C0902 problem sheet, solutions

1. (a) Markovinequality) Let X be a continuous, non-negative random variable (RV)aagositive
constant. Show that:
E[X]

P(X>a) <
a

Solution: Let p(z) represent the pdf of RX. Then:
E[X] = / zp(x)de
0

_ /Oamp(m)dx—l-/aooxp(x)dw

Sincep(z) is a pdf, it is everywhere non-negative, so the first term @nRKS must be non-
negative. This means:

o
E[X] > / z p(z)dx
a
Sincea is the lower bound on the integral above, we can write

/aoomp(m)dx > /aooap(x)dm

which gives

E[X] > /ooap(x) dz
= a/oo p(z) dz
= aP(X >a)

from which the required result follows.

(b) (Chebyshev inequality) Let X be any RV with meanx and whose variance?, exists. Show
that for any positive constant

o%
P(|X —px| >a) < 2
Solution: First, note that
P(IX —px|>a) = P((X —pux)*>a?)

Here,(X — ux)? is a non-negative RV. Using the Markov inequality, we get:

P((X —pux)? > a?) < M

as required.



(c) An estimatom,, of a parameter is said to be consistent if it converges inaiiliby to the true
parameter valué, that is if:

Ve >0, lim P(|f,—0>¢) = 0

n—oo

Using the Chebyshev inequality, show (informally) that tbikowing two conditions are suffi-
cient to establish consistency:

E[f,] = 6 (unbiased)
lim VAR(G,) =
n—oo
Solution: If én is unbiased, we can write
P(fn—0|>€) = P(lf, —E[d]| > )

Applying the Chebyshev inequality to the RHS, we get:

VAR(0,,)

P16~ E[f]] > ) ;

€

From the RHS above we can see that if

lim VAR(G,) = 0

n—oo

the estimator converges in probability&pthat is, it is consistent.

(d) (Weak Law of Large Numbers) Let X1, X5... X,, be a set of independently and identically
distributed RVs (arandom sample) with E[X;] = ux and VAR(X;) = 0% < oo. Use the
Chebyshev inequality to show that tkample mean

1 n
X = - Z X;
=1
converges in probability to the true meag.

Solution: Let X,, denote the sample mean derived frarobservations. This is easily shown to
be unbiased. Using the Chebyshev inequality:

_ VAR(X,
%, —px 2 < VAR
But:
_ 1
VAR(X,) = VAR (E(Xl + ...+ Xn)>

_ %%

- n
Therefore



and

lim P(|X, — ux| >¢€) =0
n—oo

which meansX,, converges in probability to the true meag, as required.

2. X;...X,, X; € R?are independently and identically distributed multiveeitlormal Random Vec-
tors, each having pdf:

1 1 Ty -1
_ — (=) "B (x—p)
p(X‘I,L,E) (27T)d/2’2’1/26 2
(a) Write down the log-likelihood function for this model. 2 (arks)
(b) Derive maximum likelihood estimators for the paramejeandX.. (4 marks)
Solution:
2(a). Log-likelihood:
L) = ~Mloglen) - Dlog() - LYK, - @B UX - )
H, = 5 108(27) — 5 log 3 - i~ K i~ K

2(b). We proceed in two stages. We first tr&aas fixed, and maximizé€ to get a valugi(X) which
maximizes, for a given matrix parametét. Taking the derivative of th&€ wrt vector i, we get:

d B n
d_uﬁ = (= 1;(Xz‘—ﬂ))T

Setting the derivative to zero, taking the transpose of bmtas and pre-multiplying b¥, we get:

n

0 = ) (Xi—p)

=1

Solving for u:

a®) = SYOX,

Since this solution does not depend®nX is the maximum likelihood estimator @f for anyX. To
obtain3: we plugi(X) = X into the log-likelihood to obtain

n

L3 X - X) TR - X) 1)

dn n
——log(27) — =1 ) — =
5 log(2n) ~ G loa(B) - 5 3



and maximize this function wix.
We first introduce a sample covariance magigefined as follows:

s - Ly xx - X7

This allows us to re-write the quadratic form in (1) as a nxatace:

Zn:(xi—X)Tz—l(Xi—X) = nTr(Z7!S)
=1

whereTr(-) denotes the trace of its matrix argument.
This in turn allows us to write the derivative of (1) wit as follows:

n d n d 1
—Eﬁlog(IE\)—EETr(E S)

At this point we make use of two useful matrix derivativese@h can be found in Appendix C of
Bishop and the note “Matrix Identities” by Roweis, availkalon the course website):

S lox(A) = (A

iTr(X’lA) = X !ATX!
X

This gives the derivative (2) in the following form (where wiake use of the fact that bo®~! and
S are symmetric):

n n
——» gy Zylgy!
2 )

Setting to zero and solving, we get:

A

¥ =S

3. Xi...X,, X; € Rare independently and identically distributed Normal Résch having pdf:

palmo?) = =t
2no
(a) Write down the log-likelihood function for this model. 2 (arks)
(b) Derive maximum likelihood estimators for the paramgfeando?. (4 marks)



Solution:
3(a). The log-likelihood function for this model is:

n n 1 —
L(p,o0%) = 3 log(2m) — 5108 o? - 252 Z(Xi - )
i=1

3(b). We first treatr? as fixed, and maximiz€ to get a valugi(o?) which maximizes. for a given
valuecs?. Taking the derivative of th€ wrt i, setting to zero and solving, we get:

X 1 ¢
alo?) = - Yo Xi
i=1
= X
Since this solution does not depend®h X is the maximum likelihood estimator of for any o2,

We now plug this estimate into the log-likelihood and maxienthe resulting function wit? to get
&2. Taking the derivative wr¢? and setting to zero:

n 1 R o
i=1
Solving foro?, we get:
1< _
~2 — E - (Xz _X)2

Thus, the desired pair of MLEs is

o RN .
(:U‘a 02) = (Xa - (XZ - X)2>
ni:l
_ 1 &
X = - X;
n <

. Consider a classifier with Bernoulli class-condition&@tidbutions, in which input vectorX; €

{0,1}¢ are taken to be i.i.d. given cla3s € {0,1} and the inputs are further taken to be mutually

independentNaive Bayes assumption). That is, #;, is a Bernoulli parameter giving the probability
that thej” input is 1, given output” = k, the class-conditional distribution is:

d

PX;|Y;=Fk) = Hgﬁw(l — ;)1 Xi2)

j=1
(a) Write down the log-likelihood function

£O) = logP(Xi...X,|Y1...Y,,0)

for this model. Here@ denotes the full set of model parameters. (2 marks)

5



(b) Derive maximum likelihood estimates (MLES) for the mbparameters. (4 marks)

Solution:

4(a). We have: input vectorsX;, each of dimensionality, and conditionally independent given class
labels. LetX;; denote thei'® component of thé" input vector. Considering just one inpjit

P(X1j... Xpj | Y1...Y,,0)
= I 657 =000 x T 657 (1 = 050" )

#Y;=1 :Y;=0
= 0= 05) ) 001 o

where,n ;. represents the number of observations in whichjthénput is 1 when the class labelis
that is:

njg = |{ZXZJ :1AY;:]€}|
The Naive Bayes assumption means that the probability afdh®lete input vector is just the product
of the probabilities of the individual inputs. This means tverall conditional likelihood is just

P(Xy... X, | Y1...Y,,0)

d
— H 97171(1 — Hjl)(m—njl) X 9;7'60(1 _ ejo)(no—njo)
7=1

and the corresponding conditional log-likelihood is
L£O) = logP(X;...X,|Y1...Y,,0)

d
= Z?’le 10g9j1 + (nl - njl)IOg(l - Hjl)
7=1

+nolog 00 + (no — njo) log(1 — 0j0)

4(b). Taking the derivative of the log-likelihood functiewt ;; and setting to zero, we get:

nj1 - M1 — N1

0 = 01 1-0;
Solving, we get the MLE);;:
by -
Similarly:
b -



