
Complexity Science Doctoral Training Centre

CO903 Complexity and Chaos in Dynamical Systems

Routes to chaos

If a nonlinear system has chaotic dynamics then it is natural to ask how this complexity develops

as parameters vary. For example, in the logistic map

xn+1 = rxn(1− xn)

it is easy to show that if r = 1/2 then there is a fixed point at x = 0 which attracts all solutions

with initial values x0 between 0 and 1, while if r = 4 the system is chaotic. How, then, does the

transition to chaos occur as the parameter r varies? The identification and description of routes

to chaos has had important consequences for the interpretation of experimental and numerical

observations of nonlinear systems. If an experimental system appears chaotic then it can be very

difficult to determine whether the experimental data comes from a truly chaotic system, or if the

results of the experiment are unreliable because there is too much external noise.

Period doubling

The period doubling route to chaos is found, for example, in the logistic map:

xn+1 = fr(xn) ≡ rxn(1− xn)
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For small r, the attractor is always periodic and has period 2
n
, with n increasing as r increases.

Beyond some critical value r = rc, with rc ≈ 3.569946, the attractor may be more complicated.

This period-doubling cascade can be observed in many maps. In the logistic map if this bifurcation

occurs with r = rn then rn → rc geometrically as n → ∞, with

lim
n→∞

rn − rn−1

rn+1 − rn
= δ ≈ 4.66920.

Interestingly, for unimodal maps (smooth, concave down with single maxima, e.g. the logistic

map, the sine map r sin(πx),...) this convergence rate is universal (although the constant rc
depends on the map).
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Intermittency

By intermittency we mean the occurrence of a signal which alternates randomly between long

regular (laminar) phases (intermissions) and relatively short irregular bursts. A mechanism for

this behaviour was first proposed by Pomeau and Manneville in 1979 (they observed such type

of behaviour by solving numerically the Lorenz model).
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Fractals and fractal dimensions

A fractal is a complex geometric object with fine structure at arbitrarily small scales, perhaps

with some degree of self-similarity.

Fractals in nature

Consider the example of the Cantor set:

Start with the closed interval S0 = [0, 1] and remove the (middle-third) interval (1/2, 1/3). This
leaves a pair of closed intervals, which we call S1. Repeated middle thirds removals gives rise to

the Cantor set C = S∞.

1. C has structure at arbitrarily small scales.

2. C is self-similar (eg. the left half of S2 is a scaled version of S1).

3. C has noninteger dimension (ln 2/ ln 3 ≈ 0.63).

Consider the Koch curve: Start with a line segment S0. To generate S1 delete the middle third

of S0 and replace it with the other two sides of an equilateral triangle. Iterate the process to

obtain the Koch curve K = S∞. (Figure on right is a Koch snowflake, everywhere continuous

and nowhere differentiable - it is all corners!).
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The length of the K is infinite. To see this note that L1 = 4/3L0 (because S1 contains four

segments each of length L0/3). The length increases by a factor 4/3 at each stage so that

Ln = (4/3)nL0 → ∞ as n → ∞. Hence, every point is infinitely far from every other. This

suggests that K is more than one-dimensional, possibly between 1 and 2. There are many

definitions of fractal dimension (similarity, box, Hausdorff, . . . ).

Similarity dimension (for self-similar fractals)

Suppose that a self-similar set is composed of m copies of itself scaled down by a factor of r.
Then the similarity dimension d is the exponent defined by m = rd, or equivalently,

d =
lnm

ln r

Box dimension

Let S be a subset of RD
and let N(�) be the minimum number of D-dimensional boxes of side

� needed to cover S.

dbox = lim
�→0

lnN(�)

ln(1/�)

For a smooth curve of length L, N(�) ∝ L/�, so dbox = 1 as expected. For a planar region of

area A bounded by a smooth curve, N(�) ∝ A/�2 and dbox = 2.

Example 1. Show that the box dimension of the Cantor set is ln 2/ ln 3 ≈ 0.63.

Each Sn consists of 2
n
intervals of length (1/3)n, so if we pick � = (1/3)n we need 2

n
of these

intervals to cover the Cantor set. Hence, N = 2
n
when � = (1/3)n. Since � → 0 as n → ∞ we

find

dbox = lim
�→0

lnN(�)

ln 1/�
=

ln 2
n

ln 3n
=

n ln 2

n ln 3
=

ln 2

ln 3

Example 2. Show that the box dimension of the Koch curve is ln 4/ ln 3 ≈ 1.26.

Each Sn consists of 4
n
pieces of length (1/3)nL0. Ignoring the scale set by L0 we have that

dbox = lim
�→0

lnN(�)

ln 1/�
=

ln 4
n

ln 3n
=

n ln 4

n ln 3
=

ln 4

ln 3

Correlation dimension

First we generate a set of very many points xi, i = 1, ..., n, on the attractor by letting the system

evolve for a long time. Then fix a point x on the attractor A and let Nx(�) denote the number of
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points on A inside a ball of radius � about x. Nx(�) measures how frequently a typical trajectory

visits an �-neighborhood of x. We vary � and the number of points typically grows as a power

law

Nx(�) ∝ �d.

We can average Nx(�) over many x
C(�) ∝ �d,

where d is called the correlation dimension.

For example, the correlation dimension of the Lorenz attractor (for the standard parameter value

r = 28, σ = 10, b = 8/3) can be found as dcorr = 2.05± 0.01.
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