Complexity Science Doctoral Training Centre
 CO903 Complexity and Chaos in Dynamical Systems

Assignment II

Issue date: 19 November
Submission date: 26 November (2pm)

1. For any two of the following systems,
(i) find the fixed points; [10\%]
(ii) classify them; [10\%]
(iii) sketch the neighboring trajectories, [10\%]
and try to fill in the rest of the phase portrait (without using computer).
Then compare your sketch with a computer-generated phase portrait;
(iv) provide a brief description of behaviour of trajectories. [10\%]
(a) $\dot{x}=\sin y, \dot{y}=\cos x$,
(b) $\dot{x}=\sin y, \dot{y}=x-x^{3}$,
(c) $\dot{x}=x-y, \dot{y}=x^{2}-4$,
(d) $\dot{x}=1+y-e^{-x}, \dot{y}=x^{3}-y$,
(e) $\dot{x}=y+x-x^{3}, \dot{y}=-y$,
(f) $\dot{x}=x y-1, \dot{y}=x-y^{3}$.
2. Consider the following system $\dot{x}=b x-x^{3} / 3-y, \dot{y}=x-a$. Find the curve in (a, b) space at which Hopf bifurcation occurs. Using a computer, check the validity of the curve and determine whether the bifurcation is subcritical or supercritical. Plot typical phase portraits above and below the Hopf bifurcation. [30\%]
3. For each of the following systems, a Hopf bifurcation occurs at the origin when $a=0$. Using a computer, plot the phase portrait and determine whether the bifurcation is subcritical or supercritical.
(a) $\dot{x}=a x+y-x^{2}, \dot{y}=-x+a y+2 x^{2}, \quad[10 \%]$
(b) $\dot{x}=a x+y-x^{3}, \dot{y}=-x+a y+2 y^{3}$, [10\%]
(c) $\dot{x}=y+a x, \dot{y}=-x+a y-x^{2} y$. [10\%]
