of the distribution
of θk.

As usual

posterior ∝ prior× likelihood.
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Here the unknown parameters are θ and ψ and their prior is

p(θ, ψ)g(ψ).

The sampling distribution of the data depends only on θ, not ψ

L(θ, ψ;x) = f(x; θ).

Hence the joint posterior distribution of the parameters is

q(θ, ψ|x) ∝ f(x; θ)p(θ;ψ)g(ψ).

From the joint posterior

q(θ, ψ|x) ∝ f(x; θ)p(θ;ψ)g(ψ)

we can obtain the posterior density of θ by integrating w.r.t. ψ.
Further integration yields marginal distributions of individual components of θ.
For many hierarchical models the relevant integrations cannot be done analytically and the

standard approach is to use a class of stochastic algorithms known as Markov chain Monte Carlo
methods to approximate the integration numerically.

9.6 Inference using Markov Chain Monte Carlo (MCMC) Methods

The material in this section is a very brief introduction to the area. Of course, the notes you have
from the first half of the lecture course cover this and much more. This section may prove useful to
refresh you memory but is intended predominantly for those students attending ST903 who are not
studying a formal Monte Carlo methods course.

The basic problem of Bayesian parameter inference is that we need to obtain the posterior
distribution for a particular problem (and, indeed, optimise the expected loss function with respect
to that posterior).

Suppose θ is a vector of unknown parameters. As usual

q(θ|x) ∝ f(x|θ)p(θ)

and to perform inference we need to obtain or approximate q(θ|x). We can say that

q(θ|x) = cf(x|θ)p(θ)

with

c =

{∫
f(x|θ)p(θ)dθ

}−1

We cannot generally calculate c analytically. For many problems simple numerical integration tech-
niques fail because the dimension of the space can be large and we may not know which regions of
the space contain the most probability mass (in dimensions much above 3 it is surprisingly difficult).
We may be able to use simple Monte Carlo integration methods, e.g. importance sampling to find
c, but this is often difficult. Obtaining good importance sampling proposals, for example, requires a
detailed understanding of the structure of the posterior — something which is not often available.

Markov chain Monte Carlo methods allows us to obtain a collection of dependent samples which
marginally have distribution close to q(θ|x) and with which we can obtain consistent estimates of
expectations with respect to q(θ|x) without knowing c.
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9.6.1 Foundations

Before talking about methods, a few simple definitions are needed.

Definition 9.1. (Discrete Time) Markov Chain A Markov chain is a discrete time stochastic pro-
cess (i.e. a sequence of random variables), X1, X2, . . . with the following conditional independence
property:

∀n,A, x1:n−1 : P(Xn ∈ A|X1:n−1 = x1:n−1) = P(Xn ∈ A|Xn−1 = xn−1)

i.e. Given the present the future is independent of the past. This property is known as the (weak)
Markov property.

The law of a time-homogeneous Markov chain may be specified by the initial density, q(x1), and
the transition probability (or kernel) K(xn|xn−1). The joint density of the first n elements of the
chain may then be written straightforwardly:

p(x1:n) = q(x1)
n∏
i=2

K(xi|xi−1).

Definition 9.2 (Invariance). A Markov chain, X, is f -invariant if:∫
f(x)K(y|x)dx = f(y)

If a Markov chain is f -invariant and Xm ∼ f for some m then it’s clear that the marginal distribution
of any Xn for n ≥ m must also be f .

If a Markov chain satisfies a condition known as detailed balance with respect to a distribution,
then it is reversible (in the sense that the statistics of the time-reversed process match those of
the original process) and hence invariant with respect to that distribution. The detailed balance
condition states, simply, that the probability of starting at x and moving to y is equal to the
probability of starting at y and moving to x. Formally, given a distribution f and a kernel K, one
requires that f(x)K(y|x) = f(y)K(x|y) and simple integration of both sides with respect to x proves
invariance with respect to f under this condition.

The principle of most MCMC algorithms is that, if a Markov Chain has an invariant distribution,
f , and (in some suitable sense) forgets where it has been, then using its sample path to approximate
integrals with respect to f is a reasonable thing to do. This can be formalised under technical
conditions to provide an analogue of the law of large numbers (often termed the ergodic theorem)
and the central limit theorem. The first of these results tells us that we can expect the sample average
to converge to the expectation with probability one as the number of samples becomes large enough;
the second tells us that the estimator we obtain is asymptotically normal with a particular variance
(which depends upon the covariance of the samples obtained, demonstrating that it is important
that the Markov chain forgets where it has been reasonably fast). These conditions are not always
easy to verify in practice, but they are important: it is easy to construct examples which violate
these conditions and have entirely incorrect behaviour.

In order to use this strategy to estimate expectations of interest, it is necessary to construct
Markov chains with the correct invariant distribution. There are two common approaches to this
problem.

9.6.2 Gibbs Sampling

Let qi(θi|θ\i, x) denote the posterior probability density of θi given values of θ1, . . . , θi−1, θi+1, . . . , θk
where the parameter vector of interest θ = θ1, . . . , θk.

The Gibbs sampler requires that for each i = 1, . . . , k these full conditional densities are
ones that we can (ideally easily) sample from. The Hamersley-Clifford theorem (which is outside
the remit of this course) tells us that if we know all of the full conditional distributions associated
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with a joint distribution then we can completely characterise that joint distribution so it won’t be
too surprising if we can construct an algorithm based around these full conditionals.

The Gibbs sampling algorithm aims to obtain a random sample from q(θ|x) by iteratively and
successively sampling from the individual qi(θi|θ\i, x).

The algorithm is simple to apply:

– Initialise θ, i.e. find starting values θ
(1)
i , i = 1, . . . , k.

– For j = 1, . . . ,M

1. Draw θ
(j+1)
1 from q1(θ1|θ(j)

\1 , x); θ
(j)
\1 = (θ

(j)
2 , θ

(j)
3 , . . . , θ

(j)
k ).

2. Draw θ
(j+1)
2 from q2(θ2|θ(j)

\2 , x); θ
(j)
\2 = (θ

(j+1)
1 , θ

(j)
3 , . . . , θ

(j)
k ).

3. . . .
4. Draw θ

(j+1)
k from qk(θk|θ

(j)
\k , x); θ

(j)
\k = (θ

(j+1)
1 , θ

(j+1)
2 , . . . , θ

(j+1)
k−1 ).

5. Put θ(j+1) = (θ
(j+1)
1 , θ

(j+1)
2 , . . . , θ

(j+1)
k ). Set j = j + 1.

As j → ∞, under suitable regularity conditions (examples of which you saw in the first part of
this module), the limiting distribution of the vector θ(j) is the required posterior q(θ|x), i.e. for large
j, θ(j) is a random observation from q(θ|x).

The sequence θ(1), θ(2), . . . is one realisation of a Markov Chain, since the probability of θ(j+1) is
only dependent on θ(j).

We motivated the idea of MCMC by noting that once one sample form an f -invariant Markov
chain has distribution f , the marginal distribution of all future samples must also be f . In the above
algorithm we initialised our chain arbitrarily. We rely upon an idea known as ergodicity which
tells us that, under regularity conditions, a Markov chain forgets its initial conditions. In essence, it
won’t matter where we start the chain as long as we run it for long enough.

We need to run the Markov chain until it has converged to its invariant distribution — all
observations from a burn-in phase (in which the initialisation is still being forgotten) are discarded.

Suppose we have generated a large random sample θ[1], θ[2], . . . , θ[n] using the Gibbs sampler.
Inferences about a single θi would be based on this sample. For example the posterior mean and
variance of θi given x would be

θ̄i =
1

n

∑
j

θ
[j]
i and

1

n

∑
j

(θ
[j]
i − θ̄i)

2.

The output from MCMC can also be used to approximate other integrals, e.g. for marginalisation
or calculation of expected loss.

Exercise 9.6.1. Let X1, . . . , Xn be a random sample. Consider the following hierarchical Bayesian
model:

X1, . . . , Xn ∼ N
(
θ, σ2

)
σ2 is known,

θ ∼ N
(
0, τ2

)
,

1

τ2
∼ Gamma (a, b) where a, b are known.

Derive a Gibbs sampler for this model. I.e. how can we sample from the posterior distribution of the
unknown parameters given a realisation of x1, . . . , xn?

Exercise 9.6.2. Let X1, . . . , Xn be a random sample. Consider the following hierarchical Bayesian
model of failure rates:

X1, . . . , Xn ∼ Poi (θiti) for fixed time ti,

θi ∼ Gamma (α, β) ,

α ∼ Exp (a0) for known a0,

β ∼ Gamma (c, b0) for known c, b0,
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where α and β are independent. Show that the conditionals for θi and β are Gamma distributions, whilst

q(α|β, θ) ∝
(

βα

Γ (α)

)n( n∏
i=1

θi

)α−1

exp(−a0α).

9.6.3 Metropolis Hastings Algorithm

Although Gibbs sampling is intuitive and simple it requires the availability of full conditional distri-
butions. Various extensions exist which consider, for example, simulating more than one component
of θ at a time or randomising the order of operations. However, they all require the ability to sample
from a collection of full conditional distributions.

The Metropolis-Hastings Algorithm is an extension of Gibbs sampling which uses a rejection
step to allow the use of a proposal distribution other than the full conditionals but which preserves
invariance with respect to the target distribution of interest.

Intuitively, the algorithm proceeds at each iteration by sampling a proposed value, and this value
is accepted with a probability which corrects for the relative probability of the state under the
proposal and target distributions. If rejection occurs the existing state is replicated — notice this
difference from the simple rejection sampling algorithm. More formally, the algorithm for sampling
from p using a proposal q proceeds at iteration t as:

1. Sample X ′ ∼ q(·|Xt−1).
2. Calculate

α(Xt−1, X
′) =

p(X ′)q(Xt−1|X ′)
p(Xt−1)q(X ′|Xt−1)

.

3. Sample U ∼ U [0, 1].
4. If U ≤ α, set Xt = X ′.
5. Otherwise, set Xt = Xt−1.

The acceptance probability α depends upon only the ratio of the target probability density at the
proposed point to that at the current point (in addition to the ratio of proposal densities). This has
the significant consequence that it is only necessary to evaluate the density up to a normalising con-
stant. One common choice of q is a symmetric random-walk kernel (such as a Gaussian distribution
centred on the previous value). In this case, the acceptance probability α simplifies to p(X ′)/p(Xt−1)
due to the symmetry of the proposal kernel. This approach is often referred to as the random-walk
Metropolis algorithm and corresponds to the first MCMC algorithm to be proposed. Another choice,
leading to something termed the independence sampler, is to employ a proposal distribution which
is entirely independent of the previous position. Of course, situations between these two extremes
exist and often produce better results (for example, using a proposal comprising a mixture of a dif-
fuse proposal distribution and a local random walk). It is also noteworthy that Gibbs sampling may
be interpreted as a Metropolis-Hastings algorithm in which a particular choice of proposal kernel is
made, guaranteeing that α = 1 at all times (i.e. every proposed value is accepted). Although the
Metropolis-Hastings algorithm allows a broad range of models to be explored, care is still required
to design algorithms with proposals which allow a thorough exploration of the space and to assess
their convergence. In order for a sampler to perform well, it is necessary for it to explore the entire
support of the distribution and to move around it quickly. This can only be achieved through the
use of good proposal distributions.

By way of an example, consider the random-walk Metropolis-Hastings algorithm. In contrast to
the rejection sampling case, it is not desirable to maximise the acceptance probability of proposed
moves in such an algorithm. Using a very small proposal variance leads to moves which are almost
always accepted (α is always close to one if the density is continuous and proposed moves are small)
but movements are all very small, leading to poor exploration of the distribution on a global scale.
In contrast, if a very large proposal variance is used then most moves are proposed in regions of
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very little probability and many moves are rejected, leading to the sampler sticking with a single
value for many iterations. Somewhere in between, good performance can often be obtained.

Without explaining the Metropolis-Hastings algorithm in detail, it might be informative to cond-
sider the form of α. It consists essentially of two parts. The first is p(X ′)/p(Xt−1): the ratio of the
target distribution at the proposed value to that at the old value. This term favours moves to regions
of higher posterior density. The second is q(X ′, Xt−1)/q(Xt−1, X

′): the ratio of the density of the re-
verse of the current proposed move to that of the move itself. The second component penalises moves
which are disproportionately probable. This component is uniformly 1 if the proposal distribution
is symmetric.

9.6.4 Extensions NE

There is an enormous literature on MCMC and related methodology. It wouldn’t be feasible to
attempt to summarise even its key features here. However, there are a number of ideas which you
are likely to encounter in the future. This section simply mentions a few of the most important and
gives a very brief summary of their key features.

Simulated Annealing. One common MCMC algorithm, albeit one which is often considered in isola-
tion, is simulated annealing (SA). This is an optimisation, rather than integration, algorithm which
simulates a time inhomogeneous Markov Chain which is intended to provide samples from the re-
gions of parameter space which minimise some objective function. Given a function, H(x), which
one wishes to find the minima of (usually the function of interest, but it can be any other function
which shares its minimisers), SA provides a numerical method for locating its minima.

Modelled upon the physical annealing processes, SA employs densities proportional to exp(−βH(x))
in order to find the value(s), x?, of its argument which minimise H(x). Corresponding to an inverse
temperature in physical annealing, β controls how concentrated these distributions are about the
optima: if β � 1/H(x?) then the distribution is very flat; as β → ∞ the distribution becomes
singular with all of its mass located at the optima.

The simulated annealing algorithm simulates a Markov chain with one such distribution as its
invariant distribution at each iteration using the same mechanism as the Metropolis-Hastings al-
gorithm. However, β is gradually increased as the algorithm runs leading to a time-inhomogeneous
chain. This allows a single simulation run to be initiated at small β, allowing the chain to explore
the space well, and to reach the minimisers which have increasing mass as β increases. Selecting the
sequence of values taken by β is nontrivial; if it increases too quickly the simulation will become
trapped in a local optimum but the more slowly it increases the more expensive each simulation
becomes.

Reversible Jump. In many settings, often those involving model selection it is useful to have an
algorithm which can deal with a collection of densities defined over spaces of different dimension
(for example, consider choosing not just the parameters of a mixture model, but also the number
of mixture components). Doing this is technically nontrivial, as the densities are not comparable
(just as the mass per unit area of a sheet of steel cannot be compared directly with the density of
a steel block). One solution to this problem is termed Reversible Jump Markov Chain Monte Carlo
and, loosely speaking, it employs a dimension-matching construction in order to produce a Markov
Chain which explores these spaces of differing dimension whilst retaining reversibility.

Adaptive MCMC. Several approaches have been developed to reduce the amount of work required to
design an efficient sampler. One is to adaptively tune the parameters of the proposal distribution as
a sampler is run (ensuring that these lead to the correct distribution introduces nontrivial technical
difficulties and this should not be done without thorough consideration of these issues). The other
involves using the entire history of the Markov Chain as a representation of the distribution of
interest and incorporating this into the proposal distribution (again, this is nontrivial to implement
in a theoretically-justifiable manner).
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Perfect Simulation. Perfect simulation is a technique which has been developed to combat the
difficulties associated with convergence assessment and the use of a collection of variables which are
not iid. Under particular (and, unfortunately, somewhat restrictive) circumstances it is possible to
obtain a single sample with the correct distribution by simulating a Markov Chain in such a way
that its final value is independent of its beginnings. In order to prevent bias associated with the time
at which the sample is produced, considerable care is required in the design of such algorithms.

Population-based MCMC / Sequential Monte Carlo. Finally, much research has been done recently
in the area of population based methods (going under various names: annealed importance sampling,
population Monte Carlo, and sequential Monte Carlo – the last of these proposed frameworks encom-
passes almost all proposed techniques to date). These approaches use a collection of many samples
at each iteration and propagate this population around using importance sampling techniques, com-
bined with elements of MCMC. These techniques show great promise and real applications have
been developed in the past few years.
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10. Linear Statistical Models

In many areas of mathematical modelling, a surprising amount can be gained by considering simple
linear models in which the relationship between quantities of interest are assumed the be linear.
Statistics is no exception to this (although, as in many other areas, one should consider whether a
linear relationship is reasonable a priori and whether it is supported by the data).

10.1 Regression

In a regression we are interested in modelling the conditional distribution of a random variable Y ,
called the response variable, for given values of k other variables x1, . . . , xk, called explanatory
variables.

The explanatory variables may be random variables whose values are observed in an experiment
along with the values of Y or they may be control variables whose values are set by the experimenter.
In either case, when modelling the conditional distribution of Y , we consider the values of x1, . . . , xk
to be fixed.

10.2 The Linear Model

In a linear model we assume that the conditional expectation of Y given x1, . . . , xk is a linear
function of some unknown parameters, βi, i = 1, . . . , k, called regression coefficients

E[Y |x1, . . . , xk] = β1x1 + β2x2 + . . .+ βkxk.

We suppose that n observations of each variable are available. Then the model for the ith observation
is given by

E[Yi|x1i, x2i, . . . , xki] = β1x1i + β2x2i + . . .+ βkxki.

We also assume that the random variation of Y about the regression line is additive. Thus the
model for a set of observed yi, i = 1, . . . , n is

yi = β1x1i + β2x2i + . . .+ βkxki + ei,

which we can write in matrix form
y1

y2
...
yn

 =


x11 x21 . . . xk1

x12 x22 . . . xk2
...

...
. . .

...
x1n x2n . . . xkn



β1

β2
...
βk

+


e1

e2
...
en


or y = Xβ + e
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The matrix X is called the design matrix.
The definition of the linear model is completed by the assumption that the vector of errors, e

is an unobservable n × 1 vector of i.i.d. real random variables with mean vector 0 and covariance
matrix σ2In.

If we also assume that e is normal, i.e.

e ∼ N
(
0, σ2In

)
then the model is called the normal linear model (NLM).

Example 10.1. Consider the relationship between the height H and the weight W of individuals in a
certain city. Certainly there’s no functional relationship between H and W , but there does seem to be
some kind of relation.

We consider them as random variables and postulate that (H,W ) has a bivariate normal distribution.
Then

E[W |H = h] = β0 + β1h

where β0 and β1 are functions of the parameters in a bivariate normal density. Note that β0, β1 and h
are all constants. We may write

W = β0 + β1h+ E

where the error E is a normally distributed random variable with mean zero. Thus if we observe the
heights and weights of a sample of n people, the model for the weights wi, . . . , wn is given by

wi = β0 + β1hi + ei, i = 1, . . . , n

where the error ei ∼ N
(
0, σ2

)
. This is a simple linear regression model: a linear model with one

explanatory variable. In matrix form,

w = Xβ + e
w1

w2
...
wn

 =


1 h1

1 h2
...

...
1 hn


(
β0

β1

)
+


e1

e2
...
en

 .

/

Note that the linear model is linear in the parameters, not necessarily linear in the explanatory
variables. Thus the following are examples of linear models:

The polynomial model:

E[Yi|xi] = β0 + β1xi + β2x
2
i + . . .+ βkx

k
i , i = 1, . . . , n.

The response surface model:

E[Yi|x1i, x2i] = β0 + β1x1i + β2x2i + β3x
2
1i + β4x1ix2i + β5x

2
2i, i = 1, . . . , n.

Whilst the following is an example of a nonlinear model

The simple exponential model

E[Yi|xi] = αeβxi , i = 1, . . . , n.
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10.2.1 Selected Extensions NE

You may find yourself in a situation in which you require a slightly more general model than the
NLM but would like to retain some of its simplicity and tractability. There are a number of directions
in which you could consider extending the model.

Generalised Linear Models (GLMs) consider the case in which a more flexible than linear
relationship between response and parameters is considered by the introduction of a link function.

Linear Mixed Models consider a generalisation in another direction. They permit additional
subject-specific random effects.

Generalised Linear Mixed Models (GLMMs) unsurprisingly combine both of these exten-
sions.

There are, of course, numerous other possible modelling strategies, but each of these classes has
found widespread use in the literature in recent years.

10.3 Maximum Likelihood Estimation for NLMs

In the NLM the assumption that e ∼ N
(
0, σ2In

)
implies that y is multivariate normal with mean

vector Xβ and covariance σ2In:

Y|X ∼ N
(
Xβ, σ2In

)
.

Thus, the density function for a particular yi is

f(yi|xi = x1i, x2i, . . . , xki) = (2πσ2)−
1
2 exp

{
−(yi − x′iβ)2

2σ2

}
.

The joint density is given by

f(y1, . . . , yn|X) = f(y1|x1)f(y2|x2) . . . f(yn|xn),

so

f(y|X, β, σ2) = (2πσ2)−
n
2 exp

{
−(y −Xβ)′(y −Xβ)

2σ2

}
.

Once a sample is drawn for y, the joint density can be expressed as a function of the unknown
parameters given the data

L(β, σ2|X,y) ≡ f(y|X, β, σ2).

Thus the log-likelihood is given by

l(β, σ2|X,y) = −
(n

2

)
ln 2π −

(n
2

)
lnσ2 − (y′y − 2β′X′y + β′X′Xβ)

2σ2

where we have expanded

(y −Xβ)′(y −Xβ) = (y′y − 2β′X′y + β′X′Xβ).

The ML estimates are obtained by taking partial derivatives w.r.t β and σ2, setting them equal to
zero and solving the resulting set of equations:

We have

∂l(β, σ2|X,y)

∂β1
=

1

σ2
(x′1y − x′1Xβ) = 0

...

∂l(β, σ2|X,y)

∂βk
=

1

σ2
(x′ky − x′kXβ) = 0
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which is a set of k equations that can be expressed in matrix form as

1

σ2
(X′y −X′Xβ) = 0.

Solving for β yields the ML estimator for the regression coefficients:

β̂ML = (X′X)−1X′y.

(It can be shown that the 2nd order conditions are fulfilled.)
Note that maximising the log-likelihood w.r.t. β is equivalent to minimising the sum of squared

errors

(y −Xβ)′(y −Xβ) =
n∑
i=1

(yi −X′iβ)2

and thus β̂ML is the same as the estimator yielded by the Least Squares criterion, i.e.

β̂ = β̂ML = β̂LS = (X′X)−1X′y.

Sampling Distribution of β̂ The expectation of β is

E[β̂] = E[(X′X)−1X′Xβ + (X′X)−1X′e]

= β

therefore β̂ is an unbiased estimator of β. Also

E[(β̂ − β)(β̂ − β)′] = E[{(X′X)−1X′e}{e′X(X′X)−1}]
= σ2(X′X)−1

and thus

β̂ ∼ N
(
β, σ2(X′X)−1

)
.

The Gauss Markov Theorem states that β̂ is a best linear unbiased estimator(BLUE).
That is, out of the class of linear unbiased estimators for β in the linear model, the ML estimator
β̂ is best in the sense of having a minimum sampling variance.

10.3.1 ML estimation for σ2

∂l(β, σ2|X,y)

∂σ2
= − n

2σ2
+

1

2σ4
(y −Xβ)′(y −Xβ) = 0

⇒ σ̂2
ML =

(y −Xβ̂)′(y −Xβ̂)

n
=

ê′ê

n

where ê = y −Xβ̂ are estimated errors (called residuals). It can be shown that

E[σ̂2
ML] =

σ2(n− k)

n

and thus the ML estimator for the variance is biased, although σ̂2
ML is asymptotically unbiased.

However, we can see that the estimator

σ̂2 =
1

n− k
(y −Xβ̂)′(y −Xβ̂)

is an unbiased estimator of the variance. It can be shown that the estimators σ̂2 and β̂ are indepen-
dent.
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Exercise 10.3.1. Give the Cramér-Rao lower bound for an unbiased estimator of β and σ2 and verify
whether β̂ and the unbiased estimator of σ2 attain it.

Exercise 10.3.2 (Dependence and heteroscedasticity). Suppose that Y|X is multivariate nor-
mal: N

(
Xβ, σ2Φ

)
where Φ is a known positive definite matrix. Show that the MLE of β is given by the

generalised least squares estimator

β̃ = (XTΦ−1X)−1XTΦ−1y.

Example 10.2. In the simple linear regression model,

X′ =

(
1 1 . . . 1
x1 x2 . . . xn

)
.

Hence

X′X =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
⇒ (X′X)−1 =

1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
.

Also

X′y =

( ∑n
i=1 yi∑n
i=1 xiyi

)
.

From which we can derive the following

β̂ = (X′X)−1X′y =

(
ȳ − Sxy

Sxx
x̄

Sxy
Sxx

)
where

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

xiyi − nx̄ ȳ

and

Sxx =

n∑
i=1

(xi − x̄)2 =

n∑
i=1

x2
i − nx̄2 = s2

x

the sample variance of the observed xi, i = 1, . . . , n. /

Exercise 10.3.3. In an investigation of the properties of a synthetic rubber, varying amounts and
types of compounding material were used to prepare a number of specimens. The following table lists
the abrasion loss (y) and hardness (x) of thirty different specimens. Given that∑

xi = 2108
∑

x2
i = 152422∑

yi = 5263
∑

y2
i = 1148317∑

xiyi = 346867

find the coefficients of the simple linear regression model

yi = β0 + β1xi + ei, i = 1, . . . , 30

for these data.
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Specimen x y Specimen x y

1 45 372 16 68 196
2 55 206 17 75 128
3 61 175 18 83 97
4 66 154 19 88 64
5 71 136 20 59 249
6 71 112 21 71 219
7 81 55 22 80 186
8 86 45 23 82 155
9 53 221 24 89 114

10 60 166 25 51 341
11 64 164 26 59 340
12 68 113 27 65 283
13 79 82 28 74 267
14 81 32 29 81 215
15 56 228 30 86 148

10.4 Confidence Intervals

For a single element of β̂, say β̂j , we have

E[β̂j ] = βj

and Var[β̂j ] = σ2cjj

where cjj = (X′X)−1
jj . Thus

β̂j − βj√
σ2cjj

∼ N (0, 1)).

However because σ2 is unknown and estimated by σ̂2 we have

β̂j − βj√
σ̂2cjj

∼ t(n−k).

Therefore a (1− α) level confidence interval for βj is given by

β̂j ± tα
2
,n−k

√
σ̂2cjj

where tα
2
,n−k is such that

P
(

tn−k > tα
2
,n−k

)
=
α

2
.

In the case of σ2 we have that

(n− k)σ̂2

σ2
∼ χ2

(n−k).

Therefore a (1− α) level confidence interval for σ2 is given by(
(n− k)σ̂2

χ2
α/2,n−k

,
(n− k)σ̂2

χ2
1−α/2,n−k

)
.
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10.5 Hypothesis Tests for the Regression Coefficients

We can use the sampling distribution of βj to formulate a hypothesis test to determine whether xj
is “important” in explaining the variation in Y . We test

H0 : βj = 0,

versus H1 : βj 6= 0,

using the test statistic

Tj =
β̂j√
σ̂2cjj

∼ tn−k

which follows a tn−k distribution under the null hypothesis.
Our decision rule at the α significance level is:
Do not reject H0 if

−tα
2
,n−k < Tj < tα

2
,n−k

otherwise reject H0 in favour of H1.
The result of the test needs careful interpretation. If we reject H0 then βj is significantly different

from zero in the presence of all the other terms. Or equivalently xj contributes significantly to
the variation in Y after the contribution of all the other explanatory variables has been taken into
account. Given the nature of the interpretation, such a test is known as a partial t-test.

Example 10.3. For simple linear regression, we have already seen that

(X′X)−1 =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
.

Hence

V̂ar(β̂) = σ̂2(X′X)−1 =
σ̂2

nSxx

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
.

But

Var(β̂) =

(
Var(β̂0) Cov(β̂0, β̂1)

Cov(β̂0, β̂1) Var(β̂1)

)
.

So

V̂ar(β̂1) =
σ̂2

Sxx
.

Therefore our test statistic for the slope in a simple linear regression is

T1 =
β̂1

σ̂/sx

where sx is the standard deviation of the observed xi, i = 1, . . . , n. /

Exercise 10.5.1. For the rubber samples data in exercise 10.3.3, test the significance of the slope
parameter at the 5% significance level.
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10.6 Prediction

The predicted mean response ŷ0 at a given set of values for the explanatory variables, x0 is

ŷ0 = x′0β̂.

Now

E[ŷ0] = x′0β

and

Var(ŷ0) = Var(x′0β̂)

= x′0Var(β̂)x0

= x′0σ
2(X′X)−1x0

hence

ŷ0 ∼ N
(
x′0β, σ

2x′0(X′X)−1x0

)
.

Again, we estimate σ2, by σ̂, so a 1− α confidence interval for y0 = x′0β is given by

ŷ0 ± tα
2
,n−k

√
σ̂2x′0(X′X)−1x0.

Since the regression model is based on the observed data, care should be taken when making pre-
dictions outside the observed range of the explanatory variables.

Example 10.4. In the case of simple linear regression

V̂ar(ŷ) =

(
1
x0

)
σ̂2(X′X)−1

(
1 x0

)
=

σ̂2

nSxx

(
1
x0

)( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)(
1 x0

)
=

σ̂2

nSxx

(
n∑
i=1

x2
i − x0

n∑
i=1

xi − x0

n∑
i=1

xi + nx2
0

)

=
σ̂2

Sxx

(∑n
i=1 x

2
i

n
− x̄2 + x2

0 − 2x0

∑n
i=1 xi
n

+ x̄2

)
=

σ̂2

Sxx

(
Sxx
n

+ (x0 − x̄2)

)
.

Thus we can estimate the variance of ŷ by

σ̂2

(
1

n
+

(x0 − x̄)2

s2
x

)
.

/

Exercise 10.6.1. For the rubber samples data in exercise 10.3.3, use the simple linear regression model
to predict the abrasion loss for a specimen of rubber with a hardness measurement of 70. Give a 95%
confidence interval for this prediction.
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10.7 Test for Significance of a Regression

We can test whether the regression is significantly better than an intercept-only model, by testing

H0 : β1 = β2 = · · · = βk = 0,

versus H1 : βj 6= 0 for at least one j.

Our test statistic is based on

SSR = (Xβ̂ − ȳ)′(Xβ̂ − ȳ)

which is the regression sum of squares. This statistic compares the fitted values under the regression
model, Xβ̂, with the fitted values under the intercept-only model, ȳ. It can be shown that if H0 is
true

SSR ∼ σ2χ2
k−1

Since we don’t know σ2 we need to adjust this statistic in some way to obtain a test statistic with
a known distribution. We have seen that

(n− k)σ̂2

σ2
∼ χ2

(n−k)

and hence

(n− k)σ̂2 ∼ σ2χ2
(n−k).

Now

(n− k)σ̂2 = (y −Xβ̂)′(y −Xβ̂) = SSE ,

the sum of squared errors. If H0 is true

F =
SSR/k − 1

SSE/n− k
∼ Fk−1,n−k.

Note that when H0 is true,

E
[
SSR
k − 1

]
=

1

k − 1
E[SSR] = σ2.

However when H1 is true,

E
[
SSR
k − 1

]
> σ2.

Hence it is appropriate to use a one sided test here. Our decision rule is then:
Reject H0 if

F > Fα
2
,k−1,n−k

otherwise we cannot reject H0 at significance level α.
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10.7.1 Analysis of Variance for a Regression

Analysis of variance is a general method that partitions the total sum of squares

SST = (y − ȳ)′(y − ȳ),

(which is proportional to the variance of the observed yi, i = 1, . . . , n) into components explained by
a statistical model. These components and related statistics are presented in a analysis of variance
(ANOVA) table.

The ANOVA table for a regression is as follows

Source SS df MS F

Regression SSR k − 1 MSR MSR/MSE
Residual SSE n− k MSE
Total SST n− 1

Where MS stands for mean square, i.e. the sum of squares SS divided by the degrees of freedom
df. Thus MSR/MSE is the F statistic defined in the previous section. Also MSE = σ̂2.

Example 10.5. In the case of simple linear regression, there is only one explanatory variable, so the F
test is equivalent to the partial t-test on the slope. There are k = 2 parameters, so the numerator of the
F statistic, becomes

SSR = (Xβ̂ − ȳ)′(Xβ̂ − ȳ).

By substituting

β̂ =

(
ȳ − Sxy

Sxx
x̄

Sxy
Sxx

)
we can show that

SSR =
S2
xy

Sxx
.

As for all models, the denominator of the F statistic is σ̂2, so we have

F =
S2
xy/Sxx

σ̂2
=
β̂2

1Sxx
σ̂2

= T 2
1 .

Thus the F statistic for a simple linear regression model is the square of the t statistic for the slope
parameter. A one-sided test based on the F statistic will give the same p-value (exact significance level)
as a two-sided test based on the t statistic. /

10.8 The Coefficient of Multiple Determination (R2)

The coefficient of (multiple) determination (R2) is

R2 = 1− SSE
SST

, 0 ≤ R2 ≤ 1.

It can be interpreted as the proportion of variation in the response variable explained by the regres-
sion. Some software packages provide the adjusted R2:

R2
adj = 1− SSE/n− k

SST /n− 1
.

This adjusts for the number of fitted parameters, to allow comparison over models with different
numbers of parameters.
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10.9 Residual Analysis

Residual analysis allows us to

1. check the assumptions of the model,
2. check the adequacy of the model,
3. detect outliers.

The residuals are given by

ê = y −Xβ̂.

Before examining the residuals, it is common to standardise them as follows

ri =
êi
σ̂ei

where σ̂ei is the estimated standard error for êi. Then under the assumptions of the NLM, the ri
should be i.i.d. N(0, 1) random variables. We can check this using graphical methods.

Assumption of Normality

The normality assumption can be checked using a q-q plot. Plot r(i), the ith rank order residuals
against

Φ−1

(
i− 1

2

n

)

the “expected normal deviate”. If the ri are normally distributed, the points should fall on a straight
line at a 45 degree angle.

Assumption of Constant Variance

Plot ri versus ŷi and look for systematic changes in spread about r = 0.

Model Adequacy

We need check if there are any systematic trends in the residuals.
Plot ri versus explanatory variables in the model.
Plot ri versus explanatory variables not in the model.
Plot ri versus ŷi.
Plot ri versus time (if applicable).

Outliers

If the residuals have been standardised we expect the majority to fall in the range (-2, 2). We can
check the plot of ri vs. yi for any observations with “large” ri. Such observations should be checked.

Residual analysis is a general technique which can be applied to most statistical models. We
should always consider whether the residuals are consistent with the assumed model for random
variation: if they are not then this must cast some doubt upon the model being used and any
conclusions which are drawn from it.
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A. Solutions to Exercises

1.3.1 One option is to identify the number of subsets of each possible size. A set of size M can have
subsets of size 0, 1, . . . ,M . Let Ni denote the number of subsets of size i and N denote the total
number of subsets.

Using the definition of the binomial coefficients, Ni =
(
M
i

)
. And, of course, N =

∑M
i=1Ni:

N =
N∑
i=1

(
M

i

)
=

N∑
i=1

(
M

i

)
1i1M−i = (1 + 1)M = 2M

Alternatively, note that we can represent any subset of M as a binary string of length M . Element
m of this string takes a value of 1 if element m of M is a member of the subset and zero otherwise.
It’s clear that there is a one-to-one correspondence between such strings and the subsets of M and
there are 2M different strings.

1.5.1 Probability space is (Ω,A,P) with A = 2Ω and P(A) = |A|/4 (whenever a probability is
uniform it is proportional to the number of elements in any set for which it is evaluated).

(i) A = {(H,H)} and B = {(H,H), (H,T )}. As A ⊂ B, P(A ∩ B) = P(A). P(A) = 1/4 and
P(B) = 2/4.

P(A|B) =
P(A ∩B)

P(B)
=

P(A)

P(B)
=

1/4

1/2
=

1

2
.

(ii) C = {(H,H), (H,T ), (T,H)} and P(C) = 3/4. Hence:

P(A|C) =
P(A ∩ C)

P(C)
=

P(A)

P(C)
=

1/4

3/4
= 1/3.

1.5.2 Let Ui denote the event that urn i is selected. Let D denote the event a defective ball is selected.
We assume that P(Ui) = 1/5 for i = 1, . . . , 5. We are told that P(D|Ui) = i/10.

(i) The probability of selecting a defective ball can be found by summing over the possibility of
selecting a defective ball and a particular urn (using the partition formula):

P(D) =
5∑
i=1

P(D ∩ Ui) =
5∑
i=1

P(D|Ui)P(Ui)

=
5∑
i=1

1

5
P(D|Ui) =

1

5

5∑
i=1

i

10

=
1

5

15

10
= 15/50 = 3/10.
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Notice that this coincides with the proportion of balls which are defective as you would expect
(there are equal numbers of balls in each urn and urns are selected uniformly at random and
so every ball has the same probability of selection).

(ii) This is a simple application of Bayes formula:

P(Ui|D) =
P(Ui ∩D)

P(D)

=
P(D|Ui)P(Ui)

P(D)

=
i/10× 1/5

15/50

=i/15.

In this case, the probability of having selected an urn is simply the proportion of the defective
balls which it contains.

1.5.3 A = “odd total”, B = “6 on 1st die” and C = “total is 7”.

(i) A and B are independent. P(A) = P(Total in {3, 5, 7, 9, 11}) = (2 + 4 + 6 + 4 + 2)/36 = 1/2,
and P(B) = 1/6. Whilst P(A ∩B) = P({(6, 1), (6, 3), (6, 5)}) = 3/36 = P(A)P(B).

(ii) C = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} and P(C) = 1/6. P(A ∩ C) = P(C). Hence P(A ∩
C) 6= P(A)P(C): A and C are not independent. This isn’t surprising: A ⊃ C.

(iii) B ∩ C = {(6, 1)}. Thus P(B ∩ C) = 1/36 = 1/6 × 1/6 = P(B) × P(C). So, B and C are
independent.

1.5.4 Establish that P(A1) = 1
2 , P(A2) = 1

2 and P(A3) = 1
2 .

Additionally, P(A1|A2) = 1
2 and P(A2|A1) = 1

2 ; P(A3|A1) = 1
2 as this is the probability of an

even face on the second die, and similarly P(A3|A2) = 1
2 .

The joint probabilities are P(A1 ∩A2) = 1
4 , P(A1 ∩A3) = 1

4 and P(A2 ∩A3) = 1
4 by enumeration.

Hence P(A1∩A2) = P(A1)×P(A2), P(A1∩A3) = P(A1)×P(A3) and P(A2∩A3) = P(A2)×P(A3)
and these events are pairwise independent.

However, P(A1 ∩ A2 ∩ A3) = 0 6= P(A1)P(A2)P(A3) as no pair of odd numbers has an odd sum.
The events are not independent and pairwise independent is a weaker concept than independence.

2.1.1 Consider Y (i, j) = |i− j|:

i/j 1 2 3 4 5 6

1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 0 1 2
5 4 3 2 1 0 1
6 5 4 3 2 1 0

Hence, as P({(i, j)}) = 1
36 for any valid pair i, j, the probability mass function and associated

distribution function is:

y 0 1 2 3 4 5

fY (y) 6/36 10/36 8/36 6/36 4/36 2/36
FY (y) 6/36 16/36 24/36 30/36 35/36 36/36

where fY (y) = P(Y = y) = |{(i, j) : |i− j| = y}|/36 and FY (y) =
∑

yj≤y fY (yj).
The CDF is:
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2.2.1 Again, enumerating the possible (equally probable) outcomes, X(i, j) = i+ j:

i/j 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

The probability density for X is proportional to the number of ways in which X can take each
possible value (and normalised such that it sums to one):

x 2 3 4 5 6 7 8 9 10 11 12
fX(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

And this may be represented graphically as:

2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

f X

x

Discrete PDF

fY (y) for Y (i, j) = |i− j| was given in the answer to 2.1.1.

2.3.1 With the same X and Y as in the previous questions:

E[X] =
∑
xj

xj · fX(xj)

=
12∑
x=2

fx(x) · x

=
1

36
[1 · (2 + 12) + 2 · (3 + 11) + 3 · (4 + 10) + 4 · (5 + 9) + 5 · (6 + 8) + 6 · 7]

=
1

36
(15 · 14 + 3 · 14) = 7

And:
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E[Y ] =
∑
yj

yj · fY (yj)

=

5∑
y=0

fY (y) · y =

5∑
y=1

fY (y) · y

=
1

36
[10 · 1 + 8 · 2 + 6 · 3 + 4 · 4 + 2 · 5]

=70/36 = 35/18

2.3.2 Calculating the expectation explicitly:

E(X) =

∫ ∞
−∞

ufX(u)du

=

∫ ∞
0

uλe−λudu

Using integration by parts, we obtain:

=

[
u · λe

−λu

−λ

]∞
0

−
∫ ∞

0

λe−λu

−λ
du

=

∫ ∞
0

e−λudu

=

[
e−λu

−λ

]∞
0

= 1/λ

The distribution function can be calculated directly from the definition of the density function:

Fx(x) =

∫ x

−∞
fx(u)du

=

∫ x

0
λe−λudu

=

[
λe−λu

−λ

]x
0

= 1− e−λx

2.6.1 The moment generating function is:

mX(t) =E [exp(Xt)]

=

n∑
x=0

P(X = x) · exp(xt)

=
n∑
x=0

(
n

x

)
px(1− p)n−x(et)x

=

n∑
x=0

(
n

x

)
(p · et)x(1− p)n−x

=(pet + (1− p))n

where the final line follows from the binomial theorem. Hence mX(t) = (p(et − 1) + 1)n.
To calculate the mean (i.e. the expectation) of X, we need to calculate the first derivative of the

MGF. By the chain rule:

∂mX

∂t
=n(pet + (1− p))n−1 ∂

∂t
(pet + (1− p))

=n(pet + (1− p))n−1pet
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And evaluating this derivative at t = 0, we obtain n(pe0 + 1− p)n−1pe0 = n · 1 · p · 1 = np.
Using the product rule, we can calculate the second derivative:

∂2mX

∂t2
=
∂

∂t
n(pet + (1− p))n−1pet

=n(pet + (1− p))n−1 ∂

∂t
pet + pet

∂

∂t
n(pet + (1− p))n−1

=n(pet + (1− p))n−1pet + petn(n− 1)(pet + (1− p))n−2 ∂

∂t
(pet + (1− p))

=n(pet + (1− p))n−1pet + petn(n− 1)(pet + (1− p))n−2pet

=n(pet + (1− p))n−1pet + p2e2tn(n− 1)(pet + (1− p))n−2

And, evaluating this at t = 0:

E[X2] =n(pe0 + (1− p))n−1pe0 + p2e0n(n− 1)(pe0 + (1− p))n−2

=n(p+ (1− p))n−1p+ p2n(n− 1)(p+ (1− p))n−2

=np+ n(n− 1)p2

From the usual expression for variance:

Var[X] =E[X2]− E[X]2

=np+ n(n− 1)p2 − n2p2

=np+ n(n− 1− n)p2

=np− np2

=np(1− p).

3.1.1 For the Poisson distribution, the moment generating function is:

m(t) =E[exp(Xt)]

=
∞∑
x=0

e−λλx

x!
× ext

=

∞∑
x=0

e−λ(etλ)x

x!

=e−λ
∞∑
x=0

(etλ)x

x!

Recall that the exponential function has series expansion eu =
∑∞

i=0
ui

i! , and so:

m(t) =e−λ exp(etλ) = exp([et − 1]λ)

Note that this is the exponential of an exponential.
To obtain the expectation we require the first derivative of m:

∂m

∂t
= exp([et − 1]λ)

∂m

∂t
([et − 1]λ)

= exp([et − 1]λ)etλ

=λ exp([et − 1]λ+ t)
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Evaluating this at t = 0 yields the first moment:

E[X] = λ exp([e0 − 1]λ+ 0) = λ

We require the second derivative in order to evaluate the second moment and hence the variance.
Via the chain rule:

∂2m

∂t2
=
∂

∂t
λ exp([et − 1]λ+ t)

=λ exp([et − 1]λ+ t)
∂

∂t

(
[et − 1]λ+ t

)
=λ exp([et − 1]λ+ t)

(
λet + 1

)
The second moment is obtained by evaluating this expression at t=0:

E[X2] =λ exp([e0 − 1]λ+ 0)
(
λe0 + 1

)
=λ(1)(λ+ 1) = λ(λ+ 1)

And the variance is then:

Var(X) = E[X2]− E[X]2 = λ(λ+ 1)− λ2 = λ.

3.1.2 If X ∼ Poi (3):

–

P(X ≤ 3) =

3∑
x=0

P(X = x)

=e−3
3∑

x=0

3x/x!

=e−3[1 + 3 + 9/2 + 27/6] = 0.64723

–

P(X > 1) =1− P(X 6> 1) = 1− P(X ≤ 1)

=1− [P(X = 0) + P(X = 1)]

=1− e−3[1 + 3] = 0.80085

–

P(2 ≤ X ≤ 4) =

4∑
x=2

P(X = x)

=e−3[32/2! + 33/3! + 34/4!]

=e−3[9/2 + 27/6 + 81/24] = 0.61611

–

F (4.2) =P(X ≤ 4.2) = P(X ≤ 4) as X takes only integer values

=P(X ≤ 1) + P(2 ≤ X ≤ 4)

=0.19915 + 0.61611 = 0.81526

– It would seem likely that the density of larvae would vary over the plate – for example, it is likely
that regions close to the edge of the colony would have lower density.
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3.1.3 The moment generating function of a negative binomial random variable can be obtained
directly with a degree of lateral thinking:

m(t) =E[exp(Xt)]

=

∞∑
x=0

(
x+ r − 1

r − 1

)
pr(1− p)xext

=pr
∞∑
x=0

(
x+ r − 1

r − 1

)
[et(1− p)]x

=pr
∞∑
x=0

(
x+ r − 1

x

)
[et(1− p)]x

=
pr

(1− et(1− p))r

where the final line follows by considering a power series expansion of g(z) = (1 − z)−s. g(k)(z) =∏k−1
i=0 (s+i)

(1−z)−(s+k) . And, by Taylor’s theorem, expanding about z? = 0:

(1− z)−s =

∞∑
i=1

1

i!
g(i)(z?)(z − z?)i

=
∞∑
i=1

(
s+ i− 1

i

)
(1− z?)−(s+i)(z − z?)i

=
∞∑
i=1

(
i+ s− 1

i

)
zi

where z = et(1− p) in the particular case considered here.
However, it’s simpler to represent the negative binomial distribution as that of the sum of r

independent geometric random variables (it is possible to prove that the density of such a sum
matches the density of the negative binomial distribution by summing over all combinations of
values that lead to a particular sum and iteratively applying Vandermonde’s identity). In this case,
if X =

∑r
i=1Xi, with the Xi iid geometric random variables with parameter p:

mXi(t) =E[exp(tXi)]

=

∞∑
xi=0

p(1− p)xiexit

=p
∞∑
xi=0

[et(1− p)]xi

=
p

1− et(1− p)

where the last line follows by recognising a geometric series.
Then, as the Xi are iid:

mX(t) =

r∏
i=1

mXi(t) = mX1(t)r

=

[
p

(1− et(1− p))

]r
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In order to calculate the derivatives of mX with respect to t, it’s simplest to rearrange it as
mX(t) = [p/(1− p)]r[1− et(1− p)]−r, such that (making use of the chain and product rules):

m′X(t) =
∂mx(t)

∂t
=pr(−r)[1− et(1− p)]−(r+1)(−(1− p)et)

=r(1− p)pret[1− et(1− p)]−(r+1)

m′′X(t) =
∂m2

x(t)

∂t2
=r(1− p)pr

[
et ×−(r + 1)(1− et(1− p))−(r+2) × (−(1− p)et)+

et[1− et(1− p)]−(r+1)
]

=r(1− p)pret
[
(r + 1)(1− p)et(1− et(1− p))−(r+2) + (1− et(1− p))(−r+1)

]
Thus, we obtain:

E[X] =m′X(0) = r(1− p)prp−(r+1)

=r(1− p)/p

E[X2] =m′′X(0) = r(1− p)pr
[
(r + 1)(1− p)p−(r+2) + p−(r+1)

]
=r(1− p)pr

[
(r + 1− pr − p)p−(r+2) + pp−(r+2)

]
=r(1− p)/p2[r + 1− pr]

Var[X] =E[X2]− E[X]2

=
r(1− p)
p2

(r + 1− pr)− r(1− p)
p2

(r(1− p))

=
r(1− p)
p2

3.2.1 To calculate the fourth moment of a standard Normal random variable, it’s convenient to use
the moment generating function.

If X ∼ N
(
µ, σ2

)
, then

mX(t) =E[etX ] =

∫ ∞
−∞

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
etxdx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−x

2 − 2µx+ µ2

2σ2
+ xt

)
dx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−x

2 − 2(µ+ σ2t)x+ µ2

2σ2

)
dx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−(x− (µ+ σ2t))2 − (µ+ σ2t)2 + µ2

2σ2

)
dx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−(x− (µ+ σ2t))2

2σ2

)
exp

(
+(µ+ σ2t)2 − µ2

2σ2

)
dx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−(x− (µ+ σ2t))2

2σ2

)
dx exp

(
2µσ2t+ σ4t2

2σ2

)
= exp

(
µt+

1

2
σ2t2

)
Where the integral is equal to 1 as it is the integral of the density of a N

(
µ+ σ2t, σ2

)
random

variable over it’s entire codomain.
We’re interested in the particular case of Z ∼ N (0, 1), so mZ(t) = e

1
2
t2 . Consider it’s first 4

derivatives with respect to t:
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m′Z (t) =
1

2
2t exp

(
1

2
t2
)

=t exp

(
1

2
t2
)

m′′Z (t) = exp

(
1

2
t2
)

+ t2 exp

(
1

2
t2
)

= exp

(
1

2
t2
)

+ t2 exp

(
1

2
t2
)

=
(
t2 + 1

)
exp

(
1

2
t2
)

m
(3)
Z (t) =2t exp

(
1

2
t2
)

+
(
t2 + 1

)
t exp

(
1

2
t2
)

=[t3 + 3t] exp

(
1

2
t2
)

m
(4)
Z (t) =[3t2 + 3] exp

(
1

2
t2
)

+ [t4 + 3t2] exp

(
1

2
t2
)

=[t4 + 6t2 + 3] exp

(
1

2
t2
)

Evaluating these at zero, the first 4 non-central moments are clearly 0, 1, 0, 3 and hence the Kurtosis
of the standard Gaussian is 3 (as the first moment is zero and so central and non-central moments
coincide).

3.3.1 Let Xi be a random variable which takes value 0 if the ith chocolate bar is a Yorkie and 1 if it
is a Mars bar.

(a) P(Mars, Mars, Yorkie, Yorkie) = P(X1 = 1, X2 = 1, X3 = 0, X4 = 0). We can expand this as:

P(X1 = 1)P(X2 = 1|X1 = 1)P(X3 = 0|X1 = 1, X2 = 1)P(X4 = 0|X3 = 0, X2 = X1 = 1)

=P(X1 = 1)P(X2 = 1|X1 = 1)P(X3 = 0|X1 = 1)P(X4 = 0|X3 = 0)

as the choice of chocolate bar depends only upon the previously chosen bar. In this case P(X1 =
1) = 1

2 and P(Xi = Xi−1) = 1
3 and so we arrive at 1

2 ×
1
3 ×

2
3 ×

1
3 = 2/54 = 1/27.

(b) If we’re only interested in the probability that the second purchase is a Yorkie, then we’re
interested in the marginal probability that X2 = 0.

P(X2 = 0) =
∑
x1

P(X1 = x1, X2 = 0)

=
∑
x1

P(X1 = x1)P(X2 = 0|X1 = 1)

=P(X1 = 0)P(X2 = 0|X1 = 0) + P(X1 = 1)P(X2 = 0|X1 = x1)

=
1

4

1

3
+

3

4

2

3

=
1

12
+

1

2
= 7/12.

3.3.2 Again, we can simply decompose the probability of a faulty yoghurt as the combination
of a faulty yoghurt and a particular production line and then sum over the production lines.
Let A denote a faulty yoghurt and B denote production line 1, then as there are only two
yoghurt-states (faulty and not faulty) and two production lines:
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P(A) =P(A ∩B ∪A ∩ B̄)

=P(A ∩B) + P(A ∩ B̄) by disjointness

=P(A|B)P(B) + P(A|B̄)P(B̄)

=0.01× 0.55 + 0.025× 0.45 = 0.01675 = 1.675%.
Given a faulty yoghurt, the probability that it came from a particular production line can be
found by Bayes’ rule:

P(B̄|A) =P(A|B̄)P(B̄)/P(A)

=0.025× 0.45/0.01675

=0.67 = 67%.

(a) 3.3.3 (a) There are 500 identical, independent Bernoulli-type trials and we are interested in the
distribution of the number of successes. Thus, this is a binomial distribution (with n = 500, p =
0.02 given the specified parameters). Consequently, E[X] = np = 10 and Var[X] = np(1− p) =
9.8.

(b) To approximate a binomial distribution with a Poisson, it is necessary that n is large and p� 1
such that np ≈ np(1− p); the moment-matched Poisson distribution has λ = np = 10.
In order to find P(5 ≤ X ≤ 15) = F (15) − F (4) we note that the distribution function of
a Poisson random variable can only be expressed in closed form in terms of the incomplete
gamma distribution and it’s rather easier to use the density function directly:

P(5 ≤ X ≤ 15) =e−10
15∑
x=5

10x

x!

=0.92201.

(c) Chebyshev’s inequality can be employed with less calculation. It tells us that:

P(|X − E[X]| > r ×
√

Var(X)) ≤1/r2

In our case, were interested in a deviation of at least 5 and so, r = 5/
√

9.8 = 1.5972 and the
bound on the probability of interest is 1 − 1.5972−2 = 0.608. In this case the bound is rather
loose.

3.3.4 In this case X ∼ N(10, 42) if X is the rate of return as a percentage.

(a) To calculate P(X ≤ 0), it’s convenient to note that Z = (X − 10)/4 is a standard normal (i.e.
N(0, 12)) random variable and {ω : X(ω) ≤ 0} = {ω : Z(ω) ≤ −2.5}. Hence, P(X ≤ 0) =
P(Z ≤ −2.5) = Φ(−2.5) which can be found tabulated, or via software, to be approximately
0.006207.

(b) Similarly, P(X ≥ 15) = P(Z ≥ 1.25) = 1− Φ(1.25) which is approximately 0.10565.
(c) Let Y denote the performance of this second portfolio. Y ∼ N(12, 52). In this case:

P(Y ≤ 0) =P(Z ≤ −12/5 = 2.4) = Φ(2.4)

≈0.0082

P(Y ≥ 15) =P(Z ≥ 3/5 = 0.6) = 1− Φ(0.6)

≈0.27425

Whether this change is desirable is a rather personal decision. The average performance is
significantly better; the variability is a little higher, but not dramatically so. Most people
would probably prefer the second fund to the first. However, as we can’t assume that the two
funds are independent it is difficult to assess the likely difference in performance.
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4.1.1 3 coins, which we assume are fair, are tossed. The underlying probability space consists of all
ordered triples of the elements H and T : Ω = {(c1, c2, c3) : c1, c2, c3 ∈ {H,T}}.

Let IH(c) = 1 if c = H and 0 otherwise.
X1((c1, c2, c3)) = IH(c1) and X2((c1, c2, c3)) = IH(c2) + IH(c3).
Consider the joint density function, fX1,X2(x1, x2). Clearly, x1 ∈ {0, 1} and x2 ∈ {0, 1, 2}. The

probability density can be established by enumerating the number of equally probable elementary
events which correspond to each outcome.

X1|X2 0 1 2

0 1/8 2/8 1/8
1 1/8 2/8 1/8

Evaluating various quantities follows by considering how these quantities can be expressed in
terms of the values which the random variables can take.

F (0.4, 1.3) =P(X1 ≤ 0.4, X2 ≤ 1.3)

=P(X1 = 0, X2 ≤ 1)

=P(X1 = 0, X2 = 0) + P(X1 = 0, X2 = 1) = 3/8

F (0, 0) =P(X1 ≤ 0, X2 ≤ 0)

=P(X1 = 0, X2 = 0) = 1/8

F (1.4, 2.1) =P(X1 ≤ 1.4, X2 ≤ 2.1)

=P(X1 ≤ 1, X2 ≤ 2) = 1

F (−1, 2) =P(X1 ≤ −1, X2 ≤ 2) = 0

P(X1 = 1, X2 ≥ 1) =P(X1 = 1, X2 = 1) + P(X1 = 1, X2 = 2)

=3/8

4.1.2 To show that f(x1, x2) = (6 − [x1 + x2])/8 for 0 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 4 is a density function
requires the verification of two things.

It must be non-negative everywhere. As the function is zero outside the specified region, this
requires only that we verify that it is never negative in this region:

(6− [x1 + x2])/8 ≥ min
(x1,x2)∈[0,2]×[2,4]

6− [x1 + x2]

8

=0

It must integrate to unity:∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)dx1dx2 =
1

8

∫ 4

2

∫ 2

0
[6− x1 − x2]dx1dx2

=
1

8

∫ 4

2

[
(6− x2)x1 −

1

2
x2

1

]2

x1=0

dx2

=
1

8

∫ 4

2
[10− 2x2]dx2

=
1

8
[10x2 − x2

2]42

=
1

8
[10× (4− 2)− 42 + 22]

=
1

8
[20− 16 + 4] = 1.

Thus f(x1, x2) describes a probability density.
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If we’re interested in the distribution function, we can calculate it explicitly explicitly:

∫ x2

−∞

∫ x1

−∞
f(x1, x2)dx1dx2 =

1

8

∫ min(4,x2)

max(2,x2)

∫ min(2,x1)

max(0,x1)
[6− x1 − x2]dx1dx2

NB strictly the integrals for x1 should be over the region max(0,min(2, x1)) and min(2,max(x1, 0))
but the notation becomes rather cumbersome if this is made explicit; similar for x2.

In which case we’d need to consider the various regimes of x1 and x2 in, above and below the
feasible region. But we can simply calculate the probabilities of interest explicitly from the density:

–

F (1, 3) =

∫ 3

−∞

∫ 1

−∞
f(x1, x2)dx1dx2

=

∫ 3

2

∫ 1

0

6− [x1 + x2]

8
dx1dx2

=

∫ 3

2

[
(6− x2)x1 − 1

2x
2
1

8

]1

0

dx2

=

∫ 3

2

−x2 + 11/2

8
dx2

=
1

8

[
−x2

2

2
+

11x2

2

]3

2

=
1

8

[
4− 9

2
+

11(3− 2)

2

]
= 3/8

– As P(X2 ≤ 1) = 0: F (0, 1) = 0.
– As P(X1 ≤ 3) = P(X2 ≤ 5) = 1: F (3, 5) = 1.

4.3.1 Y1 and Y2 are two RVs with joint density fY1,Y2 as shown:

0 1 2

0 q3 pq2 0
1 pq2 pq p2q
2 0 p2q p3

– The marginal densities are:

fY1(y1) =
∑
y2

fY1,Y2(y1, y2)

fY2(y2) =
∑
y1

fY1,Y2(y1, y2)

and so we can simply sum the rows and columns of the table showing the joint density:

Y1|Y2 0 1 2 fY1

0 q3 pq2 0 q2(p+ 1)
1 pq2 pq p2q pq(p+ q + 1)
2 0 p2q p3 p2(p+ q)

fY2 (p+ q)q2 pq(p+ q + 1) p2(p+ q)
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– The conditional density function of y2 given y1 is

fY2|Y1
(y2|y1) =fY1,Y2(y1, y2)/fY1(y1)

and so the full conditional density can be shown in a table in which the joint densities are divided
by the marginal density of the conditioning variable:

Y1|Y2 0 1 2

0 q
p+1

p
p+1 0

1 q
p+q+1

1
p+q+1

p
p+q+1

2 0 q
p+q

p
p+q

Each row corresponds to the conditional density of Y2 given a particular value of Y1.
– Evaluating these quantities:

1. E[Y1 − Y2] = E[Y1]− E[Y2] = 0 by symmetry.
2. E[Y1 + Y2] = E[Y1] + E[Y2] = 2E[Y1] by symmetry.
3. E[Y1] = pq(p+ q + 1) + 2p2(p+ q).

4.4.1 If random variable (X1, X2) has joint density

f(x1, x2) =

{
1
8(6−X1 −X2) for 0 ≤ X1 ≤ 2, 2 ≤ X2 ≤ 4

0 otherwise

– The conditional densities are:

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
fX2|X1

(x2|x1) =
fX1,X2(x1, x2)

fX1(x1)

=
fX1,X2(x1, x2)∫
fX1,X2(x′1, x2)dx′1

=
fX1,X2(x1, x2)∫
fX1,X2(x1, x′2)dx′2

=
6− x1 − x2[

(6− x2)x1 − 1
2x

2
1

]2
x1=0

=
6− x1 − x2[

(6− x1)x2 − 1
2x

2
2

]4
x2=2

=
6− x1 − x2

10− 2x2
=

6− x1 − x2

6− 2x1

for 0 ≤ X1 ≤ 2, 2 ≤ X2 ≤ 4.
– The distribution functions are obtained from their definition as:

FX1|X2
(x1|x2) =

∫ x1

−∞
fX1|X2

(x′1|x2)dx′1

=

∫ max(0,min(x1,2))

min(2,max(0,x1)

6− x′1 − x2

10− 2x2
dx′1

=


0 x1 < 0

6x1− 1
2
x2

1−x1x2

10−2x2
0 ≤ x1 ≤ 2

1 2 < x1

(assuming that x2 ∈ [2, 4] and undefined otherwise). Similarly:

FX2|X1
(x2|x1) =

∫ x2

−∞
fX2|X1

(x′2|x1)dx′2

=

∫ max(2,min(x2,4))

min(4,max(2,x2)

6− x1 − x′2
6− 2x1

dx′2

=


0 x2 < 2

6(x2−2)− 1
2

(x2
2−22)−x1(x2−2)

6−2x1
2 ≤ x2 ≤ 4

1 4 < x2
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– The conditional expectation is:

E [X1|X2 = x2] =

∫
x1fX1|X2

(x1|x2)dx1

=

∫
x1

6− x1 − x2

10− 2x2
dx1

=

∫ 2

0

(6− x2)x1 − x2
1

10− 2x2
dx1

=

[
1
2(6− x2)x2

1 − 1
3x

3
1

]2
x1=0

10− 2x2

=

[
2(6− x2)− 8

3

]
10− 2x2

Again, the conditional expectation is undefined if x2 6∈ [2, 4].

4.4.2 Proof of the tower property of conditional expectation for continuous random variables:

E[E[X1|X2]] =E
[∫

fX1|X2
(x1|X2)x1dx1

]
=

∫ ∫
fX1|X2

(x1|x2)x1dx1fX2(x2)dx2

=

∫ ∫
fX1|X2

(x1|x2)x1fX2(x2)dx1dx2 by integrability

=

∫ ∫
fX1,X2(x1, x2)dx2x1dx1 by integrability

=

∫
fX1(x1)x1dx1 = E[X1].

4.4.3 X ∼ U[0, 1];Y |X = x ∼ U[x, 1]. The conditional expectation of Y is:

E[Y |X = x] =

∫
yfY |X(y|x)dy

=

∫ 1

x

1

1− x
· ydy density of conditional

=
1

1− x

[
1

2
y2

]1

x

=
(1− x2)

2(1− x)
=

(1 + x)(1− x)

2(1− x)
=

1 + x

2
.

Hence, the expectation of Y is:

E[E[Y |X]] =

∫
fX(x)E[Y |X = x]dx

=

∫ 1

0

1 + x

2
dx

=

[
1

2
x+

1

4
x2

]1

0

=
3

4
.

4.4.4 As stated, fΘ(θ) = 1 for θ ∈ [0, 1]; fX|Θ(x|θ) = Bin (x; 2, θ):
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E[X|Θ] =
2∑

x=0

x · fX|Θ(x|Θ)

=P(X = 1|Θ) + 2P(X = 2|Θ)

=2Θ(1−Θ) + 2Θ2

=2Θ

E[X] =

∫
fΘ(θ)E[X|Θ = θ]dθ

=

∫ 1

0
1 · 2θdθ

=[θ2]10 = 1.

4.5.1 For any random variables X1 and X2, and for any function h(·) for which the expectations are
well defined,

E
[
E[h(X1)|X2]

]
= E[h(X1)].

Proof for the discrete case:

E
[
E[h(X1)|X2]

]
=
∑
x2

fX2(x2)E[h(X1)|X2 = x2]

=
∑
x2

fX2(x2)
∑
x1

h(x1)fX1|X2
(x1|x2)

=
∑
x2

∑
x1

fX2(x2)h(x1)fX1|X2
(x1|x2)

=
∑
x1

∑
x2

fX1,X2(x1, x2)h(x1)

=
∑
x1

fX1(x1)h(x1).

4.5.2 Proof of conditional variance decomposition for the continuous case.

E[Var[X1|X2]] =E[E[X2
1 |X2]− E[X1|X2]2]

=

∫
fX2(x2)

[∫
x2

1fX1|X2
(x1|x2)dx1 −

(∫
x1fX1|X2

(x1|x2)

)2
]

dx2

=

∫
fX2(x2)

∫
x2

1fX1|X2
(x1|x2)dx1dx2 −

∫ (∫
x1fX1|X2

(x1|x2)

)2

fX2(x2)dx2

Var[E[X1|X2]] =E[E[X1|X2]2]− E[E[X1|X2]]2

=

∫ [∫
x1fX1|X2

(x1|x2)

]2

fX2(x2)−
(∫

fX2(x2)

∫
x1fX1|X2

(x1|x2)

)2

Summing these two terms, noting that the second term in the expectation of the conditional
variance is the negation of the first term in the variance of the conditional expectation:

E[Var[X1|X2]] + Var[E[X1|X2]] =

∫
fX2(x2)

∫
x2

1fX1|X2
(x1|x2)dx1dx2 −

(∫
fX2(x2)

∫
x1fX1|X2

(x1|x2)

)2

=

∫
fX1(x1)x2

1dx1 −
(∫

fX1(x1)x1dx1

)2

=Var[X1].

Note that this can actually be done without expanding the expectations at all to provide a general
proof a little more elegantly.
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4.5.3 In 4.4.4. we established that E[X|Θ] = 2Θ. Hence:

Var[E[X|Θ]] =E[E[X|Θ]2]− E[E[X|Θ]]2

=

∫
E[X|Θ = θ]2fΘ(θ)dθ − E(X)2

=

∫ 1

0
4θ2dθ − [1]2

=4/3− 1 = 1/3

Similarly:

E[Var[X|Θ]] =E[E[X2|Θ]− E[X|Θ]2]

=E[E[X2|Θ]]− E[E[X|Θ]2]

=

∫ 1

0
E[X2|Θ = θ]dθ −

∫ 1

0
4θ2dθ

=

∫ 1

0
[12 · 2θ(1− θ) + 22 · θ2]dθ − [4/3]

=[θ2 − 2θ3/3]10 + [4θ3/3]10 − 4/3

=[1− 2/3] + 4/3− 4/3 = 1/3

Summing these, Var[X] = 2/3. On average, observing Θ halves the variability in X (E[Var[X|Θ]] =
1/3). Once the parameter of the binomial is known, the conditional distribution of X is more
concentrated — the parameter provides information about the distribution of X.

4.6.1 The bivariate normal has density:

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]}

In the case ρ = 0:

f(x1, x2) =
1

2πσ1σ2

√
1− 02

exp

{
− 1

2(1− 0)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2 · 0
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]}

=
1

2πσ1σ2
exp

(
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
])

=
1√

2πσ2
1

exp

(
−1

2

(
x1 − µ1

σ1

)2
)
· 1√

2πσ2
2

exp

(
−1

2

(
x2 − µ2

σ2

)2
)

which is precisely the product of two univariate normal distributions.
Considering F (x1, x2) = 1−e−x1−e−x2 +e−x1−x2−ρx1x2 , we know that X1 and X2 are independent

provided this distribution function can be factorised as a distribution function over X1 and a second
over X2.

F (x1, x2) =1− e−x1 − e−x2 + e−x1−x2−ρx1x2

=(1− e−x1)(1− e−x2) + [e−x1−x2−ρx1x2 − e−x1−x2 ]
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if (and only if) ρ = 0 then the final term vanishes are we’re left with:

F (x1, x2) =(1− e−x1)(1− e−x2) = FX1(x1)FX2(x2)

with FX1(x1) = 1 − e−x1 and similarly for X2. These are the distribution functions of exponential
random variables of rate 1.

4.7.1 Let

f(x1, x2) =

{
x1 + x2 for 0 < x1 < 1, 0 < x2 < 1

0 otherwise

Now,

f(x1) =

∫ ∞
−∞

f(x1, x2)dx2

=

∫ 1

0
[x1 + x2]dx2

=[x1x2 +
1

2
x2

2]10

=x1 +
1

2
provided x1 ∈ [0, 1]

and by symmetry f(x2) = x2 + 1
2 for x2 ∈ [0, 1].

However,

f(x1|x2) =
f(x1, x2)

f(x2)

=
x1 + x2

x2 + 1
2

6= f(x1)

and so x1 and x2 are dependent.
The covariance can be calculated from E[X1], E[X2] and E[X1 ·X2]. These are:

E[X1] =

∫
f(x1)x1dx1

=

∫ 1

0
[x1 +

1

2
]x1dx1

=

∫ 1

0
[x2

1 +
1

2
x1]dx1

=[
1

3
x3

1 +
1

4
x2

1]10

=
7

12

By symmetry: E[X2] = 7/12. Whilst:
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E[X1 ·X2] =

∫ ∫
f(x1, x2)x1x2dx2dx1

=

∫ 1

0

∫ 1

0
[x1 + x2]x1x2dx2dx1

=

∫ 1

0

∫ 1

0
[x2

1x2 + x1x
2
2]dx2dx1

=

∫ 1

0

[
1

2
x2

1x
2
2 +

1

3
x1x

3
2

]1

x2=0

dx1

=

∫ 1

0

[
1

2
x2

1 +
1

3
x1

]
dx1

=

[
1

6
x3

1 +
1

6
x2

1

]1

x1=0

=
1

3
.

Thus, Cov(X1, Y1) = E[X1 · X1] − E[X1]E[X2] = 1/3 − 49/144 = −1/144; there is a negative
correlation but it would seem to be a weak one.

Formalising this, we need to calculate Var(X1) and Var(X2). By symmetry, these must be equal
and so it suffices to calculate one of them:

Var[X1] =

∫
f(x1)x2

1dx1 − E[X1]2

=

∫ 1

0
[x1 +

1

2
]x2

1dx1 − 49/144

=[
1

4
x4

1 +
1

6
x3

1]10 − 49/144

=11/144

and, finally, ρ = Cov(X1, Y1)/
√
Var(X1)Var(X2) = [−1/144]/[11/144] = −1/11 a small negative

correlation.

4.7.2 If we consider the suggested expectation, we find (non-negativity follows as we have the ex-
pectation of a non-negative function):

0 ≤ E
[
(tX − Y )2

]
=E[t2X2 − 2tXY + Y 2]

0 ≤t2E[X2]− 2tE[XY ] + E[Y 2]

2tE[XY ] ≤t2E[X2] + E[Y 2]

If we consider t = E[XY ]/E[X2] we find:

2E[XY ]E[XY ]/E[X2] ≤E[XY ]2E[X2]/E[X2]2 + E[Y 2]

2E[XY ]2/E[X2] ≤E[XY ]2/E[X2] + E[Y 2]

E[XY ]2/E[X2] ≤E[Y 2]

E[XY ]2 ≤E[X2]E[Y 2]

thus proving the Cauchy-Schwarz inequality.
Note that Corr(X,Y ) = Cov(X,Y )/

√
Var(X)Var(Y ). Let X̄ = X − E[X] and Ȳ = Y − E[Y ].

Now: Var(X) = E[X̄2], Var(Y ) = E[Ȳ 2] and Cov(X,Y ) = E[X̄Ȳ ]. Hence:
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Corr(X,Y ) =
E[X̄Ȳ ]√

E[X̄2]E[Ȳ 2]

|Corr(X,Y )| =

√
E[X̄Ȳ ]2

E[X̄2]E[Ȳ 2]

≤ 1

By the Cauchy-Schwarz inequality (and monotonicity of the square root).

4.8.1 As stated, X̄ = 1
n

∑n
i=1Xi with the Xi iid replicates of a random variable X. E[X] = µ,

Var(X) = σ2.

E[X̄] =E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi] linearity

=
1

n

n∑
i=1

µ = µ

Var[X̄] =E[(X̄ − E[X])2]

=E

 1

n2

n∑
i=1

n∑
j=1

(Xi − E[X])(Xj − E[X])


=

1

n2

n∑
i=1

n∑
j=1

E [(Xi − E[X])(Xj − E[X])]

It is convenient to separate the terms in the double sum in which i = j and those for which i 6= j as
these behave in a qualitatively different way:

Var[X̄] =
1

n2

n∑
i=1

E[(Xi − E[X])2] +
1

n2

n∑
i=1

n∑
j=1,j 6=i

E [(Xi − E[X])(Xj − E[X])]

=
1

n2

n∑
i=1

Var[Xi] +
1

n2

n∑
i=1

n∑
j=1,j 6=i

E [(Xi − E[X])]E [(Xj − E[X])]

With the decomposition of the expectation following via independence. Clearly, whatever i or j,
E[Xi − E[X]] = E[Xj − E[X]] = 0. For all i, Var[Xi] = σ2. Consequently:

Var[X̄] =
1

n2
nσ2 + 0 = σ2/n.

4.9.1 The original random variable has density fX(x) = αe−αx for x ≥ 0.

1 We only need to consider g(x) for x ≥ 0 as the original random variable is non-negative with
probability 1. In this regime, g(x) = 1− e−αx, which is injective.
If y = g(x), then

y =1− exp(−αx)

exp(−αx) =1− y
αx =− log(1− y)

x =− log(1− y)

α
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and so g−1(y) = − log(1−y)
α for y ∈ (0, 1) which is the range of values which y can take if it is

obtained by transforming x ∈ (0,∞).
We also need the derivative of g−1 to calculate the transformed density.

∂g−1

∂y
=− 1

α

1

1− y
(−1)

=
1

α(1− y)

Using the density transformation formula:

fY (y) =fX(g−1(y)) · ∂g
−1

∂y

=fX(− log(1− y)/α)
1

α(1− y)

=α exp(−α[− log(1− y)/α])
1

α(1− y)

=α exp(log(1− y))/α(1− y)

=1

Recall that fY (y) is non-zero only over [0, 1] and so this corresponds to a uniform random variable
over the unit interval. This should be no surprise; in this case, g(x) = FX(x).

2 In this case g(x) = x1/β for β > 0. Clearly, g−1(y) = yβ and g−1′(y) = βyβ−1. This is an injective
mapping over the range of X. Hence:

fY (y) =fX(g−1(y))|g−1′(u)|
=[αexp(−αyβ)]βyβ−1

=αβyβ−1 exp(−αyβ)

3 This case requires more thought. As we know that X ≥ 0 with probability 1, we need consider

only two cases: g(X) =

{
x for 0 ≤ x ≤ 1

1 for x > 1
This function is not injective: it maps many values of x to 1. As X is an exponential random
variable, we know that FX(x) = 1− e−αx, hence

P(X ≥ 1) = 1− FX(1) = 1− 1− e−α = e−α.

Hence, P(Y = 1) = exp(−α). However, g(x) is injective over (0, 1). Indeed, it clearly doesn’t change
x over this interval, so, the distribution of Y , given that X < 1 is the same as the distribution of
X conditional upon the same event.
Hence:

P(Y = 1) =P(X ≥ 1) = e−α

P(Y < 1) =P(X < 1) = 1− e−α

P(Y ∈ [a, b], Y < 1) =

∫ b

a
fX(x)dx for a ≤ b ∈ [0, 1]

P(Y ∈ [a, b]|Y < 1) =

∫ b

a
fX(x)dx/[1− e−α]

as such, Y does not have a simple density function in the sense it has been defined in this course
(nor does it have a density function with respect to Lebesgue measure). Y is a mixed discrete-
continuous random variable. It can be viewed as what happens if a Bernoulli random variable
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with success probability e−α is drawn and, if a success occurs, Y is set deterministically to 1 (i.e.
it is a realisation of a degenerate random variable with mass 1 on point 1) otherwise, it is drawn
from X subject to the condition that X < 1 which has density fX(x)/[1− e−α] over [0, 1).
Such discrete mixtures may seem esoteric and unimportant, but they occur rather frequently. In
the present case, it may be that a quantity which is viewed as taking distribution X is measured
extremely accurately by a device which can only measure values between 0 and 1, leading to
measurements of the form Y , for example.

4.9.2 To use the inversion method described, we need to know the inverse of the distribution function
of the target distribution.

FX(x) =

∫ x

−∞
fx(u)du

=

∫ x

0
[u+

1

2
]du for x ∈ [0, 1]

=

[
1

2
u2 +

1

2
u

]x
0

=
1

2
[x2 + x]

and, of course, FX(x) = 0 for x ≤ 0 and FX(x) = 1 for x ≥ 1.
If y = FX(x), then:

y =
1

2
[x2 + x]

x2 + x− 2y =0

x =
−1±

√
1− 4(−2y · 1)

2

=
−1 +

√
1 + 8y

2
as P(X ≥ 0) = 1

F−1(y) =

√
1 + 8y − 1

2
for y ∈ [0, 1].

We’re given two realisations of a uniform [0, 1] (pseudo)random variable, u1 = 0.25, u2 = 0.46
and we can use these to generate 2 pseudorandom numbers with the desired target distribution, by
setting xi = F−1(ui), hence we obtain:

x1 = F−1(0.25) =

√
1 + 8 · 0.25− 1

2

=[
√

3− 1]/2 = 0.3660

x2 = F−1(0.46) =

√
1 + 8 · 0.46− 1

2

=[
√

4.68− 1]/2 = 0.5817

4.10.1 In 3.1.1 we established that the MGF associated with a Poisson distribution of parameter λ
was m(t) = exp([et − 1]λ).

If X1, . . . , Xn are independent Poisson random variables drawn from distributions with parame-
ters λ1, . . . , λn, and X =

∑n
i=1Xi, then:
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mX(t) =E[exp(t

n∑
i=1

Xi)] = E[

n∏
i=1

exp(tXi)]

=

n∏
i=1

E[exp(tXi)] by independence

=

n∏
i=1

mXi(t) =

n∏
i=1

exp([et − 1]λi)

= exp(
n∑
i=1

[et − 1]λi) = exp

(
[et − 1]

n∑
i=1

λi

)

This is exactly the MGF of a Poisson distribution of parameter
∑n

i=1 λi and so, by uniqueness
of the MGF, X must have such a distribution.

4.11.1 In this setting, X and Y are independent realisations of a random variable with discrete pdf
(p0, . . . , p5) where p0 = 0.05, p1 = 0.10, p2 = 0.20, p3 = 0.30, p4 = 0.25, and p5 = 0.10.

Hence, for x, y ∈ {0, . . . , 5}, fX,Y (x, y) = P(X = x, Y = y) = px · py, and for any other values of
x, y the density takes the value 0.

If the vector p = (p0, . . . , p5) then the matrix ppT contains the joint probability distribution,
which in tabular form is:

x/y 0 1 2 3 4 5

0 0.00250 0.00500 0.01000 0.01500 0.01250 0.00500
1 0.00500 0.01000 0.02000 0.03000 0.02500 0.01000
2 0.01000 0.02000 0.04000 0.06000 0.05000 0.02000
3 0.01500 0.03000 0.06000 0.09000 0.07500 0.03000
4 0.01250 0.02500 0.05000 0.07500 0.06250 0.02500
5 0.00500 0.01000 0.02000 0.03000 0.02500 0.01000

Probabilities can be calculated directly from this matrix:

P(X = Y ) =
5∑

x=0

P(X = Y = x)

=Trace
[
ppT

]
= 0.215

Whilst P(X > Y ) =
∑4

x=0

∑5
y=x+1 fX,Y (x, y) which is the sum of all elements below the diagonal

in the matrix. Summing these terms, we get 0.392.

4.11.2 In order for

f(x, y) =

{
(2y)x

x! e−3y if y > 0 and x = 0, 1, . . . ,

0 otherwise.

to be a joint density, it must be non-negative everywhere, which is clearly the case as it’s the product
of positive terms over the region in which it is nonzero.

It must also have total mass one; summing over the discrete components and integrating over
the continuous ones must give unity.

∫ ∞
0

∞∑
x=0

(2y)x

x!
e−3ydy

=

∫ ∞
0

exp(2y)e−3ydy



A. Solutions to Exercises 149

by recognising the series representation of the exponential function, and this is simply:∫ ∞
0

exp(2y)e−3ydy =

∫ ∞
0

e−ydy = [−e−y]∞0 − = 1

To find P(X = 0), we need to evaluate the marginal (discrete) density of X at zero, which is:

fX(x)|x=0 =

∫ ∞
0

(2y)x

x!
e−3ydy|x=0

=

∫ ∞
0

e−3ydy

=

[
−1

3
e−3y

]∞
0

=
1

3
.

4.11.3 The marginal densities are found by summing over the irrelevant variable in the joint distri-
bution, which corresponds to summing rows and columns in this table.

fX,Y (x, y) 1 (Bbb) 2 (Bb) 3 (B) fY (y)

8.5 0.26 0.10 0.00 0.36
11.5 0.04 0.28 0.04 0.36
17.5 0.00 0.02 0.26 0.28

fX(x) 0.30 0.40 0.30 1

Where the bottom right entry is just a check that both fX(x) and fY (y) sum to unity.
The specified expectations can be found most easily from the marginal densities:

E[X] =
3∑

x=1

fx(x) · x = 2.0

E[Y ] =
∑
y

fY (y) · y

=8.5 · 0.36 + 11.5 · 0.36 + 17.5 · 0.28 = 12.1

The bond rating and yield are not independent; consider x = 1, y = 17.5 for example.
To calculate the covariance, we also require E[XY ]:

E[XY ] =
∑
x

∑
y

fX,Y (x, y)xy

=
∑
x

x
∑
y

yfX,Y (x, y)

=1 [0.26 · 8.5 + 0.04 · 11.5] + 2 [0.10 · 8.5 + 0.28 · 11.5 + 0.02 · 17.5] + 3 [0.04 · 11.5 + 0.26 · 17.5]

=1 · 2.67 + 2 · 4.42 + 3 · 5.01

=26.54

And then:

Cov(X,Y ) =E[XY ]− E[X]E[Y ]

=26.54− 2.0 · 12.1 = 2.34

To further calculate the correlation, we require the variances of X and Y , which we can obtain
via the second moments:
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E[X2] =
3∑

x=1

x2fX(x) = 4.6

E[Y 2] =
∑
y

y2fY (y) = 159.37

Var[X] =E[X2]− E[X]2 = 4.6− 2.02 = 0.6

Var[Y ] =E[Y 2]− E[Y ]2 = 159.37− 12.12 = 12.96

And so:

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

=
2.34√

0.6 · 12.96

=0.84

which tells us that there is a strong positive correlation between the bond rating and its yield. This
matches the pattern seen in the table.

Finally, E[Y |X = 1], is the expectation with respect to the conditional density of Y .

E[Y |X = 1] =
∑
y

yfY |X(y|1)

=
∑
y

y
fX,Y (1, y)

fX(1)

=
1

fX(1)

∑
y

yfX,Y (1, y)

=
1

0.30
[0.26 · 8.5 + 0.04 · 11.5]

=2.67/0.30 = 8.9

4.11.4 Two models:

a If X1 ∼ Poi (λ1) and X1 ∼ Poi (λ2) are independent then the joint density is:

faX1,X2
(x1, x2) =fX1(x1)fX2(x2)

=
λx1

1

x1!
e−λ1

λx2
2

x2!
e−λ2

=
λx1

1 λ
x2
2

x1!x2!
e−(λ1+λ2)

b If N ∼ Poi (λ) and X1|N ∼ Bin (N, θ) then the joint density of N and X1 is:

fN,X1(n, x1) =fN (n)fX1|N (x1|n)

=
λn

n!
e−λ
(
n

x1

)
θx1(1− θ)n−x1

In order to produce comparable results from the two models, one approach is to match moments.
The expected number of male and female piglets under model a is λ1 and λ2 and the total expected
number is λ1 + λ2. Under model b, the expected number is λ and the expected number of male
piglets is θλ. So, making the identifications:

λ =λ1 + λ2 θ =λ1/[λ1 + λ2]
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model b becomes:

fN,X1(n, x1) =
[λ1 + λ2]n

n!
e−(λ1+λ2)

(
n

x1

)[
λ1

λ1 + λ2

]x1
[

λ2

λ1 + λ2

]n−x1

=
1

n!
e−[λ1+λ2] n!

x1!(n− x1)!
λx1

1 λ
n−x1
2

=
λx1

1 λ
n−x1
2

x1!(n− x1)!
e−[λ1+λ2]

And, as there is a one-to-one correspondence between pairs (x1, x2) and (x1, n) given by setting
n = x1 + x2 this also defines a density over (x1, x2) which can be obtained by substitution:

f bX1,X2
(x1, x2) =fN,X1(x1 + x2, x1)

=
λx1

1 λ
x2
2

x1!x2!
e−[λ1+λ2]

which is exactly the same as model a. The two models are equivalent and indistinguishable.

4.11.5 This is a transformation of a random variable. T = 1/Z. As fZ(z) = 5e−5z, and T = g(Z)
with g(z) = 1/z, for which g−1(t) = 1/t and ∂g−1/∂t = −1/t2 we have (for positive t as all positive
z will yield positive t and any positive t can be obtained from some positive z):

fT (t) =fZ(g−1(t))

∣∣∣∣∂g−1

∂t

∣∣∣∣
t

=5 exp(−5/t) · 1

t2
for t ≥ 0.

whilst, fT (t) = 0∀t < 0.
The easy solution to the second part is to say that:

P(T ≥ t) =P(Z ≤ 1/t) = 1− e−5/t

and so, P(T > 5) = 1− 1/e and P(T > 10) = 1− 1/e1/2.
More directly, the integral

∫∞
t t−2 exp(−5/t)dt can be done by making the substitution s = 1/t

but this amounts to an algebraic version of the same argument.

4.11.6 Supposing that the random variables X and Y have a continuous joint distribution, with pdf
f(x, y), means µX & µY respectively, variances σ2

X & σ2
Y respectively, and correlation ρ and also

that E[Y |x] = β0 + β1x:

(a) ∫ ∞
−∞

yf(x, y)dy =

∫ ∞
−∞

yf(y|x)dyfx(x)

=E[Y |x]fX(x)

(b)

µY =E[Y ] = E[E[Y |X]]

=

∫
fX(x)E[Y |X = x]dx

=

∫
fX(x)[β0 + β1x]dx

=β0 + β1

∫
fX(x)xdx

=β0 + β1E[X] = β0 + β1µX
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(c)

ρ σXσY + µXµY =
E[XY ]− E[X]E[Y ]

σXσY
σXσY + µXµY

=E[XY ] = E[E[XY |X]]

=E[XE[Y |X]]

=E[X(β0 + β1X)]

=β0µX + β1(σ2
X + µ2

X)

(d) Parts (b) and (c) give two equations in the unknown quantities β0 and β1:

µY =β0 + β1µX ⇒ β0 = µY − β1µX

ρ σXσY + µXµY =β0µX + β1(σ2
X + µ2

X)

Substituting the expression for β0 from the first of these equations into the second, we obtain:

ρ σXσY + µXµY =(µY − β1µX)µX + β1(σ2
X + µ2

X)

=µXµY + β1σ
2
X

ρσY /σX =β1

Thus β1 = ρσY /σX and substituting this back into the expression for β0 in terms of β1, we
obtain:

β0 =µY − β1µX

=µY − ρσY /σXµX

5.2.1 If Xi
iid∼ N(20, 22) and the sample size, n = 25 then X̄ ∼ N(20, 22/25) and 22/25 = 0.42.

Hence,

P(X̄ > 21) =1− P(X̄ > 21)

=1− P
(
X̄ − 20

0.4
>

21− 20

0.4

)
=1− P

(
[X̄ − 20]/0.4 > 2.5

)
=1− Φ(2.5) = 0.006.

Which is much smaller than the probability that a single car achieves a value greater than 21.

5.2.2 The model described for the total number of heads, X =
∑900

i=1Xi is Bin (900, 0.5) — it’s the
sum of 900 independent Bernoulli variables of parameter 0.5.

It’s impractical to evaluate the probability of obtaining more than 495 heads exactly. However,
we can use the CLT to argue that for such a large sample the number of heads is approximately
normal with mean 900 · 0.5 and variance 0.25 · 900 (where 0.25 is the variance of a single toss).

If X
approx∼ N (450, 225) then the standard deviation is 15. Hence P(X ≥ 495) ≈ 1 − Φ([495 −

450]/15) which is 0.0013.

5.2.3 The MGF of a χ2
k random variable is mχ2

k
(t) = (1 − 2t)−k/2. If Xi ∼ χ2

ri , independently, and

X =
∑n

i=1Xi, then it has MGF:
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mX(t) =E[exp(t

n∑
i=1

Xi)]

=

n∏
i=1

mXi(t)

=

n∏
i=1

(1− 2t)−ri/2

=(1− 2t)−
∑n
i=1 ri/2

which is the MGF of a χ2∑n
i=1 ri

distribution. By uniqueness of the MGF, X must have such a

distribution.

5.2.4 The MGF of a χ2
k random variable is mχ2

k
(t) = (1 − 2t)−k/2. If Xi ∼ χ2

ri , independently, and

X =
∑n

i=1Xi, then it has MGF:

mX(t) =E[exp(t
n∑
i=1

Xi)]

=

n∏
i=1

mXi(t)

=
n∏
i=1

(1− 2t)−ri/2

=(1− 2t)−
∑n
i=1 ri/2

which is the MGF of a χ2∑n
i=1 ri

distribution. By uniqueness of the MGF, X must have such a

distribution.

5.1
P[t9 < (8.2− 8.6)/(

√
0.4/
√

10)] = P[t9 < −2] = 0.038

5.2.5 Assuming that the population means and variances are equal, we have observations X̄ =
17.89, Ȳ = 16.97 the observed sample variances are S2

X = 3.43 and S2
Y = 4.76. nx = nY = 15.

From the lecture notes, we know that:

T =
X̄ − Ȳ − [µX − µY ]

sp

√
1
nX

+ 1
nY

with s2
p =

(nX − 1)s2
X + (nY − 1)s2

Y

nX + nY − 2

has a tnX+nY −2 distribution.
If µX = µY , we have:

T =
X̄ − Ȳ

sp

√
1
nX

+ 1
nY

∼ tnX+nY −2

and in our case s2
p = 1

2 [s2
X + s2

Y ] = 4.095 and so sp = 2.0236.
So:

P(X̄ − Ȳ > 0.92) =P

X̄ − Ȳ
sp

√
2
14

> 0.92/sp

√
2

14


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We have sp
√

2/14 = 0.76485 and 0.92/sp
√

2/14 = 1.2028. Hence:

P(X̄ − Ȳ > 0.92) =P(t28 > 1.2028) = 0.12.

By symmetry, the probability that P(|X̄ − Ȳ | > 0.92) = 0.24: there’s almost a 1 in 4 chance of
observing a difference in the means as large as this one if the two population means and variances
are equal.

5.3.1 If X1, . . . , Xn
iid∼ f with E[Xi = µ] and Var[Xi] = σ2, then the two estimators are both

unbiased:

E[µ̂1] =E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E[Xi]

=
1

n
nµ = µ

E[µ̂2] =E[X1 +X2]/2 = 2µ/2 = µ

However, the variance of the first estimator will be much smaller than that of the second for n �
2. Unbiasedness is one desirable property, but it’s not the only consideration when choosing an
estimator.

5.3.2 The decomposition of MSE as variance plus squared bias follows from the following:

MSE(θ̂) =E[(θ̂ − θ)2]

=E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]

=E[(θ̂ − E[θ̂])2 + 2(θ̂ − E[θ̂])(E[θ̂]− θ) + (E[θ̂]− θ)2]

=E[(θ̂ − E[θ̂])2] + 2E[(θ̂ − E[θ̂])](E[θ̂]− θ) + E[(E[θ̂]− θ)2]

=Var(θ̂) + 0 + [E[θ̂]− θ]2

=Var(θ̂) +Bias(θ̂)2

5.4.1 This is a proportion. Assuming that we may treat the people as identical and independent
(which may not be a good assumption under the circumstances) we can estimate p̂ = 136/400 = 0.34
and p̂(1 − p̂) = 0.224. Then using the standard CLT-justified approximate confidence interval, we
seek:

p̂±
√
p̂(1− p̂)

n
zα/2

=0.34±
√

0.224

400
· 1.96

=0.34± 0.023685 · 1.96

=0.34± 0.0464 = [0.294, 0.386]

5.4.2 This time we have a difference in proportions (and can use the expression which immediately
precedes the exercise).

We may use the sample means to estimate the proportions for male and female voters, respec-
tively:

p̂m =132/200 = 0.61 p̂f = 90/159 = 0.566

And the variances are estimated in the usual way as:
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pm(1− pm) ≈p̂m(1− p̂m) = 0.61 · 0.39 = 0.2379 pf (1− pf ) ≈p̂f (1− p̂f ) = 0.566 · 0.434 = 0.2456

Asymptotically, both sample means have a normal distribution and so do their differences. Consis-
tency of the variance estimators allow us to replace the population variances with their estimators
to obtain an approximate confidence interval of:

p̂m − p̂f ± z 1−0.99
2

√
p̂m(1− p̂m)

nm
+
p̂f (1− p̂f )

nf

=0.61− 0.566± z0.005

√
0.2379

200
+

0.2456

159

=0.044± 2.578 ·
√

0.00273

=0.044± 0.135

As 0 lies within this interval, we might think that a result like this one could arise even if male and
female voters have the same probability of voting for this candidate.

5.4.3 This time we have a difference in proportions (and can use the expression which immediately
precedes the exercise).

We may use the sample means to estimate the proportions for male and female voters, respec-
tively:

p̂m =132/200 = 0.61 p̂f = 90/159 = 0.566

And the variances are estimated in the usual way as:

pm(1− pm) ≈p̂m(1− p̂m) = 0.61 · 0.39 = 0.2379 pf (1− pf ) ≈p̂f (1− p̂f ) = 0.566 · 0.434 = 0.2456

Asymptotically, both sample means have a normal distribution and so do their differences. Consis-
tency of the variance estimators allow us to replace the population variances with their estimators
to obtain an approximate confidence interval of:

p̂m − p̂f ± z 1−0.99
2

√
p̂m(1− p̂m)

nm
+
p̂f (1− p̂f )

nf

=0.61− 0.566± z0.005

√
0.2379

200
+

0.2456

159

=0.044± 2.578 ·
√

0.00273

=0.044± 0.135

As 0 lies within this interval, we might think that a result like this one could arise even if male and
female voters have the same probability of voting for this candidate.

5.4.4 An exact confidence interval for the difference can be obtain provided that we assume that the
two sets of data are simple random samples from normal distributions with common variances.

Summarising the available data:

nA =10 nB =8

X̄A =3.1 X̄B =2.7
sA√
nA

=0.5
sB√
nB

= 0.7

The difference in means divided by the pooled standard deviation is t-distributed about the
sample mean with nA + nB − 2 = 16 degrees of freedom. A 95% confidence interval is:
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X̄A − X̄B ± t0.025,16 ·

√(
s2
A

nA

)
+

(
s2
B

nB

)
=0.4± 2.12 ·

√
0.52 + 0.72

=0.4± 1.8236

which again suggests that data like this could arise quite often even if the two sample means are
equal.

5.5.1 If X ∼ N(θ, 22) and X1, X2, . . . is a simple random sample of replicates of X then in order to
ensure that:

P(|X̄ − θ| > 0.1) ≤ 0.05

we need n to be large enough that a normal random variable of mean 0 and variance 22/n has
probability at least 0.95 of being at most 0.1.

As z0.025 = 1.96, we need
√

22/n · 1.96 ≤ 0.1 i.e.:

2 · 1.96/
√
n ≤0.1

20 · 1.96 ≤n
39.2 ≤n

and so a sample of size at least 40 will be required (as the number of samples must be an integer).

5.5.2 If Xi
iid∼ Bernoulli(p) and p ≈ 0.2 so that we may assume Var(Xi) ≈ p(1 − p) = 0.16 (if

p ∈ [0.15, 0.25] then Var(p) ∈ [0.1275, 0.1875]).

The CLT tells us that
√
nX̄

d→ N(p, p(1− p)) if we may assume that p = 0.2 for the purposes of
calculating the variance, we can easily solve:

P(|X̄ − p| < 0.1) ≥0.75

P(X̄ − p < 0.1) ≥0.875 by symmetry

P(
X̄ − p
σ/
√
n
< 0.1

√
n/σ) ≥0.875

P(Z < 0.1
√
n/σ) ≥0.875

0.1
√
n/σ >1.15( normal df)n > (11.5σ)2

>21.16⇒ n ≥ 22.

Of course, we could be more conservative by incorporating some uncertainty in the variance here.

5.5.3 Consider these four estimators in turn:

(a) µ̂1 = aX̄, 0 < a < 1 is biased, it’s expectation is aE[X̄] = aµ and a 6= 1. It’s asymptotically
biased as the bias doesn’t decrease with sample size. It’s not consistent in MSE as the asymptotic
bias is nonzero.

(b) This estimator includes X̄ as a special case (consider ai = 1/n), in fact:

E[µ̂2] =E[
n∑
i=1

aiXi]

=
n∑
i=1

aiE[Xi]

=
n∑
i=1

aiµ = µ

It is unbiased for any sequence ai which sums to one. It may or may not be consistent in MSE
depending upon the sequence of sequences ai. Trivially, if a1 = and ai = 0∀i > 1 then it isn’t,
for example, whilst if ai = 1/n then we recover the usual estimator.
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(c) This seems a rather poor estimator:

E[µ̂3] =E

[
1

n2

n∑
i=1

Xi

]

=
1

n2

n∑
i=1

E[Xi]

=
1

n2
nµ = µ/n

which is biased for any n > 1. It’s not asymptotically unbiased as:

lim
n→∞

E[µ̂3] = lim
n→∞

µ/n = 0

and it cannot be consistent in mean squared error as it is asymptotically biased.
(d) µ̂4 = n

n−1X̄. As such, it is biased for finite n with expected value nµ/(n− 1). However,

lim
n→∞

E[µ̂4] = lim
n→∞

n

n− 1
µ

=µ · lim
n→∞

1 +
1

n− 1
= µ

and so it is asymptotically unbiased.
As the estimator is asymptotically equal to the sample mean, the standard argument also shows
that it is consistent in MSE.

5.5.4 Consider the class of linear estimators of the sample mean:

X̃ =

n∑
i=1

aiXi.

In order for such an estimator to be unbiased:

µ = E[X̃] =

n∑
i=1

aiE[Xi]

=µ

n∑
i=1

ai ⇒
n∑
i=1

ai = 1.

To determine the minimum variance unbiased linear estimator we need to incorporate this constraint
(otherwise, we can minimise the variance by setting ai = 0∀i but this estimator wouldn’t be much
use).

The constraint may be written in the form
∑n

i=1 ai − 1 = 0, leading to the Lagrange-multiplier
problem (if you’re not familiar with the method of Lagrange multipliers then this would be a very
good time to find out how it works):

∂

∂aj

[
σ2

n∑
i=1

ai − λ

(
n∑
i=1

ai − 1

)]
=0

2σ2aj − λ =0

aj =λ/2σ2

To identify the value of λ we use the constraint:
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n∑
i=1

ai =1

n∑
i=1

λ/2σ2 =1

λ = 2σ2/n

and so, for each j, aj = 1/n to extremise the constrained variance. It’s easy to verify that any
deviation from this value leads to a higher variance and so it is a minimum.

5.5.5 The sequence of RVs, Xn, n ≥ 1 is defined via:

P(Xn = a) =1− 1/n, a ∈ R
P(Xn = nk) =1/n, k > 1

It is reasonably clear that Xn is consistent, in probability, as an estimator of a:

P(|Xn − a| > ε) ≤P(Xn 6= a)

=1/n for any ε > 0

and limn→∞1/n = 0 and so we have the convergence we seek.
The MSE of the estimator, on the other hand is:

E[(Xn − a)2] =P(Xn = nk)(nk − a)

=
nk − a
n

→∞

and so the estimator is not consistent in MSE. Convergence in mean squared error is strictly stronger
than convergence in probability.

5.5.6 Summarising the given data:

n =100 X̄ =1.944 s2 =0.0028 s =0.053

(a) If σ = 0.05 is known, then a 95% confidence interval for µ is:

X̄ ± z0.025 ·
√
σ2

n
=1.944± 1.96 · 0.005 = 1.944± 0.0098.

(b) On the other hand, if the variance is estimated, then we must use the estimated variance
and also take into account that the distribution is now t99 rather than normal, although the
difference is rather small:

X̄ ± t0.025,99 ·
√
s2

n
=1.944± 1.9842 · 0.0053 = 1.944± 0.0105.

(c) If neither mean nor variance are known but we’re interested in estimating σ, then we can use
the known distribution of the sample variance to construct a confidence interval (see page 55)
of the following form for σ2:[

(n− 1)s2

χ2
0.025,n−1

,
(n− 1)s2

χ2
0.975,n−1

]
=

[
99 · 0.0028

128.42
,
99 · 0.0028

73.61
,

]
=[0.0022, 0.0038]

and so, the interval [0.0465, 0.0615] with probability 0.95.
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5.5.7 To calculate the binomial interval exactly, it’s necessary to find {p : P(Bin (n, p) ≤ X) ≥ α/2}
and {p : P(Bin (n, p) ≥ X) ≥ α/2} and take their intersections.

It’s rather simpler to employ the CLT-based normal approximation.

6.1.1 If X1, . . . , Xn
iid∼ Poi (λ) then, with x = (x1, . . . , xn), then the likelihood is:

L(θ; x) =
n∏
i=1

θxie−θ

xi!

and the log-likelihood is:

`(θ; x) =
n∑
i=1

[xi log θ − θ − log(xi!)]

= log θ
n∑
i=1

xi − nθ −
n∑
i=1

log(xi!).

Differentiating with respect to the parameter, and setting the derivative equal to zero, we obtain:

0 =
d

dθ
`(θ; x) =

1

θ

n∑
i=1

xi − n

nθ =

n∑
i=1

xi ⇒ θ =
1

n

n∑
i=1

xi = x.

Checking the second derivative:

d2

d2θ
`(θ; x) =− 1

θ2
< 0

and so this is, indeed, a maximiser of the log-likelihood and, by monotonicity, of the likelihood.

6.2.1 First consider the Poisson distribution:

f(x; θ) =
e−θθx

x!
= exp (−θ + x log θ − log(x!))

= exp

log(θ)︸ ︷︷ ︸
A(θ)

x︸︷︷︸
B(x)

+ (− log(x!))︸ ︷︷ ︸
C(x)

− θ︸︷︷︸
D(θ)

 .

Whilst, for the two-parameter Gamma distribution:

f(x;α, β) =
βαxα−1exp(−βx)

Γ (α)

= exp (α log(β) + (α− 1) log(x)− βx− log (Γ (α)))

= exp

 α︸︷︷︸
A1(θ)

log(x)︸ ︷︷ ︸
B1(x)

− β︸︷︷︸
A2(θ)

x︸︷︷︸
B2(x)

+ (− log(x))︸ ︷︷ ︸
C(x)

+ α log(β)− log (Γ (α))︸ ︷︷ ︸
D(θ)

 .

6.3.1 The simplest approach is to begin by considering E
[
∂ logL
∂θ

]
:
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E
[
∂`

∂θ

]
=

∫
L(θ;x)

∂ logL(θ;x)

∂θ
dx

=

∫
∂L(θ;x)

∂θ
dx

=
∂

∂θ

∫
L(θ;x)dx = 0.

Differentiating both sides (using the product rule within the integral) yields:

∂

∂θ
E
[
∂`(θ;x)

∂θ

]
=0

∂

∂θ

∫
∂ logL(θ;x)

∂θ
L(θ;x)dx =0∫

∂

∂θ

(
∂ logL(θ;x)

∂θ
L(θ;x)

)
dx =0∫ (

∂2 logL(θ;x)

∂θ2
L(θ;x) +

∂ logL(θ;x)

∂θ

∂L(θ;x)

∂θ

)
dx =0∫ (

∂2 logL(θ;x)

∂θ2
L(θ;x) +

∂ logL(θ;x)

∂θ

∂ logL(θ;x)

∂θ
L(θ;x)

)
dx =0

E
[
∂2 logL(θ;x)

∂θ2

]
+ E

[(
∂ logL(θ;x)

∂θ

)2
]

=0

and the result follows.
In the case of the Poisson distribution, the Fisher information can be thus calculated as:

In = −E
[
∂2`(θ; X)

∂θ2

]
=E

[
∂2

∂θ2

n∑
i=1

log
(
e−θθXi/Xi!

)]

=−
n∑
i=1

E
[
∂2

∂θ2
(−θ +Xi log θ − log(Xi!))

]

=
n∑
i=1

E
[
Xi/θ

2
]

= n/θ.

The Fisher information is In = n/θ implying a Cramer-Rao lower bound for the estimator
variance of θ/n.

The variance of a Poisson random variable is θ and hence that of the sample mean of a sample of
size n is θ/n. Thus the estimator obtained previously, i.e. the sample mean, achieves the Cramer-Rao
lower bound.

6.4.1 We could view this problem as sampling from a multinomial distribution with probability
vector (pA, pB, pC) with pA = p2, pB = 2p(1− p) and pO = 1− (pA + pB).

Consulting equation 4.1 we find the density of X = (XA, XB, XO)), given parameter vector
θ = (pA, pB, pO) and n = 200 is

fX;p(xA, xB) =
n!

xA!xB!xO!
pxAA pxBB pxOO

with xO = n− (xA + xB).
Consequently, we may write:

fX;p(xA, xB) = exp (log(n!)− log(xA!xB!xO!) + xA log(pA) + xB log(pB) + xO log(pO))

Which is in the canonical form (cf. equation 6.1), with:
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(A1(θ), A2(θ), A3(θ)) =(log(pA), log(pB), log(pO)) C(x) =− log(xA!xB!xO!)

(B1(x), B2(x), B3(x)) =(xA, xB, xO) D(θ) = log(n!)

The generic MLE for exponential family models can consequently be used, and we have:

Bi(x) =E [Bi(X)]

and so:

xA = E[XA] =npA ⇒ p̂A = xA/n

xB = E[XB] =npB ⇒ p̂B = xB/n

xO = E[XO] =npO ⇒ p̂O = xO/n

a not very surprising result.
However, we wished to estimate p, not pA, pB and pO. Formally, we can’t use the transformation

result here because we don’t have a bijection.
Writing down the likelihood directly in terms of p, however, we would have obtained:

fX;p(xA, xB) =
n!

xA!xB!xO!
p2xA [2p(1− p)]xB (1− p)2xO

and hence:

L(p; x) ∝ p2xA+xB (1− p)2xO+xB

And differentiating with respect to the parameter yield:

∂

∂p
L(p; x) ∝(2xA + xB)p2xA+xB−1(1− p)2xO+xB − (2xO + xB)p2xA+xB (1− p)2xO+xB−1

setting this equal to zero:

(2xA + xB)p2xA+xB−1(1− p)2xO+xB =(2xO + xB)p2xA+xB (1− p)2xO+xB−1

(2xA + xB)(1− p) =(2xO + xB)p

2xA + xB =(2xO + xB + 2xA + xB)p ⇒ p =
2xA + xB

2(xA + xB + xO)

=
2xA + xB

2n
.

In the case of the data here, we obtain:

p̂ =
2× 60 + 130

2× 200
= 5/8 ≈ 0.625.

Checking the sign of the second derivative:

∂2

∂p2
L(p; x) ∝(2xA + xB)(2xA + xB − 1)p2xA+xB−2(1− p)2xO+xB

− 2(2xA + xB)(2xO + xB)p2xA+xB−1(1− p)2xO+xB−1

+ (2xO + xB)(2xO + xB − 1)p2xA+xB (1− p)2xO+xB−2

∝(2xA + xB)(2xA + xB − 1)(1− p)2 + (2xO + xB)(2xO + xB − 1)p2

− 2(2xO + xB)(2xA + xB)p(1− p) < 0.
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6.5.1 This is just a multivariate version of exercise 6.3.1.
Begin by noting that if we set ∇ = (∂1, . . . , ∂p)

T then we may write the Fisher Information
Matrix as

I(θ) =Cov(∇ log f(X; θ),∇ log f(X; θ))

=E
[
(∇ log f(X; θ))(∇ log(f(X; θ))T

]
− E [∇ log f(X; θ)]E [∇ log f(X; θ)]T

=E
[
(∇ log f(X; θ))(∇ log(f(X; θ))T

]
where the rightmost term in the second line is identically zero, just as in the univariate case.

Proving this collection of equalities now amounts to showing that the result of exercise 6.3.1
extends to this multivariate setting.

Considering E
[
∇T `

]
:

E
[
∇T `

]
=

∫
L(θ;x)∇T logL(θ;x)dx

=

∫
∇TL(θ;x)dx

=∇T
∫
L(θ;x)dx = 0.

Differentiating both sides (using the product rule within the integral) just as in the univariate case
but using the integral operator ∇ we obtain the Hessian matrix, the matrix of second derivatives:

∇E
[
∇T `(θ;X)

]
=0

∇
∫
L(θ;x)∇T logL(θ;x)dx =0∫

∇
(
L(θ;x)∇T logL(θ;x)

)
dx =0∫ (

∇∇T logL(θ;x) + (∇L(θ;x))(∇T logL(θ;x))
)

dx =0∫ (
∇∇T logL(θ;x) + (∇ logL(θ;x))(∇T logL(θ;x))

)
L(θ;x)dx =0

E
[
∇∇T logL(θ;x)

]
+ E

[
(∇ logL(θ;x))(∇T logL(θ;x)

]
=0

and the result follows.
It’s also possible to prove the inequalities one term at a time, but the matrix form is perhaps a

little more elegant.

6.5.2 In this case:

L(θ;x) =
1√
2πσ

exp(−1

2
(x− µ)2/σ2)

`(θ;x) =− 1

2
log(2π)− log(σ)− 1

2
(x− µ)2/σ2

The score vector (i.e. the vector of partial derivatives of the log-likelihood) has components:

∂`

∂µ
=(x− µ)/σ2 ∂`

∂σ
=− 1

σ
+ (x− µ)2/σ3

The collection of second derivatives is:

∂2`

∂µ2
=− 1/σ2 ∂2`

∂σ2
=

1

σ2
− 3(x− µ)2/σ4 ∂2`

∂σ∂µ
=− 2(x− µ)/σ3
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Yielding:

I(θ) =− E
[

−1/σ2 −2(X − µ)/σ3

−2(X − µ)/σ3 1/σ2 − 3(X − µ)2/σ4

]
=

[
σ−2 0

0 2σ−2

]
This has the interesting property that it is diagonal. This tells us that the parameters are orthogonal.

You can also consider the parameterisation as being (µ, σ2) in which case a slightly different
expression is obtained.

6.5.3 If g(µ, σ) = σ2, then:

B =

[
∂g

∂µ
,
∂g

∂σ

]
= [0, 2σ]

The asymptotic variance in question is, by theorem 6.5:

[0, 2σ]I−1

[
0

2σ

]
From exercise 6.5.2 we have that

I =

[
σ−2 0

0 2σ−2

]
and consequently that

I−1 =

[
σ2 0
0 1

2σ
2

]
Hence, the asymptotic variance of interest is:

(2σ)

(
1

2
σ2

)
(2σ) = 2σ4.

6.7.1 Broadly the same strategy applies to most of these cases.

(a) In the Xi
iid∼ N (µ, 1) case θ = µ:

L(µ; x) =(2π)−n/2 exp

(
−1

2

n∑
i=1

(xi − µ)2

)

`(µ; x) =constant− 1

2

n∑
i=1

(xi − µ)2

∂`

∂µ
(µ; x) =

n∑
i=1

(xi − µ)

∂2`

∂µ2
(µ; x) =− n

Setting the derivative equal to zero, we obtain µ̂ = 1
n

∑n
i=1 xi and the second derivative is

negative confirming that this is a maximum.

(b) In the Xi
iid∼ N (µ, σ) case θ = (µ, σ)T :
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L(µ, σ; x) =(2πσ2)−n/2 exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2

)

`(µ, σ; x) =constant− n log σ − 1

2

n∑
i=1

(xi − µ)2

σ2

∂`

∂µ
(µ, σ; x) =

n∑
i=1

(xi − µ)

σ2

∂`

∂σ
(µ, σ; x) =− n/σ +

n∑
i=1

(xi − µ)2

σ3

∂2`

∂µ2
(µ, σ; x) =− n/σ2

∂2`

∂σ2
(µ, σ; x) =n/σ2 − 3

n∑
i=1

(xi − µ)2

σ4

∂2`

∂µ∂σ
(µ, σ; x) =

∂2`

∂σ∂µ
(µ, σ; x) =− 2

n∑
i=1

xi − µ
σ3

Setting the derivative with respect to µ equal to zero, we obtain µ̂ = 1
n

∑n
i=1 xi. And con-

sidering the derivative with respect to σ, evaluated using the µ̂ estimate of µ, we obtain

σ̂ =
√

1
n

∑n
i=1(xi − µ̂)2. Both of the pure second derivatives are negative at these values and

the determinant of the Hessian (i.e. the matrix of second derivatives) at this point is:

− n

σ̂2

[
n

σ̂2
− 3

n∑
i=1

(xi − µ̂)2

σ̂4

]
−

[
−2

n∑
i=1

xi − µ̂
σ̂3

]2

︸ ︷︷ ︸
=0

=− n

σ̂2

[ n
σ̂2

(1− 3)
]

= + 2n2/σ̂4 > 0

The Hessian result tells us that this is either a maximum or a minimum; as both pure second
derivatives are negative we can conclude that it’s a maximum point.

(c) In the Xi
iid∼ Exp (λ) case:

L(λ; x) =
n∏
i=1

λ exp(−λxi) `(λ; x) =n log λ−
n∑
i=1

λxi

∂`

∂λ
(λ; x) =n/λ−

n∑
i=1

xi
∂2`

∂λ2
(λ; x) =− n/λ2

Setting the first derivative equal to zero we obtain λ̂ =
[

1
n

∑n
i=1 xi

]
(i.e. the reciprocal of the

sample mean) and checking the second derivative we find that this is indeed a maximum.

(d) If Xi
iid∼ Poi (λ), then:

L(λ; x) =
n∏
i=1

exp(−λ)λxi

xi!
`(λ; x) =− nλ+

n∑
i=1

[xi log λ− log(xi!)]

∂`

∂λ
(λ; x) =− n+

1

λ

n∑
i=1

xi
∂2`

∂λ2
(λ; x) =− 1

λ2

n∑
i=1

xi

Again, we simply set the first derivative equal to zero to obtain λ̂ = 1
n

∑n
i=1 xi, the sample mean

again, and verify that the second derivative is negative.
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(e) If Xi
iid∼ Ber (p), then:

L(p; x) =p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi `(p; x) = log p

n∑
i=1

xi + log(1− p)

[
n−

n∑
i=1

xi

]
∂`

∂p
(p; x) =

1

p

n∑
i=1

xi −
1

1− p

[
n−

n∑
i=1

xi

]
∂2`

∂p2
(p; x) =− 1

p2

n∑
i=1

xi −
1

(1− p)2

[
n−

n∑
i=1

xi

]
Letting x̄ = 1

n

∑n
i=1 xi and setting the first derivative equal to zero:

nx̄/p =n(1− x̄)/(1− p)
x̄(1− p) =(1− x̄)p⇒ p̂ = x̄

i.e. the maximum likelihood estimator of a Bernoulli parameter is simply the observed proportion
of successes. The second derivative is again negative, confirming that this is a maximum.
Actually, we must be careful here. If x̄ = 0 or x̄ = 1 then calculus does not give us an answer to
this problem. In that case the likelihood is monotone in p and is maximised at the boundary of
the parameter space with p = 0 or p = 1, respectively. Although this coincides with the p = x̄
solution above, the argument given above does not hold in that case.

(f) If Xi
iid∼ U[1, b] then the situation is slightly more interesting. Now:

L(b; x) =
n∏
i=1

1

b− 1
I[1,b](xi)

where I[1,b](x) =

{
1 if x ∈ [1, b]
0 otherwise

If min(x1, . . . , xn) < 1 then the likelihood is identically zero and there is no meaningful MLE so
we shall assume that the smallest observation is at least 1 (otherwise the data contradicts the
model). As the likelihood achieves a value of zero for some parameters, taking the logarithm of
the likelihood doesn’t much help: it simply introduces values of −∞ whenever the likelihood is
zero.
Similarly, differentiating with respect to the parameters isn’t very sensible: the likelihood is not
everywhere differentiable: it may be written in the form:

L(b; x) =b−n
n∏
i=1

I[1,b](xi)

=b−nI[1,∞)(min(x))I(−∞,b](max(x))

If the largest value observed is at most b then, under our assumption that no observation is
inferior to 1, the likelihood is b−n which is a strictly decreasing function of b. Otherwise the
likelihood is zero. Consequently, the likelihood is maximised by taking for b the smallest value
such that no observation exceeds b: b̂ = max(x).
This case illustrates the importance of remembering what we’re trying to achieve rather than
following formulaic strategies without thinking!

6.7.2 If Xi
iid∼ f(·) for i = 1 . . . 17 with f(x;α) = exp(α− x) for x ≥ α:

(a) The likelihood is L(α; x) =
∏n
i=1 exp(α− xi)I[α,∞)(xi) hence provided that α ≤ min(x):

`(α; x) =

n∑
i=1

(α− xi)

which is an increasing function of α. The maximiser is consequently the largest value of alpha
compatible with the constraint that α ≤ min(x) i.e. α̂ = min(x).
In the case of this data, α̂ = 3.1.
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(b) The distribution f(x;α) has mean α+ 1:

E[X] =

∫ ∞
α

x exp(α− x)dx

=

∫ ∞
0

(x′ + α) exp(−x′)dx′

=α+

∫ ∞
0

x′ exp(−x′)dx′

=α+ 1.

The MLE is therefore ˆ̄x = 1 + min(x) which in the case of the current data set is 4.1.
(c) The probability that an oil change takes more than 5 minutes in the case of this particular model

is, provided that α < 5:

P (X ≥ 5) =

∫ ∞
5

fX(x)dx =

∫ ∞
5

exp(α− x)dx

=

∫ ∞
5−α

exp(−x′)dx′ substituting x′ = x− α

=
[
− exp(−x′)

]∞
5−α = exp(α− 5)

and the MLE of this transformation of the parameter α is the transformation of the MLE, α̂:

exp(α̂− 5) = exp(min(x)− 5)

If α̂ < 5 then this is correct; otherwise the assumption above is violated and the MLE of this
probability is trivially 1 as the model in that case assigns a probability of 0 to any oil change
taking less than some α > 5 minutes.

7.2.1 In this case:

L(θ0; x) =
n∏
i=1

1√
2π

exp

(
−x

2
i

2

)

L(θ1; x) =

n∏
i=1

1√
2π

exp

(
−(xi − 1)2

2

)

The likelihood ratio is consequently:

λ(x) =
L(θ1; x)

L(θ0; x)
=

n∏
i=1

1√
2π

exp
(
−x2

i
2

)
1√
2π

exp
(
− (xi−1)2

2

)
= exp

(
1

2

n∑
i=1

[
(xi − 1)2 − x2

i

])

= exp

(
−1

2

n∑
i=1

[
x2
i − 2x+ 1− x2

i

])

= exp

[
1

2
n(2x̄− 1)

]
= exp

(
n

(
x̄− 1

2

))
.

λ(X) will typically take larger values if H1 is true than if H0 is true; the critical region for
T (X) = X̄ is Cα = [x?α,∞) where Cα is chosen such that P(T (X) ∈ Cα) = α.

Under H0: T (X) = X̄ ∼ N (0, 1/n) and so:
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P(T (X) ≥ x) =P(
√
nX̄ ≥

√
nx)

=1− Φ(
√
nx)

At the critical value, this probability is equal to α:

α =1− Φ(
√
nx?α)

√
nx?α =Φ−1(1− α)

x?α =Φ−1(1− α)/
√
n.

7.3.1 Consider the likelihood ratio for any of these three scenarios:

λσ2(x) =
L(σ2; x)

L(1; x)

=
n∏
i=1

1√
2πσ2

exp
(
−1

2
x2
i
σ2

)
1√
2π

exp
(
−1

2x
2
i

)
=σ−n exp

(
1

2

n∑
i=1

x2
i (1− σ−2)

)
This ratio exceeds unity if:

0 < log λσ2(x) =− n log(σ) +
1

2
(1− σ−2)nx2

=n
[
x2(1− σ−2)/2− log(σ)

]
⇒ 0 <x2(1− σ−2)/2− log(σ)

where x2 = 1
n

n∑
i=1

x2
i . Under the null hypothesis, x2 is a realisation of a χ2

n random variable.

(a) For any σ2 > 1 the first term is positive and the second negative; the inequality holds if:

x2 > log(σ2)/(1− σ−2)

and the likelihood ratio is an increasing function of x2. Thus we need a value x̂2 such that

P(X2 > x̂2|H0) = α. As X2 ∼ χ2
n under the null hypothesis:

α =P(X2 > x̂2|H0)⇒ x̂2 = χ2
n,1−α

and the critical region becomes [χ2
n,1−α,∞).

For any σ > 1 the value of the likelihood ratio is larger at every point in this region than it is
at any point outside it.

(b) In the σ2 < 1 case the first term is negative and the second positive; the inequality holds if:

x2(1− σ−2) > log(σ2)

x2 <− log(σ2)/(σ−2 − 1)

and the likelihood ratio is a decreasing function of x2.

Thus we need a value x̂2 such that P(X2 < x̂2|H0) = α. As X2 ∼ χ2
n under the null hypothesis:

α =P(X2 < x̂2|H0)⇒ x̂2 = χ2
n,α

and the critical region becomes [0, χ2
n,α].

For any σ < 1 the value of the likelihood ratio is larger at every point in this region than it is
at any point outside it.
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(c) In this case, the most powerful tests for alternatives σ < 1 and σ > 1 have different critical
regions and no test exists which achieves equal power for both hypotheses which is most powerful
for either.

7.4.1 Under the assumption that X1, . . . , Xn
iid∼ N

(
µ, σ2

)
:

X̄ =
1

n

n∑
i=1

Xi ∼ N
(
µ, σ2/n

)
(n− 1)S2/σ2 =

∑
(Xi − X̄)2/σ2 ∼ χ2

n−1(
X̄ − µ
σ/
√
n

)/(√n− 1S/σ√
n− 1

)
∼ tn−1(

X̄ − µ
S/
√
n

)
∼ tn−1

Where we have used the fact that the sample average of n iid normal random variates is a normal
random variate of the same mean as that of the individual samples and a variance of 1/n− 1 times
that of the total (see definition 5.2).

Consequently

T =X̄/(S/
√
n)

is the sum of µ and a tn−1 random variable. This distribution is sometimes referred to as the
non-central t distribution of n− 1 degrees of freedom and non-centrality parameter µ.

The likelihood under H0 : µ = 0 is:

L0(θ0;x) =

n∏
i=1

1√
2πσ2

exp

(
− x2

i

2σ2

)

`0(θ0;x) =
n

2
log(2π)− n

2
log σ2 − 1

2σ

n∑
i=1

x2

Whilst that under an alternative hypothesis, µ 6= 0, is:

L1(θ1;x) =
n∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)

`1(θ1;x) =
n

2
log(2π)− n

2
log σ2 − 1

2σ

n∑
i=1

(xi − µ)2

Under H0, the maximum likelihood estimate of σ2, σ̂2
0 = 1

n

n∑
i=1

x2
i .

Under H1, the maximum likelihood estimate of µ, µ̂1 = 1
n

n∑
i=1

xi and that of σ2,

σ̂2
1 =

1

n

n∑
i=1

(xi − µ̂1)2.

Hence the likelihood ratio test statistics is:
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r(x) =`1(θ̂1;x)− `0(θ̂0;x)

=− n

2
(log(σ̂2

1)− log σ̂2
0) +

1

2σ̂2
0

n∑
i=1

x2
i −

1

2σ̂2
1

n∑
i=1

(xi − µ̂1)2

=− n

2
log

(
(n− 1)S2/n− x̄2

(n− 1)S2/n

)
+

(n− 1)S2

2(n− 1)S2/n
− 1

2

(n− 1)S2 − nx̄2

(n− 1)S2/n− x̄2

=− n

2
log

(
(n− 1)S2 − nx̄2

(n− 1)S2

)
+
n

2
− n

2

=− n

2
log

(
(n− 1)S2 − nx̄2

(n− 1)S2

)
=− n

2
log

(
1− nx̄2

(n− 1)S2

)
= −n

2
log(1− T 2)

This is a monotonically increasing function of T ; hence rejecting H0 on the basis of a large value
of the log-likelihood ratio statistic is equivalent to rejecting on the basis of a large value of the T
statistic. This test is a likelihood ratio test.

Under the stated null hypothesis, we have that T ∼ t14. With the data provided for the change
in diastolic blood pressure in table 7.1):

n =15
15∑
i=1

xi =− 139
15∑
i=1

x2
i =2327

Hence we calculate:

x̄ = −139/15 =− 9.27 s =
√

2327/14 =12.89 t =
−9.27

12.89/
√

15
=− 2.78

A t14 distribution has probability 0.0073 of producing a value less than this and a commensu-
rate probability of producing a positive value of at least this magnitude. Hence we reject the null
hypothesis in favour of H1 at the 5% significance level.

7.4.2 (a) The log-likelihood under the null hypothesis is:

`0(µX , σ
2; x,y) =const. +

m∑
i=1

[
−1

2
log σ2 − (xi − µX)2

2σ2

]
+

n∑
i=1

[
−1

2
log σ2 − (yi − µX)2

2σ2

]

=c− m+ n

2
log σ − 1

2σ2

[
m∑
i=1

(Xi − µX)2 +

n∑
i=1

(Yi − µX)2

]

Whilst under the alternative hypothesis, µY 6= µX and:

`1(µX , µY , σ
2; x,y) =const. +

m∑
i=1

[
−1

2
log σ2 − (xi − µX)2

2σ2

]
+

n∑
i=1

[
−1

2
log σ2 − (yi − µY )2

2σ2

]

=c− m+ n

2
log σ2 − 1

2σ2

[
m∑
i=1

(Xi − µX)2 +

n∑
i=1

(Yi − µY )2

]

The log-likelihood-ratio test statistic is:

2r(x,y) = 2 [`1(µ̂X,1, µ̂Y,1, σ̂1; x,y)− `0(µ̂X,0, σ̂0; x,y)]

By standard arguments:



170 A. Solutions to Exercises

µ̂X,0 =
1

m+ n

[
m∑
i=1

Xi +

n∑
i=1

Yi

]
µ̂X,1 =

1

m

[
m∑
i=1

Xi

]
µ̂Y,1 =

1

n

[
n∑
i=1

Yi

]

and setting the derivatives of the log-likelihoods to zero we can easily obtain:

σ̂2
0 =

1

m+ n

[
m∑
i=1

(Xi − µ̂X,0)2 +

n∑
i=1

(Yi − µ̂X,0)2

]

σ̂2
1 =

1

m+ n

[
m∑
i=1

(Xi − µ̂X,1)2 +
n∑
i=1

(Yi − µ̂Y,1)2

]
Hence (noting that the respective sums of squares divided by estimated variances are equal
under the two hypotheses):

r(x,y) =− 2

[
m+ n

2
(log(σ̂2

1)− log(σ̂2
0))+

]
=(m+ n) log(σ̂2

0/σ̂
2
1)

=(m+ n) log


m∑
i=1

(Xi − µ̂X,0)2 +
n∑
i=1

(Yi − µ̂X,0)2

m∑
i=1

(Xi − µ̂X,1)2 +
n∑
i=1

(Yi − µ̂Y,1)2



=(m+ n) log

1 +

(
m∑
i=1

(Xi − µ̂X,0)2 +
n∑
i=1

(Yi − µ̂X,0)2

)
−
(

m∑
i=1

(Xi − µ̂X,1)2 +
n∑
i=1

(Yi − µ̂Y,1)2

)
m∑
i=1

(Xi − µ̂X,1)2 +
n∑
i=1

(Yi − µ̂Y,1)2


Now, noting that µ̂X,0 = (mX̄+nȲ )/(m+n), that µ̂X,1 = X̄ and that µ̂Y,1 = Ȳ we can expand
the numerator of the fraction as:(

m∑
i=1

(Xi − µ̂X,0)2 +

n∑
i=1

(Yi − µ̂X,0)2

)
−

(
m∑
i=1

(Xi − µ̂X,1)2 +

n∑
i=1

(Yi − µ̂Y,1)2

)

=

m∑
i=1

[
(Xi − µ̂X,0)2 − (Xi − µ̂X,1)2

]
+

n∑
i=1

[
(Yi − µ̂X,0)2 − (Yi − µ̂Y,1)2

]
=

m∑
i=1

[(
Xi −

[
mX̄ + nȲ

m+ n

])2

− (Xi − X̄)2

]
+

n∑
i=1

[
(Yi −

[
mX̄ + nȲ

m+ n

]
)2 − (Yi − Ȳ )2

]

=m

[[
mX̄ + nȲ

m+ n

]2

− 2X̄

[
mX̄ + nȲ

m+ n

]
− X̄2 + 2X̄X̄

]
+

n

[[
mX̄ + nȲ

m+ n

]2

− 2Ȳ

[
mX̄ + nȲ

m+ n

]
− Ȳ 2 + 2Ȳ Ȳ

]

=mX̄2 + nȲ 2 − m2X̄2 + n2Ȳ 2 + 2mnX̄Ȳ

m+ n

=
mn(X̄2 + Ȳ 2)− 2mnX̄Ȳ

m+ n
=

mn

m+ n
(X̄ − Ȳ )2

whilst identifying the denominator as (m+ n− 2)Sp where

S2
p =

m∑
i=1

(Xi − x̄)2 +
n∑
i=1

(Yi − Ȳ )2

m+ n− 2
.
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we find that:

2r(x,y) = log
[
1 + T 2

]
with T as defined in equation 7.3. As the LRT statistic depends upon the data only through T ,
this statistic contains all of the information provided by the data about our test.

(b) Under H0,
∑m

i=1(Xi − X̄)2 and
∑n

i=1(Yi − Ȳ )2 are independent of one another and by theorem
5.3 we know that the first has a χ2

m−1 distribution and the second has a χ2
n−1 distribution. By

exercise 5.2.3 the sum of two chi-squared random variables is itself a chi-squared random variable
with a number of degrees of freedom equal to the sum of the number of degrees of freedom of
the individual random variables.

(c) This is simple calculation:

x =(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123)T m =12

y =(70, 118, 101, 85, 107, 132, 94)T n =7

x̄ =120
∑
i

(xi − x̄)2 =5032

ȳ =101
∑
i

(yi − ȳ)2 =2552

Sp =
√

7584/17 = 21.1215

Finally,

T =
x̄− ȳ√
m+n
mn Sp

=
120− 101√

19/84 · 21.1215

=
19

10.0453
≈ 1.8914

The probability that a t17 random variable exceeds 1.8914 is 0.0379.
At the 5% level this wouldn’t justify rejecting the null hypothesis as there is an equal probability
that the difference would be at least as large in the opposite sense.

7.4.3 (a) Under H0, S2
X/σ

2
X is a χ2

m−1 random variable and S2
Y /σ

2
Y is a χ2

n−1 random variable (this
follows directly from theorem 5.2).

(b) As, under H0, S2
X and S2

Y are independent chi-squared random variables, the ratio of their
renormalised forms, V = (S2

X/(m− 1))/(S2
Y /(n− 1)) follows a Fm−1,n−1 from definition 5.3.

(c) From the supplied data we can calculate:

S2
X =

m∑
i=1

x2
i −

(
m∑
i=1

xi

)2

/m

=563− 842/16 = 122

S2
Y =72− 182/16 = 51.75

V =
122/16

51.75/16
= 2.3575

At the 5% significance level, we reject the null hypothesis if V doesn’t lie between F0.025;15,15 =
0.3494 and F0.975;15,15 = 2.861. As V lies between these two values, we do not have sufficient
evidence to reject the null hypothesis.
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7.4.4 Under H0 the parameter space is degenerate with dimension 0; under H1 there is a univariate
parameter space and θ̂ = x̄:

2r(x) =2`1(x; θ̂)− 2`0(x)

=

[
−n

2
log(2π)−

∑n
i=1(xi − x̄)2

2

]
−
[
−n

2
log(2π)−

∑n
i=1 x

2
i

2

]
=

n∑
i=1

x2
i − (xi − x̄)2 = 2x̄

n∑
i=1

xi − nx̄2 = nx̄2

Under H0,
√
nx̄ is a standard normal random variable and so nx̄2 is a χ2

1 random variable: Wald’s
theorem holds exactly.

7.4.5 Under the null hypothesis, we have a univariate parameter space and θ̂ = x̄ =
∑n

i=1 xi/n.
Under the alternative hypothesis we have a parameter for every observation and the full parameter

space is n dimensional. The MLE for the parameters is trivially: θ̂i = xi.
We can calculate the log likelihood ratio test statistic directly:

2r(x) =2 [`1(θ1, . . . , θn; x)− `0(θ; x)]

=

[
−n

2
log(2π)−

n∑
i=1

(xi − xi)2

2

]
−

[
−n

2
log(2π)−

n∑
i=1

(xi − x̄)2

2

]

=
n∑
i=1

(xi − x̄)2.

Under the null hypothesis the xi are iidnormal random variables with unit variance. By theorem 5.3
this is a χ2

n−1 random variable: Wald’s theorem holds exactly.

7.5.1 Under H0 the only unknown parameter is µ and µ̂0 = x̄ = 1
n

∑n
i=1 xi by the usual argument.

Under H1 there are two unknown parameters, µ and σ with estimators µ̂ = x̄ and σ̂2 =
1
n

∑n
i=1(xi − x̄)2.

Substituting these standard estimators into the log-likelihood ratio test statistic:

r(x) =`1(µ̂, σ̂2; x)− `0(µ̂0; x)

=

[
−n

2
log(2πσ̂2)− 1

2σ̂2

n∑
i=1

(xi − x̄)2

]
−

[
−n

2
log(2π)− 1

2

n∑
i=1

(xi − x̄)2

]

=− n

2
log(σ̂2)− 1

2
(σ̂−2 − 1)

n∑
i=1

(xi − x̄)2

Thus the test statistic of interest is:

2r(x) =− n log( ˆ̂2σ)− (1/σ̂2 − 1)nσ̂2

=n(σ̂2 − 1− log(σ̂2))

and the LRT will reject the null hypothesis for sufficiently large values of this statistic.

7.5.2 (a) Consider testing H0 : λ = 1
2 against any hypothesis of the form H ′ : λ = λ′, λ′ > 1

2 .
The simple likelihood ratio test statistic is:

Λ(x) =
L(λ′; x)

L(λ; x)

=

n∏
i=1

λ′x−2
i exp(−λ′/xi)

λx−2
i exp(−λ/xi)
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and its logarithm is:

λ(x) =n log(λ′/λ)−
n∑
i=1

(λ′ − λ)/xi

=n log(λ′/λ)− (λ′ − λ)
n∑
i=1

1/xi

The first term is independent of the data and the second is a decreasing function of
∑

i 1/xi for
any λ′.
Consequently, the null hypothesis will be rejected in favour of any λ′ > 1/2 if the data is such
that

∑
i 1/xi ≤ A for an appropriately chosen constant, A. As the value of A is chosen on the

basis of the distribution of x under the null hypothesis, we will obtain the same critical region
for any λ′ > 1/2 and this critical region characterises a UMP test between H0 and H1 : λ > 1

2 .
(b) Under the null hypothesis 1/Xi has a distribution which can be obtained by applying theorem

4.5 with g(x) = 1/x, g−1(y) = 1/y and ∂g−1/∂y = −1/y2, hence, setting Yi = g(Xi):

fY (yi) =fX(g−1(yi))

∣∣∣∣∂g−1

∂y

∣∣∣∣ (yi)
=λ(1/yi)

−2e−λ/(1/yi) · 1/y2

=λy2
i exp(−λyi)/y2

i = exp(−λyi)

and so, under the null hypothesis incorporating the independence of the xi, we know that the yi
are independent, identically distributed Exp (1/2) random variables. The sum of n such random
variables is a Gamma

(
n, 1

2

)
random variable.

It isn’t really meaningful to talk about the distribution of this quantity under the compound
alternative hypothesis; but under any simple hypothesis compatible with H1 it will have a
Gamma (n, λ′) distribution for some λ′ > 1

2 .
(c) In the case of the data provided:

x =(0.59, 0.36, 0.71, 0.86, 0.13, 0.01, 3.17, 1.18, 3.28, 0.49)T

n∑
i=1

1/x =118.2449

The probability that an Gamma (10, 0.5) random variable takes a value below 118.2449 is ex-
tremely close to 1. The null hypothesis cannot be rejected.
If we’d considered a double-sided alternative hypothesis we would have arrived at a very different
conclusion. The 95% quantile of the Gamma (10, 0.5) distribution is 31.410 and the 99.99%
quantile is 52.39. The data is incredibly improbable under the null hypothesis but isn’t rejected
because it’s even more improbable under the alternative hypothesis.
One would perhaps be concerned that this looks like a strong suggestion that if this distribution
is at all correct then λ < 1/2 would fit the data somewhat better.

7.5.3 (a) The model makes some quite strong statements, in particular:
– The model doesn’t take into account major incidents: with probability 1 a bus must arrive

after a time of at most θ.
If your arrival time at the bus stop is uniform over a long period of time and the buses run exactly
to the timetable then this model might be reasonable; somehow the strongest assumption is that
the probability of waiting for more than a time θ is exactly zero. This would require that the
bus company immediately sends a new bus to the route if one is running even a second late.

(b) The likelihood is:
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L(θ; x) =

n∏
i=1

f(xi; θ)

=

{
θ−n if for all i, 0 < xi < θ

0 otherwise

(c) Consider the hypothesis H ′ : θ = θ′ > θ0, the SLRT between H0 and H ′ involves checking:

Λ(x) =
L(θ′; x)

L(θ0; x)

=
θn0
θ′n

n∏
i=1

I[0,θ′](xi)
I[0,θ0](xi)

provided that all of the observations are smaller than θ0 we can’t reject the null hypothesis
(if any observations lie between θ0 and θ′ we must reject the null hypothesis as the data is
impossible under the null hypothesis but possible under H ′ and if any observation exceeds θ′

the test is meaningless as the observed data is impossible under both models; in fact the test
we’re really conducting is against a compound alternative hypothesis so this isn’t an issue).
This is interesting: the only case in which Λ is greater than 1 is the case in which there are
observed values greater than θ0. This is true for all θ > θ0 and the probability of generating any
observation exceeding θ0 is exactly zero under the null hypothesis. Hence, a test of size ≤ α is
obtained for any α and any θ′ with rejection iff the largest observation exceeds θ0. For any other
set of data, the data is more probable under the null hypothesis.
The rejection region is the same for all θ′ > θ0 and so the UMP test is to reject the null
hypothesis if the data set includes any measured times in excess of θ.
Notice that we have been able to produce tests of size 0 and only of size 0 in the case of this
model. These tests have a rejection region which depend on only one of the observations. This
is extremely brittle; depending only upon the largest observation. This is a consequence of the
extremely strong statement in the model that there is a sharp transition in the probability
density to exactly zero at this point.

7.6.1 The only trick here is to notice that θk = 1−
∑k−1

i=1 θi. Hence the likelihood and its logarithm
are:

L(θ; x) =
n!∏k
i=1 xi!

k∏
i=1

θxii

`(θ; x) = log(n!)−
k∑
i=1

log(xi!) +
k∑
i=1

xi log θi

`(θ; x) =Const. +

k−1∑
i=1

xi log θi + xk log(1−
k−1∑
i=1

θi)

Looking at the partial derivatives with respect to the individual θi:

∂`

∂θi
(θ; x) =xi/θi − xk/(1−

k−1∑
i=1

θI) = xi/θi − xk/θk.

provided that xi and xk are greater than zero this yields the answer (otherwise the likelihood is
monotone in at least some of its arguments and a little care is required to establish that θ̂i = 0
whenever xi = 0, θ̂i = 1 in the event that only xi is non-zero and all other values may be obtained
via calculus).
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7.6.2 Under the null hypothesis, Y is a vector whose components each correspond to the number of a
collection of n independent, identically distributed samples which take a particular value. Therefore,

Y ∼ Mult (n, (p1, p2, p3))

where pi = P(X1 = i− 1) (as the Xi are iid we can use the first one as a prototypical example).
In this case p1 = (1 − φ)3, p2 = 3φ(1 − φ)2 and p3 = 3φ2(1 − φ) and the implicit p4 = φ3 such

that
4∑
i=1

pi = 1.

7.7.1 (a) These terms are defined in the notes.
(b) The likelihood is:

L(θ;x) =
n∏
i=1

P (Xi = xi|θ)

=

n∏
i=1

pxi =

4∏
j=1

∏
{i:xi=j}

pxi =

4∏
j=1

p
yj
j .

(c) The parameter space Ωθ is a 3 dimensional simplex in [0, 1]4 as p4 = 1−
3∑
j=1

pj . Hence ν = 3.

Under H0 a further two degrees of freedom are lost as p1 = p2 and p3 = p4 which with the
additional constraint tells us that p3 = p4 = 1

2(1− 2p1).
Hence the asymptotic χ2 distribution has 2 degrees of freedom.

(d) Let `(θ;x) =
3∑
j=1

yj log pj + y4 log(1− (p1 + p2 + p3)).

Now:

∂`

∂pj
=
yj
pj
− y4

1

1− (p1 + p2 + p3)

Setting the partial derivatives with respect to p1, p2 and p3 to zero simultaneously:

pj
p4

=
yj
y4

assuming that all of the yj 6= 0. If any of the yj are zero then the likelihood is monotonically
decreasing in pj and setting that pj (or those pj) to zero will maximise the likelihood. In the
most extreme case all but one of the yj are zero and monotonicity arguments tell us that we
must set the accompanying pj = 1 in this case.

In all cases, p̂j = yj/
4∑
i=1

yi = yj/n

(e) Under H0 our likelihood is further restricted and we obtain:

`0(θ;x) =(y1 + y2) log p1 + (y3 + y4) log(
1

2
[1− 2p1])

∂`0
∂p1

=(y1 + y2)/p1 − (y3 + y4)/[
1

2
(1− 2p1)]

as 2p3 = 1 − 2p1. We conclude that the MLE for p1 under this model is p̂1 = (y1 + y3)/2(y1 +
y2 + y3 + y4) = m1/n and the result for p̂3 is automatic.
Substituting the MLE under H0 and H1 into the log-likelihoods, we find the log-likelihood test
statistic is:
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2r(x) =2[`(θ̂;x)− `0(θ̂0;x)]

=2

[
4∑
i=1

yi log
(yj
n

)
− (y1 + y3) log

(
y1 + y3

2n

)
− (y2 + y4) log

(
y2 + y4

2n

)]

=2

4∑
i=1

yi
yi/n

mj/n
= 2

4∑
i=1

yi log

(
yi
mi

)
with m1 = m2 = (y1 + y2)/2 and m3 = m4 = (y3 + y4)/2.

(f) In this case we have y1 = 46 and y2 = 49; whilst y3 = 22 and y4 = 32. n = 149.
The MLE under H0 is p̂1 = 95/149 = 0.638 and p̂3 = 54/149 = 0.362.
The MLE under H1 is p̂1 = 46/149 = 0.309, p̂2 = 0.329, p̂3 = 0.148 and p̂4 = 0.215.
The test statistic is:

2r(x) =2 [46 log(46/47.5) + 49 log(49/47.5) + 22 log(22/27) + 32 log(32/27)]

=2[−1.4761 + 1.5234− 4.5055 + 5.4368] = 1.9573

The probability of obtaining a value at least this large under the asymptotic distribution of the
test statistic is 0.38 and so we cannot reject the null hypothesis at, say, a 5% level.

(g) The question of independence arises: have patients with multiple fractures been admitted? The
sample size isn’t very small and so the asymptotic approximation may be justifiable.

7.7.2 We can begin by determining the probabilities we need:

p1+ =
59

200
p2+ =

48

200
p3+ =

38

200
p4+ =

55

200

p+1 =
99

200
p+2 =

64

200
p+3 =

44

200

Under H0 the expected number of candidates in row i and column j is simply the product
200pi+pj+ because of the independence assumption. In our case this yields:

Candidate preferred
A B Undecided

Curriculum Engineering
& Science

(59× 92)/200 (59× 64)/200 (59× 44)/200

Humanities
& Social Science

(48× 92)/200 (48× 64)/200 (48× 44)/200

Fine Arts (38× 92)/200 (38× 64)/200 (38× 44)/200
Industrial

& Public Administration
(55× 92)/200 (55× 64)/200 (55× 44)/200

Which a little computation tells us is simply:

Candidate preferred
A B Undecided

Curriculum Engineering
& Science

27.1400 18.8800 12.9800

Humanities
& Social Science

22.0800 15.3600 10.5600

Fine Arts 17.4800 12.1600 8.3600
Industrial

& Public Administration
25.3000 17.6000 12.1000

Our test statistic is:
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X2 =
R∑
i=1

C∑
j=1

((200pi+p+j)− obsij)
2

200pi+p+j

=6.6849

This should be a realisation of a chi-squared random variable with (R − 1)(C − 1) = 6 degrees
of freedom. A χ2

6 random variable will exceed 6.6849 with probability 0.351. We cannot reject the
null hypothesis at, say, a 5% significance level.

8.2.1 (i) Each g gives a simulated value of the number of successes observed under a Bin (60, 0.2)
sampling regime. Repeating the experiment a large number of times suggests that this number
is the quantity of interest and the experimenter is investigating the properties of this number
of successes.

(ii) The average value should be close to the quantity being estimated:

gav =
1

5000

5000∑
j=i

gi

Each gi has expectation 60 · P(X < 20) = 60 · 20/100 = 12 and so gav ≈ 12 by the law of
large numbers or similar. In fact each gi has distribution Bin (60, 0.2) and hence expectation
60 · 0.2 = 12. Averaging 5000 random variables with this expectation and reasonably small
variance we would expect to arrive at a value close to 12.

(iii) As the gi are really Bin (60, 0.2) random variables, they each have variance 60·0.2·(1−0.2) = 9.6.
One would expect the variance of the gi to be close to 9.6 (note that the variance of gav would
be a factor of 5,000 smaller than this due to the effect of averaging and the independence of
the samples).

8.2.2 To deduce M , consider the ratio of the target distribution to the instrumental distribution:

M ≥ sup
x
f(x)/g(x) = sup

x

(2π)−1/2 exp(−x2

2 )

(π(1 + x2))−1

= sup
x

√
π(1 + x2) exp(−x2

2 )
√

2

=

√
π

2
sup
x

(1 + x2) exp

(
−1

2
x2

)
Let a(x) = (1 + x2) exp(−x2/2) and:

∂a

∂x
= 2x exp(−x2/2)− x(1 + x2) exp(−x2/2)

Setting this to zero, we obtain:

2x exp(−x2/2) =x(1 + x2) exp(−x/2)

2 =1 + x2 ⇒ x = ±1

At the stationary points, x = ±1. Considering the second derivative at these points:

∂2a

∂x2
=2 exp(−x2/2)− 2x2 exp(−x2/2)− (1 + x2) exp(−x/2)− 2x2 exp(−x2/2)

+ x2(1 + x2) exp(−x2/2)

= exp(−1/2) [2− 2− 2− 2 + 2] < 0

Indicating that these are maxima. At x = ±1, a(x) = 2e−1/2 and so M must be chosen to be at
least

√
π
2 2e−1/2 =

√
2π/e.
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As making M larger than necessary simply increases the computational cost by increasing the
probability of rejecting any sample, we choose M equal to this bound. As demonstrated in lectures,
the marginal probability of a sample being accepted is simply 1/M =

√
e/2π ≈ 0.66.

No upper bound would exist if the instrumental and target distributions were exchanged. We
couldn’t implement such an algorithm. This is because the Cauchy distribution has much “thicker
tails” than the Normal distribution, decaying only polynomial as |x| increases away from the origin,
rather than exponentially.

8.3.1 In order to test the symmetry of the population using a bootstrap technique based around the
sample skewness, one would need to estimate the sampling distribution of the skewness and then
calculate an appropriate confidence interval for the skewness.

If we draw B bootstrap samples and calculate for each bootstrap sample it’s mean, m, variance,
v, and 3rd central moments, u:

m?
i =

1

n

n∑
j=1

Xi
j v?i =

1

n

n∑
j=1

(Xi
j −m?

i )
2 u?i =

1

n

n∑
j=1

(Xi
j −m?

i )
3

(We have used biased estimators here; large enough samples are required to justify the bootstrap
technique at all that it’s not worth the additional complication arising from unbiased estimation of
skewness).

We can calculate the skewness for each bootstrap sample:

s?i =u?i /(v
?
i )

3/2

To obtain a confidence interval of 1−α we simply take the values of the α/2Bth and (1−α/2)Bth

largest values of s?i as the endpoints of our confidence interval.
If that confidence interval includes 0 then we cannot reject the null hypothesis (i.e. that the

skewness is 0 and the distribution symmetric) at the α · 100% level. If the interval does not include
0 then we do reject our null hypothesis.

9.2.1 Remember that the expectation is with respect to the parameter, θ, conditional upon the value
of the observed data. Given the data, the estimators are deterministic functions and so it is only θ
that we must consider random when taking this expectation.

The expected squared error loss is, making explicit the dependence upon the data of the estima-
tors and the expectations:

E
[
Ls(θ, θ̂)|x

]
=E

[
(θ − θ̂(x))2|x

]
=E

[
(θ − E [θ|x] + E [θ|x]− θ̂(x))2|x

]
=E

[
(θ − E [θ|x])2 + (E [θ|x]− θ̂(x))2 + 2(θ − E [θ|x])(E [θ|x]− θ̂(x))

]
=E

[
(θ − E [θ|x])2

]
+ (E [θ|x]− θ̂(x))2 + 2E[(θ − E [θ|x])(E [θ|x]− θ̂(x))]

The first term is the same for any estimator θ̂(x) as it’s independent of the estimator. The second
is non-negative and is minimised at 0 by θ̂(x) = θ̂B.

Consider, then the final term:

2E[(θ − E [θ|x])(E [θ|x]− θ̂(x))|x] =2E[(θ − E [θ|x] |x](E [θ|x]− θ̂(x))]

=2E[θ − E[θ|x]|x](E [θ|x]− θ̂(x)) = 0.

Where the final equality follows because E[θ − E[θ|x]|x] = E[θ|x]− E[θ|x].
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Consequently, the estimator which minimises the expected loss is the estimator which minimises
the second term in this expansion.

Thus we have:

E
[
Ls(θ, θ̂)|x

]
=E

[
(θ − E [θ|x])2

]
+ (E [θ|x]− θ̂(x))2

≥E
[
(θ − E [θ|x])2

]
= E

[
Ls(θ, θ̂B)

∣∣∣x]
The expected loss of any estimator is at least that of the posterior mean — and any different
estimator will have a larger expected loss as (θ̂ − θ̂B)2 > 0 for any θ̂ 6= θ̂B (for at least some, and
quite possibly all, data sets).

In the case of this minimum MSE estimator, the expected MSE is:

E[(θ − E[θ|x])2|x] = Var [θ|x]

i.e. the minimum achievable mean squared error is equal to the the posterior variance of the param-
eter.

9.3.1 As we know that the posterior is a properly normalised probability distribution we need not
worry about the constant of proportionality that is the marginal distribution of θ under the joint
distribution of x and θ. We may also drop any other multiplicative constants which do not depend
upon θ:

q(θ|x) ∝ p(θ)f(x|θ) ∝ β

Γ (α)
(βθ)α−1e−βθ ·

n∏
i=1

exp(−θ)θxi
xi!

∝(βθ)α−1e−βθ · exp(−nθ)θ
∑n
i=1 xi∏n

i=1 xi!

∝(βθ)α−1θ
∑n
i=1 xi exp(−(n+ β)θ)

∝θ
∑n
i=1 xi+α−1 exp(−(n+ β)θ)

Viewed as a function of θ, this is clearly proportional to a Gamma (θ;α+
∑n

i=1 xi, β + n) density
and as both are properly normalised probability density functions this suffices to prove that it is
exactly that density.

9.6.1 First consider the posterior distribution (there are only two unknown parameters in our model):

q(θ, τ−2|x, σ2) ∝ p(τ2)p(θ|1/τ2)f(x|θ, σ2)

=Gamma
(
τ−2; a, b

)
N
(
θ; 0, τ2

) n∏
i=1

N
(
xi; θ, σ

2
)

=
b

Γ (a)

(
b

τ2

)a−1

exp(− b

τ2
)

1√
2πτ2

exp

(
− θ2

2τ2

)
1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

(xi − θ)2

σ2

)
In order to implement a simple Gibbs sampler, we require the full conditional distribution of each

unknown parameter (i.e. the distribution of that parameter conditional upon the observed data and
all the other parameters).

To obtain these, we can exploit the fact that they’re proportional to the full posterior distribution
and must be properly normalised probability distributions:

q(θ|x, σ2, τ−2) ∝ b

Γ (a)

(
b

τ2

)a−1

exp(− b

τ2
)

1√
2πτ2

exp

(
− θ2

2τ2

)
1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

(xi − θ)2

σ2

)

∝ exp

(
− θ2

2τ2

)
exp

(
−1

2

n∑
i=1

(xi − θ)2

σ2

)

∝ exp

(
−1

2

[
θ2

τ2
+
nθ2 − 2θ

∑n
i=1 xi +

∑n
i=1 x

2
i

σ2

])
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As this is the exponential of a quadratic function of θ, if it is proportional to a probability distribution
for θ, it must be a normal distribution. Consequently, all that we need to do to work out the
distribution is to complete the square in the exponent:

q(θ|x, σ2, τ−2) ∝ exp

(
−1

2

[
σ2θ2 + nτ2θ2 − 2τ2θ

∑n
i=1 xi

σ2τ2

])
∝ exp

(
−1

2

[
θ2 − (2τ2θ

∑n
i=1 xi)/(σ

2θ2 + nτ2)

σ2τ2/(σ2θ2 + nτ2)

])
∝N

(
θ;

2τ2
∑n

i=1 xi
σ2 + nτ2

,
σ2τ2

σ2θ2 + nτ2

)
= N

(
θ;

2nτ2x̄

σ2 + nτ2
,

σ2τ2

σ2θ2 + nτ2

)
where x̄ is the empirical mean of the sample.

We can use a similar argument to obtain the full conditional distribution of the other parameter;
it is more convenient to work with τ−2 than τ itself:

q(τ−2|x, σ2, θ) ∝ b

Γ (a)

(
b

τ2

)a−1

exp(− b

τ2
)

1√
2πτ2

exp

(
− θ2

2τ2

)
1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

(xi − θ)2

σ2

)

q(τ−2|x, σ2, θ) ∝
(
b

τ2

)a−1

exp(− b

τ2
)

1√
2πτ2

exp

(
− θ2

2τ2

)
∝(τ−2)a−

1
2 exp

(
−b+ θ2/2

τ2

)
∝Gamma

(
τ−2; a+

1

2
, b+

θ2

2

)
A simple Gibbs sampler will sample iteratively from these full conditional distributions, given

the current value of the other parameter. The simulated Markov chain will have as an invariant
distribution the posterior distribution given above.

9.6.2 The posterior distribution is of the form:

q(θ, α, β|x) ∝
n∏
i=1

[Poi (xi; θiti) Gamma (θi;α, β)] Exp (α;α0) Gamma (β; c, b0)

Noting that the full conditional distributions are proportional to this posterior and that to deduce
the full conditional density of a particular parameter we need consider only multiplicative terms
which include that parameter we obtain:

q(θi|α, β,x) ∝Poi (xi; θiti) Gamma (θi;α, β)

∝e
−θiti(θiti)

xi

xi!
(βθi)

α−1e−βθi

∝ exp(−θi(ti + β))θxi+α−1
i ∝ Gamma (θi;α+ xi − 1, β + ti)

as the θi are independent of one another the joint distribution of θ conditional upon all of the other
parameters is simply the product of these distributions.

Via the same strategy:

q(β|θ, α,x) ∝Gamma (β; c, b0)

n∏
i=1

Gamma (θi;α, β)

∝(b0β)c−1 exp(−b0β)
n∏
i=1

β(βθi)
α−1 exp(−βθi)

∝βc+nα−1 exp

(
−β

[
b0 +

n∑
i=1

θi

])
∝ Gamma

(
β; c+ nα, b0 +

n∑
i=1

θi

)
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Finally:

q(α|θ, β,x) ∝Exp (α;α0)

n∏
i=1

Gamma (θi;α, β)

∝ exp(−αα0)

n∏
i=1

βα

Γ (α)
θα−1
i

∝
(

βα

Γ (α)

)n
exp(−αα0)

(
n∏
i=1

θi

)α−1

10.3.1 To determine the Cramér-Rao bound, we need to compute the diagonal elements of the Fisher
information matrix. Using the partial derivatives calculated in section 10.3:

−E
[
∂2`

∂β2
i

]
=− E

[
∂

∂βi

[
1

σ2
(x′iy − x′iXβ)

]]
=x′ixi/σ

2

The minimum variance unbiased estimator of each βi must has, at best, variance σ2/x′ixi which
is exactly the variance of the MLE obtained above.

Whilst:

−E
[
∂2`

∂[σ2]2

]
=− E

[
∂

∂σ2

[
− n

2σ2
+

1

2σ4
(y −Xβ)′(y −Xβ)

]]
=E

[
− n

2σ4
+

1

σ6
(y −Xβ)′(y −Xβ)

]
=− n

2σ4
+
nσ2

σ6
=

n

2σ4

Hence the minimum variance unbiased estimator of the regression variance has a sampling variance
of 2σ4/n.

We can apply the same argument that proves theorem 5.3 to demonstrate that the renormalised
unbiased estimator, (n − k)σ̂2/σ2 is a χ2

n−k random variable. Consequently, it has a variance of
2(n− k) and Var[σ̂2] = 2(n− k)(σ2/(n− k))2 = 2σ4/(n− k) Hence this estimator also achieves the
Cramér-Rao bound.

10.3.2 In the case described here:
Y ∼ N

(
Xβ, σ2Φ

)
the likelihood is:

L(β, σ2Φ; X,Y) =
1

(2π)n/2|σ2Φ|1/2
exp

(
− 1

2σ2
(Y −Xβ)TΦ−1(Y −Xβ)

)
`(β, σ2Φ; X,Y) =const.− 1

2
log |σ2Φ| − 1

2σ2
(Y −Xβ)TΦ−1(Y −Xβ)

Expanding the quadratic form and differentiating with respect to each of the βi, we have:

∂`

∂βi
=− 1

2σ2

∂

∂βi

[
−2βTXTΦ−1Y + βTXTΦ−1Xβ

]
=− 1

2σ2

[
−2xTi Φ

−1Y + 2xT1 Φ
−1Xβ

]
=

1

σ2

[
xTi Φ

−1Y − xT1 Φ
−1Xβ

]
=

1

σ2

[
xTi Φ

−1(Y −Xβ)
]



182 A. Solutions to Exercises

Setting these equal to zero simultaneously, we find that:

XTΦ−1(Xβ −Y) = 0⇒ β = (XTΦ−1X)−1XTΦ−1Y

note that we need to be careful when premultiplying by the matrix inverse.
The second order conditions can be verified, but it’s a little tedious.

10.3.3 From example 10.2

β̂ = (X′X)−1X′y =

(
ȳ − Sxy

Sxx
x̄

Sxy
Sxx

)

In the current question:

Sxx =
∑

x2
i −

1

n

(
n∑
i=1

xi

)2

= 4299.9

Sxy =
∑

xiyi −
1

n

(
n∑
i=1

xi

)(
n∑
i=1

yi

)
= −22946

Hence in the notation of this question:

β0 =ȳ − Sxy
Sxx

x̄

=
5263

30
− −22946

4299.9

2108

30

=
1

30
5263 + 22946× 2108/4299.9 = 550.406

and:

β1 =
Sxy
Sxx

=
−22946

4299.9
= −5.34

By way of illustration:
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10.5.1 We can estimate the variance of the residuals as:

σ̂2 =
1

n− k
(Y −Xβ)T (Y −Xβ) =

1

30− 2
102560 = 3662.7

and

s2
x = 4299.9

Thus the test statistic is:
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T =
−5.3364√

3662.7/4300
= −5.78

The probability of a t28 random variable taking a value ≤ −5.78 is approximately 1.65×10−6% and
so we can reject the null hypothesis in this case (at essentially any reasonable significance level):
the slope is significant. This linear regression does fit the data significantly better than a simple
constant model.

10.6.1 The simple prediction is:

ŷ = β0 + β1x = 550.4046− 5.3364× 70 = 176.8

Following example 10.4 we obtain a confidence interval by calculating:

v =σ̂2

(
1

n
+

(70− x̄)

s2
x

)
=3662.7

(
1

30
+

(70− 70.267)2

4299.9

)
= 122.15

And the calculating the confidence interval:

I =176.8 + [t0.025,28

√
v, t0.975,28

√
v]

=176.8 + [−2.048× 11.05, 2.048× 11.05] = [154.2, 199.4].
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