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This session is devoted to the numerical continuation of limit cycles in systems of autonomous
ODEs depending on one parameter

ẋ = f(x, α), x ∈ R
n, α ∈ R,

and detection of their bifurcations. We will also switch to the continuation of the limit cycle at the
Hopf bifurcation and to the continuation of the doubled cycle at the period-doubling bifurcation.

1 Fold and Neimark-Sacker bifurcations of cycles in a chem-

ical model

Consider the following chemical model by Steinmetz and Larter:















Ȧ = −k1ABX − k3ABY + k7 − k
−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y.

(1)

We will fix all parameters but k7 and study periodic solutions (limit cycles) of (1) when this
parameter varies.

1.1 System specification

Specify a new ODE system – say StLar – in matcont

A’=-k1*A*B*X-k3*A*B*Y+k7-km7*A

B’=-k1*A*B*X-k3*A*B*Y+k8

X’=k1*A*B*X-2*k2*X^2+2*k3*A*B*Y-k4*X+k6

Y’=-k3*A*B*Y+2*k2*X^2-k5*Y

where (A,B,X,Y) are the coordinates and (k1,k2,k3,k4,k5,k6,k7,km7,k8) are the parameters.
Use (default) t for time and generate symbolically partial derivatives of order 1,2, and 3.

1.2 Fold bifurcation of limit cycles

1.2.1 Continuation of an equilibrium

To begin with, continue an equilibrium of (1) and detect its Hopf bifurcation, from which the
continuation of a limit cycle can be started.

Input Type|Initial point|Equilibrium in the main MatCont window.
Input the following numerical data in the appearing Starter window:

A 31.78997

B 1.45468

X 0.01524586

Y 0.1776113

k1 0.1631021

k2 1250

k3 0.046875

k4 20

k5 1.104

k6 0.001

k7 4.235322

km7 0.1175

k8 0.5
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These values correspond to an unstable equilibrium (A,B,X, Y ) in the system. Activate the
parameter k7.

Open Window|Numeric and change its appearance via the Window|Layout command.
Namely, select EIGENVALUES to be shown in the window.

Use Window|Graphic|2Dplot to open the corresponding window and select the coordinates
(A,B) as abscissa and ordinate, respectively, with the visibility limits

Abscissa: 32 38

Ordinate: 0 4

respectively.
Start Compute|Forward. The equilibrium curve will be continued and you get a Hopf bifur-

cation point labeled by H. The message in MATLAB Command Window

label = H , x = ( 34.808899 1.328517 0.015246 0.177611 4.590046 )

First Lyapunov coefficient = 1.527549e-02

at k7 = 4.590046 . . . indicates a subcritical Hopf bifurcation. Indeed, there are two eigenvalues
of the equilibrium with Re λ1,2 ≈ 0 at this parameter value visible in the Numeric window.
The critical frequency Im λ1 6= 0, while the first Lyapunov coefficient is positive. Thus, there
should exist an unstable limit cycle, bifurcating from the equilibrium. Resume computations and
terminate them when the curve leaves the graphic window.

Rename the computed curve via Select|Curve and Actions|Rename into

Equilibrium(+)

1.2.2 Cycle continuation

Click Select|Initial point and select H: Hopf point in the Equilibrium(+) curve as initial. The
Starter and Continuer windows for the continuation of the limit cycle from the Hopf point will
appear.

Select yes in all Monitor Singularities fields of the Starter window. Increase the MaxStep-
size to 1.0 in the Continuer window to allow larger steps along the curve and set MaxNumPoints
to 50. The Starter and Continuer windows should look like in Figure 1.

Change the layout of theNumeric window viaWindow|Layout by selecting all MULTIPLIERS
to be shown. The absolute values (modulae) and arguments in angular grads will be displayed.

Compute|Forward will produce a family of cycles with a cycle limit point labeled by LPC at
k7 = 4.74838 . . .. The Numeric window corresponding to LPC is shown in Figure 2.

In the MATLAB Command Window, the following message appears:

Limit point cycle (period = 1.036108e+01, parameter = 4.748384e+00)

Normal form coefficient = -2.714838e-01

The critical cycle has (approximately) a double multiplier µ = 1 and the normal form coefficient
is nonzero. Thus, the limit cycle manifold has a fold here. Resume the computations. The
continuation algorithm will automatically follow the second (stable) cycle branch after the LPC

point. Verify this by looking at the nontrivial multipliers in the Numeric window (|µ| < 1 for all
such multipliers). The computations produce Figure 3.

To visualize LPC in another way, open another 2Dplot window and select parameter k7 and
Period of the cycle as abscissa and ordinate, respectively. Use the visibility limits

Abscissa: 4.5 4.8

Ordinate: 7 12

You will get a curve with a limit point, clearly indicating the presence of two limit cycles with
different periods for k7 < 4.74838 near LPC (see Figure 4). Close both 2Dplot windows.
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Figure 1: The Starter and Continuer windows for the cycle continuation.
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Figure 2: The Numeric window at the LPC-point.
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Figure 3: The family of limit cycles bifurcating from the Hopf point H: LPC is a fold bifurcation of
the cycle.
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Figure 4: Period of the cycle versus k7.

7



1.3 Neimark-Sacker bifurcation

1.3.1 Backward continuation of the equilibrium

Select the first computed equilibrium curve Equilibrium(+) in the dialog box appearing after the
Select|Curve command.

Open a new 2Dplot window but select now B and X as abscissa and ordinate, respectively,
with the visibility limits

Abscissa: 25 27

Ordinate: 0 0.03

Compute|Backward and Extend once until you get another Hopf bifurcation at k7 =
0.712475 . . . with the message

label = H , x = ( 1.808301 25.573303 0.015246 0.177611 0.712475 )

First Lyapunov coefficient = -2.371880e-02

in the MATLAB Command Window. The first Lyapunov coefficient is negative now. This means
that a stable limit cycle bifurcates from the equilibrium, when it looses stability. Resume compu-
tations and terminate them when the equilibrium curve leaves the graphic window. Rename the
computed curve into Equilibrium(-).

1.3.2 Cycle continuation

Select the Hopf point in the curve Equilibrium(-) as initial. matcont will prepare to continue a
limit cycle curve from the Hopf point (curve type H LC). Select yes in all Monitor Singularities

fields of the Starter window. Activate k7 and the Period in the Starter window. Set

MaxStepsize 1

MaxNumPoints 25

in the Continuer window. Notice that in the Numeric window the eigenvalues were replaced by
multipliers of the cycle.

Click Compute|Forward to start the continuation of the limit cycle. At k7 = 0.716434 . . .
the message Neimark-Sacker indicates a torus bifurcation. In the MATLAB Command Window,
the following message appears:

Neimark-Sacker (period = 1.091213e+01, parameter = 7.164336e-01)

Normal form coefficient = -4.912065e-08.

Indeed, there are two complex multipliers with (approximately) |µ| = 1. This can be seen in the
Numeric window that stays open, see Figure 5. The normal form coefficient is small but nonzero,
indicating that a stable two-dimensional invariant torus bifurcates from the limit cycle.

Resume computations further to see that after the NS-point the cycle becomes unstable (with
two multipliers satisfying |µ| > 1. You should get get a family of limit cycles bifurcating from the
Hopf point as in Figure 6.

Close the Numeric window.

1.3.3 Dynamics on a stable torus

Click Select|Initial point... and select the NS: Neimark-Sacker point in the computed limit
cycle curve. The critical parameter values will be read in from the archive. Immediately after
that select Type|Initial point|Point. A point on the critical cycle is automatically selected as
initial for orbit integration.

Increase slightly the value of the parameter k7 and perturb the initial point, namely set:

k7 0.7165

B 26.2
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Figure 5: The Numeric window at the NS-point.
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Figure 6: Family of limit cycles bifurcating from the second Hopf point
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(the set value of B should be very close to the one obtained from loading the NS point). Change
Method of integration to ode23s and alter

Interval 1000

Rel.Toletance 1e-6

Abs.Tolerance 1e-9

in the Integrator window.
To speed up visualization, click Options|Output and set Plot after 1000 points, see Figure

7

Figure 7: Output window.

Clear the graphic window and inputCompute|Forward followed byCompute|Extend. The
integration will take some time. After a transient, the orbit will exhibit modulated oscillations
with two frequencies near the limit cycle. This is a motion on a stable two-dimensional torus born
via the Neimark-Sacker bifurcation. See Figure 8. Open another 2Dplot window with t and B

24.5 25 25.5 26 26.5 27 27.5
0

0.005

0.01

0.015

0.02

0.025

0.03

B

X

Figure 8: Dynamics on a stable 2-torus

as abscissa and ordinate, with the visibility limits

Abscissa: 1000 2000

Ordinate: 26.0 26.5
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Figure 9: Modulated chemical oscillations

You will see the high-frequency oscillations with low-frequency modulation as in Figure 9.
Restore the original Plot after 1 point setting using Options|Plot menu of the main Mat-

Cont window.

2 Period-doubling bifurcation in an adaptive control model

Consider the following adaptive control system of Lur’e type







ẋ = y,

ẏ = z,

ż = −αz − βy − x+ x2.

(2)

We will fix α = 1 and continue limit cycles of (2) using β as a bifurcation parameter.

2.1 System specification

As usual, define a new system in matcont with the coordinates x,y,z, parameters alpha,beta,
and select derivatives of order 1, 2, and 3 to be generated symbolically.

2.2 Equilibrium continuation

Select Type|Initial point|Equilibrium. In the Starter window, set alpha equal to 1 and
activate beta.

Open a 3Dplot window and select beta,x and y as variables along the coordinate axes with
the visibility limits

Abscissa: -0.4 0.8

Ordinate: -1.0 0.3

Applicate: -0.2 0.8

respectively.
Compute|Forward results in an equilibrium curve with a Hopf bifurcation (labeled H) de-

tected with the following message in the MATLAB Command Window:

label = H , x = ( 0.000000 0.000000 0.000000 1.000000 )

First Lyapunov coefficient = -3.000000e-01

The Hopf bifurcation occurs at β = 1 and is supercritical, thus generates a stable limit cycle.
Resume the continuation and eventually stop it, when the curve leaves the plotting region.
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2.3 Cycle continuation starting from the H-point

Click Select|Initial point and choose H: Hopf point in the computed EP EP(1) curve. The
Starter and Continuer windows appear, corresponding to the limit cycle curve H LC.

In the Starter window, increase the number of mesh points ntst to 40 and select yes in
all Minotor Singularities fields. In the Continuer window, set MaxStepsize to 0.7 and
MaxNumPoints to 80.

With Window|Numeric, open a Numeric window and make the cycle MULTIPLIERS visible
using the Window|Layout command there.

Compute|Forward will produce a branch of limit cycles of increasing amplitude with two
period-doubling bifurcations (labeled PD). TheNumeric windows at both PD bifurcations are shown
in Figure 10.

Figure 10: The Numeric windows at both period-doubling bifurcations. The bifurcation param-
eter values are βPD,1 = 0.6273246 . . . and βPD,2 = 0.5417461.

Resume the computations at both PD points. The MATLAB Command Window will contain
the messages

Period Doubling (period = 8.386067e+00, parameter = 6.273246e-01)

Normal form coefficient = -3.405335e-03

Period Doubling (period = 9.864971e+00, parameter = 5.417461e-01)

Normal form coefficient = -7.655597e-04

indicating that in both cases the normal form coefficients are negative, so that stable double-period
cycles are involved.

You get a cycle manifold shown in Figure 11. The period of the cycle rapidly increases when
β approaches βhom = 0.515489 . . .. To see this, open a 2Dplot window (see Figure 12) with the
axes beta and Period and the plotting region

Abscissa: 0.51 0.53

Ordinate: 0.0 35.0

Actually, the limit cycle approaches a homoclinic orbit to the second equilibrium (x, , y, z) =
(1, 0, 0) of (2), which is a global bifurcation1. Below βhom no cycle exists. Near the homoclinic

1At β = βhom, this equilibrium is a saddle-focus with the saddle quantity σ < 0. Thus, acccording to Shilnikov’s

Theorem, from this homoclinic orbit bifurcates only one limit cycle - the one we computed.
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Figure 11: The cycle branch in (2) system rooted at the Hopf point. Two critical cycles undergoing
the period-doubling bifurcations are labeled by PD.
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Figure 12: The cycle period near the homoclinic bifurcation.
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bifurcation, the computation of the cycle and its multipliers becomes inaccurate. The loss of
accuracy can be seen in the Numeric window, where no multiplier close to 1 is present at the
last computed point.

Close the 2Dplot window.

Figure 13: Starter window to initialize the continuation of the doubled cycle from the PD-point.
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Figure 14: The branch of stable doubled cycles connects two PD points.
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2.4 Continuation of the double cycle from the PD-point

Using Select|Initial point, take the first PD: Period Doubling point in the computed above
curve as initial.

Adjust the 3Dplot window by setting the visibility limits for beta as following:

Abscissa: 0.5 0.6

In the Starter window, set the number of mesh points ntst to 80, increase the amplitude to
0.005, and select yes in all Monitor Singularities fields as shown in Figure 13. Also, increase
MaxTestIters to 20 in the Continuer window.

Click Compute|Forward and continue the doubled cycle bifurcating from the first PD-point
at β = βPD,1, see Figure 14. This cycle remains stable until at (approximately) β = βPD,2 a
branching point cycle (BPC) is detected. This is not surprising, since the PD-bifurcation for the
original limit cycles corresponds to a branching point for the branch of the doubled cycles.

Stop the computations and exit matcont.

3 Additional Problems

A. Study numerically limit cycles in the system






ẋ = µx− y − xz,

ẏ = x+ µy,

ż = −z + y2 + x2z,

that is another model of a feedback control system.

B. Consider the following predator-prey model











ẋ = x−
xy

1 + αx
,

ẏ = −y +
xy

1 + αx
− δy2.

1. Prove that the following polynomial system

{

ẋ = x(1 + αx)− xy,

ẏ = −(y + δy2)(1 + αx) + xy,
(3)

has the same orbits in the positive quadrant as the original model. Derive an explicit
condition on (α, δ) for system (3) to have a positive equilibrium with one zero eigenvalue.
Derive a similar condition for (3) to have a positive equilibrium with a pair of purely
imaginary eigenvalues.

2. Introduce new variables
{

ξ = lnx,
η = ln y,

in which the original system becomes:















ξ̇ = 1−
exp(η)

1 + α exp(ξ)
,

η̇ = −1 +
exp(ξ)

1 + α exp(ξ)
− δ exp(η).

(4)

Fix α = 0.3 and study numerically limit cycles of (4), when the parameter δ varies.
Hint: Begin with finding an equilibrium at δ = 0.35 by integration.

3. Relate your analytical and numerical results.
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C. Consider the following predator-double prey system:







ẋ = x(2.4− x− 6y − 4z),
ẏ = y(β − x− y − 10z),
ż = −z(1− 0.25x− 4y + z),

modelling dynamics of two prey populations affected by a predator.

1. Starting from β = 1.77, find its positive equilibrium by orbit integration.

2. Continue the equilibrium with respect to β until it exhibits a Hopf bifurcation.

3. Continue a limit cycle from the Hopf point and monitor the dependence of its period
upon β. Hint: Use rather big ntst.

4. Plot the cycle at different period values and try to understand its asymptotic shape.
Hint: Compute and analyze system’s equilibria located in the coordinate planes.

D. Consider the famous Lorenz system







ẋ = σ(−x+ y),
ẏ = rx− y − xz,

ż = −bz + xy,

with the standard parameter values σ = 10, b = 8

3
, and r > 0. Use matcont to analyse its

simplest limit cycles numerically.

1. Compute a critical parameter value rBP, at which the trivial equilibrium (0, 0, 0) under-
goes a symmetric pitchfork bifurcation.

2. Compute a critical parameter value rH, corresponding to Hopf bifurcation of nontrivial
equilibria.

3. Continue the limit cycle born at the Hopf bifurcation with respect to r and find out
what happens to it. Plot the cycle period as function of r.

4. Demonstrate by numerical integration that for r = 400 the system has a stable symmet-
ric limit cycle and determine its period approximately. Continue this cycle with respect
to r and find the critical parameter value rBPC corresponding to a branch point of cycles

(symmetry breaking). Hint: Use Select cycle button in the P O Starter window.

Derive explicit formulas for rBP and rH as functions of (σ, b) and verify the numerical values
obtained with matcont.
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