
Co902 problem sheet, solutions

1. (a) (Markov inequality) LetX be a continuous, non-negative random variable (RV) anda a positive
constant. Show that:

P (X ≥ a) ≤ E[X]

a

Solution: Let p(x) represent the pdf of RVX. Then:

E[X] =

∫

∞

0
x p(x) dx

=

∫ a

0
x p(x) dx+

∫

∞

a
x p(x) dx

Sincep(x) is a pdf, it is everywhere non-negative, so the first term on the RHS must be non-
negative. This means:

E[X] ≥
∫

∞

a
x p(x) dx

Sincea is the lower bound on the integral above, we can write
∫

∞

a
x p(x) dx ≥

∫

∞

a
a p(x) dx

which gives

E[X] ≥
∫

∞

a
a p(x) dx

= a

∫

∞

a
p(x) dx

= aP (X ≥ a)

from which the required result follows.

(b) (Chebyshev inequality) Let X be any RV with meanµX and whose varianceσ2
X exists. Show

that for any positive constanta:

P (|X − µX | ≥ a) ≤ σ2
X

a2

Solution: First, note that

P (|X − µX | ≥ a) = P ((X − µX)2 ≥ a2)

Here,(X − µX)2 is a non-negative RV. Using the Markov inequality, we get:

P ((X − µX)2 ≥ a2) ≤ E[(X − µX)2]

a2

=
σ2
X

a2

as required.
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(c) An estimator̂θn of a parameter is said to be consistent if it converges in probability to the true
parameter valueθ, that is if:

∀ǫ > 0, lim
n→∞

P (|θ̂n − θ| ≥ ǫ) = 0

Using the Chebyshev inequality, show (informally) that thefollowing two conditions are suffi-
cient to establish consistency:

E[θ̂n] = θ (unbiased)

lim
n→∞

VAR(θ̂n) = 0

Solution: If θ̂n is unbiased, we can write

P (|θ̂n − θ| ≥ ǫ) = P (|θ̂n − E[θ̂n]| ≥ ǫ)

Applying the Chebyshev inequality to the RHS, we get:

P (|θ̂n − E[θ̂n]| ≥ ǫ) ≤ VAR(θ̂n)

ǫ2

From the RHS above we can see that if

lim
n→∞

VAR(θ̂n) = 0

the estimator converges in probability toθ, that is, it is consistent.

(d) (Weak Law of Large Numbers) Let X1,X2 . . . Xn be a set of independently and identically
distributed RVs (arandom sample) with E[Xi] = µX andVAR(Xi) = σ2

X < ∞. Use the
Chebyshev inequality to show that thesample mean

X̄ =
1

n

n
∑

i=1

Xi

converges in probability to the true meanµX .

Solution: Let X̄n denote the sample mean derived fromn observations. This is easily shown to
be unbiased. Using the Chebyshev inequality:

P (|X̄n − µX | ≥ ǫ) ≤ VAR(X̄n)

ǫ2

But:

VAR(X̄n) = VAR

(

1

n
(X1 + . . .+Xn)

)

=
σ2
X

n

Therefore

P (|X̄n − µX | ≥ ǫ) ≤ σ2
X

nǫ2
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and

lim
n→∞

P (|X̄n − µX | ≥ ǫ) = 0

which meansX̄n converges in probability to the true meanµX , as required.

2. X1 . . .Xn, Xi ∈ R
d are independently and identically distributed multivariate Normal Random Vec-

tors, each having pdf:

p(x | µ,Σ) =
1

(2π)d/2|Σ|1/2 e
−

1

2
(x−µ)TΣ

−1
(x−µ)

(a) Write down the log-likelihood function for this model. (2 marks)

(b) Derive maximum likelihood estimators for the parametersµ andΣ. (4 marks)

Solution:

2(a). Log-likelihood:

L(µ,Σ) = −dn

2
log(2π)− n

2
log(|Σ|)− 1

2

n
∑

i=1

(Xi − µ)TΣ−1(Xi − µ)

2(b). We proceed in two stages. We first treatΣ as fixed, and maximizeL to get a valuêµ(Σ) which
maximizesL for a given matrix parameterΣ. Taking the derivative of theL wrt vectorµ, we get:

d

dµ
L = (Σ−1

n
∑

i=1

(Xi − µ))T

Setting the derivative to zero, taking the transpose of bothsides and pre-multiplying byΣ, we get:

0 =

n
∑

i=1

(Xi − µ)

Solving forµ:

µ̂(Σ) =
1

n

n
∑

i=1

Xi

= X̄

Since this solution does not depend onΣ, X̄ is the maximum likelihood estimator ofµ for anyΣ. To
obtainΣ̂ we plugµ̂(Σ) = X̄ into the log-likelihood to obtain

−dn

2
log(2π) − n

2
log(|Σ|)− 1

2

n
∑

i=1

(Xi − X̄)TΣ−1(Xi − X̄) (1)
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and maximize this function wrtΣ.

We first introduce a sample covariance matrixS defined as follows:

S =
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)T

This allows us to re-write the quadratic form in (1) as a matrix trace:

n
∑

i=1

(Xi − X̄)TΣ−1(Xi − X̄) = nTr(Σ−1
S)

whereTr(·) denotes the trace of its matrix argument.

This in turn allows us to write the derivative of (1) wrtΣ as follows:

−n

2

d

dΣ
log(|Σ|)− n

2

d

dΣ
Tr(Σ−1

S)

At this point we make use of two useful matrix derivatives (these can be found in Appendix C of
Bishop and the note “Matrix Identities” by Roweis, available on the course website):

∂

∂A
log(|A|) = (A−1)T

∂

∂X
Tr(X−1

A) = −X
−1

A
T
X

−1

This gives the derivative (2) in the following form (where wemake use of the fact that bothΣ−1 and
S are symmetric):

−n

2
Σ

−1 +
n

2
Σ

−1
SΣ

−1

Setting to zero and solving, we get:

Σ̂ = S

=
1

n

n
∑

i=1

(Xi − X̄)(Xi − X̄)T

3. X1 . . . Xn,Xi ∈ R are independently and identically distributed Normal RVs,each having pdf:

p(x | µ, σ2) =
1√
2πσ

e−
1

2
(x−µ

σ )
2

(a) Write down the log-likelihood function for this model. (2 marks)

(b) Derive maximum likelihood estimators for the parametersµ andσ2. (4 marks)
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Solution:

3(a). The log-likelihood function for this model is:

L(µ, σ2) = −n

2
log(2π) − n

2
log σ2 − 1

2σ2

n
∑

i=1

(Xi − µ)2

3(b). We first treatσ2 as fixed, and maximizeL to get a valuêµ(σ2) which maximizesL for a given
valueσ2. Taking the derivative of theL wrt µ, setting to zero and solving, we get:

µ̂(σ2) =
1

n

n
∑

i=1

Xi

= X̄

Since this solution does not depend onσ2, X̄ is the maximum likelihood estimator ofµ for anyσ2.
We now plug this estimate into the log-likelihood and maximize the resulting function wrtσ2 to get
σ̂2. Taking the derivative wrtσ2 and setting to zero:

0 = −n

2

1

σ2
+

1

2(σ2)2

n
∑

i=1

(Xi − X̄)2

Solving forσ2, we get:

σ̂2 =
1

n

n
∑

i=1

(Xi − X̄)2

Thus, the desired pair of MLEs is

(µ̂, σ̂2) =

(

X̄,
1

n

n
∑

i=1

(Xi − X̄)2

)

X̄ =
1

n

n
∑

i=1

Xi

4. Consider a classifier with Bernoulli class-conditional distributions, in which input vectorsXi ∈
{0, 1}d are taken to be i.i.d. given classY ∈ {0, 1} and the inputs are further taken to be mutually
independent (Naive Bayes assumption). That is, ifθjk is a Bernoulli parameter giving the probability
that thejth input is 1, given outputY = k, the class-conditional distribution is:

P (Xi | Yi = k) =

d
∏

j=1

θ
Xij

jk (1− θjk)
(1−Xij)

(a) Write down the log-likelihood function

L(θ) = logP (X1 . . .Xn | Y1 . . . Yn,θ)

for this model. Here,θ denotes the full set of model parameters. (2 marks)
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(b) Derive maximum likelihood estimates (MLEs) for the model parameters. (4 marks)

Solution:

4(a). We haven input vectorsXi, each of dimensionalityd, and conditionally independent given class
labels. LetXij denote thejth component of theith input vector. Considering just one inputj:

P (X1j . . . Xnj | Y1 . . . Yn,θ)

=
∏

i:Yi=1

θ
Xij

j1 (1− θj1)
(1−Xij ) ×

∏

i:Yi=0

θ
Xij

j0 (1− θj0)
(1−Xij )

= θ
nj1

j1 (1− θj1)
(n1−nj1) × θ

nj0

j0 (1− θj0)
(n0−nj0)

where,njk represents the number of observations in which thejth input is 1 when the class label isk,
that is:

njk = |{i : Xij = 1 ∧ Yi = k}|

The Naive Bayes assumption means that the probability of thecomplete input vector is just the product
of the probabilities of the individual inputs. This means the overall conditional likelihood is just

P (X1 . . .Xn | Y1 . . . Yn,θ)

=
d
∏

j=1

θ
nj1

j1 (1− θj1)
(n1−nj1) × θ

nj0

j0 (1− θj0)
(n0−nj0)

and the corresponding conditional log-likelihood is

L(θ) = log P (X1 . . .Xn | Y1 . . . Yn,θ)

=

d
∑

j=1

nj1 log θj1 + (n1 − nj1) log(1− θj1)

+nj0 log θj0 + (n0 − nj0) log(1− θj0)

4(b). Taking the derivative of the log-likelihood functionwrt θj1 and setting to zero, we get:

0 =
nj1

θj1
− n1 − nj1

1− θj1

Solving, we get the MLÊθj1:

θ̂j1 =
nj1

n1

Similarly:

θ̂j0 =
nj0

n0
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