7 Unsupervised learning

7.1

Eigen-decomposition

For a d x d real, symmetric, square matrix A of rank n < d, the eigen-
decomposition can be written

A=UxU"T

where

A has real eigenvalues Ay > --- > \,;; d — n of the \; are zeros.

3. is a diagonal matrix, the diagonal elements of 3 being the eigenvalues
of A,

A0 0 O
0 X 0 O
o o0 - 0
0 0 0 M\

the columns of U are uq, ...uq € R¥1,
the u; are the eigenvectors of A, Au; = A\uy,

the u; form an orthonormal basis for R%: uZTuj =i, UTu =U0UT = 1,.

Singular Value Decomposition
Suppose you have a real m x n matrix A.

AT A is an n x n matrix with non-negative eigenvalues:

(ATAw = v = T AT Av = 2Tv = A ||’UH§ >0 = A>0.

The singular values of A are the square roots of the eigenvalues of AT A
and AAT.

Decomposition
min{m,n}
A=UsvT = > 8w
i=1
where

— U is an m x m orthogonal matrix (columns w;; u; - u; = 6; ),
— Vis an n x n orthogonal matrix (columns u;; u; - u; = d; ;), and

— ¥ = (%,;;) is a diagonal matrix of the (non-negative) singular values
of A, in decreasing order (some may be zero).

the u; are the left-singular vectors of A
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— the v; are the right-singular vectors of A

The decomposition always exists.
The left-singular vectors of A are the eigenvectors of AAT.
The right-singular vectors of A are the eigenvectors of AT A

The non-zero eigenvalues of AA” and AT A are are the square singular-
values of A
AAT =UzU"

ATA=v?yT
(we are allowing 3 to change size by padding with zeros as convenient)

R’s svd command returns an economical version of the svd:

U is returned as an m x min{m, n} matrix,
— X is returned as a vector d of length min{m,n}, and
— V is returned as a n x min{m, n} matrix.

— All that has happened is the inconsequential columns of U and V/
have been trimmed away and it is still the case that

min{m,n}
A=UsvT= > o],
i=1

where ¥ = diag(d).
— Time complexity max{m,n}xmin{m,n}? =min{m?n, mn?}

— You can calculate the most significant parts of the SVD more quickly
than the full SVD.

7.3 PCA

Tool for exploratory data analysis

To explain the variance in the data

Similar to variable selection for linear regression
Unlabeled data == Unsupervised learning

n x d data matrix X — centered (columns have mean zero) and probably
scaled (columns have s.d. one); n observations in R<.

For linear regression you want n > d. Not necessary for PCA: i.e. DNA
datasets.
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e The variance of X is %Zd (XTX);,; = %szzl(XXT)i’j .

i,j=1
e By SVD X = UXVT; U an n x n matrix and V a d x d matrix. so
xxT=wsvhywsvhHT = wusvh)(veuT) = ux?u”
and

XT'x = wxvhHTwevh) = (veuhwsvT) = ve2vT,

e For any unit vector v = Z?:l a;v; € R (v; the columns of V, Zle al =
1), var(Xv) = (Xv)T(X0v) =0T VX2V Ty = 25:1 a?y?

e Consider a change of basis in R? from the normal basis to vy, ...vs. The
direction vy corresponds to the direction that maximizes the variance of
X; v; corresponds to the direction of X, amongst all directions orthogonal
to vy, ...v;_1, that maximizes the variance of X.

e The proportion of the variance captured by the first k& principal compo-
nents is Y1, X3,/ i w2,

o XV =(UXVT)V =UX is a n x min{n, d} matrix. This is X transformed
into PCA space.

e Works well in high dimensions. Fails to spot non-linear patterns.

7.4 Problems

The (*) questions from sheets 5 to 7 form homework 2.

1. Consider the matrix A:

A=outer(1:101,1:101,function(i,j) sqrt((i-50)**2+(j-50)**2)) #Produce A
image(a,col=grey(seq(0,1,0.01))) #Plot A as ann image

Does A have a good low rank approximation? What rank?

2. (*) Consider a sample from the multivariate normal distribution

library (MASS)
Sigma=matrix(c(14, 15, 18,

15, 17, 21,

18, 21, 27),3,3)
A=mvrnorm(10~4,mu=c(1,2,3) ,Sigma=Sigma)
library(rgl) ;plot3d(A) #plot A
p=prcomp(A,scale=F,retx=T)

(a) What, approximately, is the value of p$center, and why?
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(b) How are the principal components p$sdev of A related to the eigen-
values of Sigma eigen(Sigma)$values? Why?

(c) What, approximately speaking, is the “probability distribution” of
the rows in p$x? How is var(p$x) related to Sigma?

d) How are prcomp(A,scale = T)$sdev related to Sigma? [Hint: con-
p p g
sider the “probability distribution” of the rows of scale(A).]

3. wisconsin-breast-cancer.RData contains a matrix x and a vector y. Each
row of x contains measurements related to cells sampled whilst testing for
cancer. The vector y classifies the samples 0=benign, 1=malignant.

(a) Which of the columns of X is most highly correlated with y.

(b) Set p=prcomp(X,scale=T). Which of the columns of p$x is most
highly correlated with y. Use 1lm(y ~ p$x[,1] 4+ p$x[,2]) to find a
linear combination of the first two principal component of X that is
strongly correlated with y.

4. (*) Download from http://archive.ics.uci.edu/ml/datasets/Molecular+
Biology+,28Promoter+Gene+Sequences’29 and load it into R:

a=read.csv("promoters.data",stringsAsFactors=F,strip.white=T,,header=F)
y=as.numeric(al,1]=="+")
x=al[,3]

There are (x) 106 samples of DNA sequence of length 57, and (y) a classi-
fication of the 106 samples into two classes (promoters/non-promotors of
E-coli).

(a) Convert x into a numeric matrix X suitable for use with PCA. [Hint:
consider a mapping such as “a”->(1,0,0,0), “t”->(0,1,0,0), “c™>(0,0,1,0),
“g”->(0,0,0,1) which produces a matrix of size 106x228 (as 57x4=228)].

(b) How are the principal components of X correlated to Y? Find a lin-
ear combination of the first two principal components that is fairly
strongly correlated with y.
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