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3 One-dimensional maps

Here we study a class of dynamical systems in which time is discrete rather than continuous (i.e.
difference equations or iterated maps).

Consider a one-dimensional map
Xnt1 = F(xn),

where f is a smooth function from the real line to itself. The sequence x¢, X1, Xz, ... is called
the orbit starting from x,. Maps are useful in various ways:

e Tools for analysing differential equations (e.g., Poincaré maps, the Lorenz map).

e Models of natural phenomena (where discrete time is better to be considered, e.g., digitals
electronics, in parts of economics and finance theory).

e Simple examples of chaos (Maps show a much wilder behaviour than differential equations).

Fixed points and linear stability

*

If f(x*) =x*, then x* is a fixed point. The orbit remains at x* for all future iterations (x, = x
= Xnt1 = f(xn) = f(X*) = X*)'

To determine the stability of x*, we consider a nearby orbit x,, = x* +n,,. Then we have
X Magr = F(X* + 1) = F(x*) + £ (x*)nn + O(n).
This equation reduces to the equation of the linearised map

Nt = f'(x" )N

with multiplier A = f'(x*). The solution of the linear map can be found explicitly by writing a
few terms: M7 = Ao, M2 = AN = Ao, ... , In = A™0.

If Al =" (x*)] <1, My — 0 as n — oo = x* is linearly stable
If Al > 1 = x* is unstable
If Al = 1 = marginal case (the neglected O(n?2) terms determine the local stability)

Fixed points with multiplier A = 0 are called superstable (perturbations decay much faster)



Cobwebs
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Example 1. A cobweb for the map x,,.1 = sin(x,,) helps to show that x* = 0 is globally stable
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Example 2. Given x,,1 = cos(x,,) we can show that a typical orbit spirals into the fixed point
x* =0.739... as n — oo (x = 0.739... is the unique solution of x = cos(x)).
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The spiral motion implies that x,, converges to x* through damped oscillations (typically if A < 0).
If A > 0 the convergence is monotonic.




Logistic map

Consider the logistic map

Xny1 = TXnU - Xn))
a discrete time analog of the logistic equation for population growth studied earlier. x, > 0 is a
dimensionless measure of the population in the nth generation and r > 0 is the intrinsic growth
rate. The graph of the logistic map is a parabola with a maximum value of /4 at x = 0.5. Here
we restrict the control parameter 0 < r < 4 so that the equation maps the interval 0 < x <1
into itself.
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If T < 1 < 3 the population grows and eventually reaches a nonzero steady state:
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For larger v we observe oscillations in which x, repeats every two iterations, i.e. a period-2
cycle:
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At still larger T, a cycle repeats every four generations, i.e. a period-4 cycle:
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For many values of 1, the sequence x,, never settles down to a fixed point or a periodic orbit, i.e.
the long-term behaviour is aperiodic
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To see the long-term behaviour for all values of r at once, we can plot the orbit diagram (the
system's attractor as a function of 1).




We observe a cascade of period-doublings until at v ~ 3.57, where the map becomes chaotic.
For r > 3.57 the orbit diagram reveals a mixture of order and chaos. The large periodic window
beginning near r &~ 3.83 contains a stable period-3 cycle. A blow-up of part of the period-3
window is shown below (a copy of the orbit diagram reappears in miniature):
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Some analysis of logistic map

The fixed points satisfy x* = f(x*) = rx*(1 — x*). Hence x* =0 for all r and x* =1 —1/r for
r > 1 (from the condition 0 < x* < 1). Stability depends on multiplier f'(x*) = r — 2rx*.

e f'(0) =r = x* - stable if r < 1 and unstable if v > 1

e f'(1—=1/r)=2—r=x*=1—1/risstableif 2—71| < 1,ie. 1 <71 <3 and unstable if
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x* bifurcates from the origin in a transcritical bifurcation at r = 1. As r increases beyond 1, the
slope at x* gets steeper. The critical slope f’(x*) = —1 is attained when r = 3. The resulting
bifurcation is called a flip bifurcation (often associated with period-doubling).
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Here we will show that the logistic map has a 2-cycle for v > 3. A 2-cycle exists if and only if
there are two points p and q such that f(p) = q and f(q) = p. Equivalently, such a p must
satisfy f(f(p)) =p = p is a fixed point of the second-iterate map *(x) = f(f(x)).

fA(x)

X

To find p and q we have to solve f>(x) = x, i.e. T?x(1 —x)[1 —1x(1 —x)] —x = 0. Since the
fixed points x* = 0 and x* = 1 — 1/r are solutions of this equation we can reduce the equation
to a quadratic one by factoring out the fixed points. Solving the resulting quadratic equation we

get
r+1x+/(r—3)(r+1)
2r )

For v > 3 the roots p and q are real and we have a 2-cycle. For v < 3 the roots are complex
and a 2-cycle doesn't exist.

Py 9=

For analysing the stability of a cycle we can reduce the problem to a question about the stability
of a fixed point. Both p and q are solutions of f2(x) = x = p and q are fixed points of the
second-iterate map f2(x). The original 2-cycle is stable if p and q are stable fixed points. To
determine whether p is a stable fixed point of f> we compute the multiplier

d

A= —
dx

(F(F())) ey = F(FPNF(P) = F'(q) ' (p).

The multiplier is the same at x = . After carrying out the differentiations and substituting for
p and g we obtain
A=1(1=2q)r(1—2p) =4 +2r — 1%

The 2-cycle is linearly stable if [4 +2r — 12| < 1,ie. for 3 <r <1+ 6.
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Lyapunov exponent

To be called chaotic, a system should also show sensitive dependence on initial conditions, in
the sense that neighbouring orbits separate exponentially fast. The definition of the Lyapunov
exponent for a chaotic differential equation can be extended to one-dimensional maps.

Given some initial condition xo, consider a nearby point xg + 89, where 8y < 1. Let 0, be the
separation after 1 iterates. If |5, ~ [8o/e™, then A is called the Lyapunov exponent. A positive
Lyapunov exponent is a signature of chaos.

A more precise and computationally useful formula for A can be derived. We note that 6, =
™ (xo + 8o) — f™(xo). Then by taking logarithms

1 5771 1 ln‘fm(Xo—Féo)—fm(Xo)
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in the limit 9 — 0. Using the chain rule we have

n—1
(f") (x0) = | | f'(x1)
i=0
and
1 n—1 1 n—1
A —| f'(xi)| = — In £ (x;
w1 (x:) n%m (xo)l




Then the Lyapunov exponent for the orbit starting at X, is defined as

n—oo

n—1
1
A= i —E In [f(x;
im nl n|f’ (x;)]

The Lyapunov exponent for the logistic map found numerically:
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The bifurcation diagram of the logistic map xn,.1 = ™.(1 — x,,) demonstrates the presence
of the period-3 window near 3.8284... < r < 3.8415.... The third-iterate map 3(x) is the
key to understand the birth of the period-3 cycle (note that the notation f3(x) here means
Xni3 = f2(xn)). Any point p in a period-3 cycle repeats every three iterates, so such points
satisfy p = f3(p), and are therefore fixed points of the third-iterate map. Consider f3(x) for
T = 3.835:



0.8
0.6
Fx)

0.4

02 .

0 i 1 ! I
0 0.2 0.4 0.6 0.8 1

X

The black dots correspond to a stable period-3 cycle (can see by the slope) and the open dots
correspond to an unstable 3-cycle (the slope exceeds 1).

If we decrease 1 the graph changes shape and the marked intersections have vanished (see the
figure for r = 3.8):
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At some critical T the graph f3(x) must have become tangent to the diagonal (the stable and
unstable period-3 cycle coalesce and annihilate in a tangent bifurcation).



