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C0903 Complexity and Chaos in Dynamical Systems

Bifurcations

The qualitative structure of a flow can change as a parameter is varied. These qualitative changes
are called bifurcations and the parameter values at which they occur are called bifurcation points.
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Example 1.
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Fixed point at z = 1. Let u = x — 1, then
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Rescale (v = (r/2)u):
O = (r+1)v —v?

By a near identity change of co-ords we have found the normal form for the dynamics (valid close
to the bifurcation point).

Pitchfork bifurcation: supercritical
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Shows critical slowing down at p = 0:
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For large t, x ~ t~1/2: power law decay rather than exponential e/
Pitchfork bifurcation: subcritical
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Example 2.
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Fixed points
—(p+2)+2*=0 and =0
roots:
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If u > 0 then 2? = (1 + /1 +4u)/2: total of three fixed points. If —1/4 < p < 0, 22
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(1++/1+4u)/2: total of five fixed points. Define pu. = —1/4.
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1. In range p. < p < 0 there co-exist 3 stable fixed points (and 2 unstable). There is
multi-stability. (Local not global stability). Initial conditions determine the final state.

2. Bifurcation at p. is a saddle-node bifurcation.
3. System exhibits hysteresis and jump phenomenon.
4. If 2° term was absent then blow up could occur.
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Cusp singularity
The pitchfork bifurcation is common in problems with reflection symmetry. Imperfections break
this symmetry.
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Co-dimension 2 rather than co-dimension 1.

pw<0

Critical case: horizontal line is tangent to min or max of f(x) = ux — 2. Local max/min at

T = j:\/,u_/&
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At h = +h.(u) there is a saddle-node bifurcation. There are two bifurcation curves +h.(u).
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Jump phenomenon and catastrophe theory.
Example 3. Budworm population dynamics:
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The budworm population N(t) grows logistically (first term) in the absence of predators. The
second term describes mortality due to predation (mainly by birds).

Non-dimensionalise: = = N/A.
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so f/(0) =r >0, so T = 0 is unstable. Other roots may be found graphically by finding the
intercepts of z/(1 + 2?) and (1 — x/k):




Hence there can be either 1, 2 or 3 interceptions depending upon the choice of (k, ). For example
when there are three fixed points ¢ > b > a > 0, then since x = 0 is unstable a is stable, b
unstable and c stable. We compute the details of the bifurcation in the following manner:

Saddle-node occurs when (1 —z/k) intersects x/(1+ x?) tangentially. Thus we require T (given

by f(Z) =0 and ; ;
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Substitution of r/k into the fixed point equation gives
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Substitution into (1)) gives
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Since k > 0, we require x > 1. The bifurcation curve is defined by (k(Z),r(Z)) Challenge: plot
the bifurcation curve (r = 7(k)). In MATLAB you could try

ezplot3(’2*x."3./(x.72-1)",72%x.73./(1+x.72)"2’,°0°,[1,15]) ;view(0,90);
In MATHEMATICA you could try

ParametricPlot[{2 x x x /(x x -1), 2 x x x/(1+x x)~2},{x,1,403}]
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Flows on the circle

Basic model of an oscillator: _

0= f0), 0elo2m)
where f(0) = f(0 + 27).
Uniform oscillator _

0=uw, 0 =0y + wt
Period T' = 27 /w.
Non-uniform oscillator .

0 =w—asind

Consider here w > 0, a > 0 (similar results for negative w and a).

a < w: Nonuniform flow which is fastest at # = —7n/2 and slowest at 7/2. When a is only
slightly less than w the system takes a long time to pass through the bottleneck at § = 7 /2 after
which it quickly traverses the rest of the circle.

a > w: There exists a stable-unstable pair of fixed points at sin"![w/a] born via a saddle-node
bifurcation. Oscillations do not exist.
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[Hint: use the substitution u = tan6/2].

Period:




Close to a = w
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so that we have a square root scaling law.
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