Complexity Science Doctoral Training Centre
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1.2 Second (and higher) order systems
We shall consider equations of the form

i = f(r), x€R (x € R™)

Harmonic oscillator

According to classical theory a simple harmonic oscillator is a particle of mass m moving under
the action of a force F' = —kx (Hooke's law). Newton's laws of motion take the form

|k
mi = —kx or 7+ wl = 0, where w = 4/ —
m

The general solution to this differential equation is of the form
x(t) = Acoswt + Bsinwt

which represents an oscillatory motion of angular frequency w. The constants of integration A
and B are determined by the initial conditions for x and z, where

#(t) = —Awsinwt + Bw cos wt

so that 2(0) = A and #(0) = Bw. An easy way to imagine the geometry of simple harmonic
motion is to write the equations of motion as a second-order (linear!) system. Introduce v = &,
then

T =
U= —w’x
There is a fixed point at (z,v) = (0,0). Combining the above we have

dv @

de T w
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After integrating this separable ODE we have
v? + w?2® = constant

as before (trajectories in phase space are elliptical).
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Reminder - matrix and vector manipulation

The matrix A multiplying the vector @ acts as a linear operator that produces a new vector z:
a; a x a1171 + a1
= Ag — 11 a2 1\ 1121 + Q1272 .
a1 a2 T2 (2171 + (22T

Identity matrix
10
(1)

e Addition
ai1 + b1 ap + b2 1+
A+B= ) r+y=
( az1 +bo1 agn + b ) Y ( T2+ Y2
e Multiplication
cA = ( cdn ) , ¢ = constant
Cap1 Cano
e Differentiation

dwfse= Gl )

The trace and determinant of the matrix A

tr(A) = a11+ a»

det(A) = aqiaxn —axnan

Singularity: the matrix A is singular if det(A) =0

Example 1. Consider the system

) a 0
T = Az, A—(O _1>.



Matrix multiplication yields

T = az,
y=-y.
Since these two equations are uncoupled they can be solved separately
z(t) = zoe™,
y(t) = yoe .

e Stable nodes: i) a < —landii) —1<a<0

y a < —1 —-1<a<0

e Star: ¢ = —1

e Saddle point: a >0
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The y-axis is called the stable manifold of the saddle point z*: the set of initial conditions
xg such that z(t) — z* as t — oo. The z-axis is called the unstable manifold of the saddle
point z*: the set of initial conditions xg such that z(t) — z* as t - —oc0.

e Line of fixed points: ¢ =0

1.3 Linear systems in R?

T1 = axy + bxy

Ty = cx1 + dxo

Introducing the vector z = (1, 72)7 we have

. a b
T = Ax, A_[C d]

Try a solution of the form

r=e"v
This leads to the linear homogeneous equation
Av = \v.

v is an eigenvector of A with corresponding eigenvalue \. For the system above to have a
non-trivial solution we require that

det(A — M) =0

which is called the characteristic equation. Here I is the 2 x 2 identity matrix. Substituting the
components of A into the characteristic equation gives

N — (a+d)X\+ (ad — be) = 0

or
N —TrAN+detA=0

so that

A = % [TrAi (T A2 — 4detA]

The general solution for x(t):
z(t) = cie’toy + ey,



Exercise. Solve the initial value problem

T=x+y, y=4r — 2y, (20, 90) = (2,-3)

If A\12 are complex ( A12 = a &£ iw), the fixed point is either a centre or a spiral. Since xz(t)
involves linear combinations of e, z(t) is a combination of terms involving e cos(wt) and
e“*sin(wt) (by Euler's formula e“* = cos(wt) + i sin(wt)).

e If & < 0 = stable focus (or stable spiral)
e If & > 0 = unstable focus (or unstable spiral)

e If &« =0 = a centre (periodic solution with period 7' = 27 /w), marginally stable.

Classification of fixed points

We classify the different types of behaviour according to the values of Tr A and det A.
e ). arereal if (Tr A)? > 4det A.

e Real eigenvalues have the same sign if det A > 0 and are positive if Tr A > 0 (negative if
Tr A < 0) — stable and unstable nodes.

e Real eigenvalues have opposite signs if det A < 0 — saddle node.

e Eigenvalues are complex if (Tr A)? < 4det A — focus.

det A

unstable
focus

stable
focus

unstable node
stable node

TrA

saddle saddle

1.4 Linear systems in R”

Consider the (autonomous) differential equation

d—xE':Aw, reR"
dt



where A is an n X n constant matrix. Given the initial condition x(0) = xg, the solution is
x(t) = emy, =) —A* (1)

Check this: use

ietA — i tkil Ak — AetA
dt (k—1)!
k=1
Thus () d
x
Tl aemxo = Ae'tag = Ax(t)
The solution also allows one to solve inhomogeneous equation
T = Ax + g(t)
Multiplying both sides by e7*4 gives
d . _ _
& le ()] = e (1)

Integrating wrt. ¢ then gives

or

Normal forms

After classifying the fixed points (node, saddle or focus) can we determine what the flow looks
like?
Consider linear change of variables © = Py, where P is an n x n invertible matrix (det P # 0).
Then if z = Ax

=P =P 'Ax =P APy

Choosing P such that A = P7YAP is a diagonal matrix we have that
y=~Ny
If 2(0) = 2o then y(0) = P~ 1a.
In the new coordinates solution is
y(t) = e"yo
Transforming back to original coordinates
z(t) = Py(t) = Peyy = Pe' Pz,

Comparing equations ({1]) and implies that

et = pe'"p! (2)
Strategy: choose matrix P such that A takes a form which allows us to calculate e and hence

et4. The matrix A is then called a Normal Form whose particular structure depends on the
eigenvalues of A.



Real distinct eigenvalues
Suppose that A has n distinct eigenvalues \q, ..., A\, with corresponding eigenvectors ¢; so that
Aei = )\iei

Let P = [ey, ..., €,] be the matrix with the eigenvectors of A as columns. Since the eigenvectors
are real and linearly-independent, det P # 0. Thus

AP = [A@l, ceey Aen] = [)\161, ey Anen] = [617 ceey en]diag()\l, ey )\n) = Pdlag()\l, ey /\n)
Hence for real, distinct eigenvalues A = diag(\g, ..., \,,). It follows that

et = Pdiag(eM!, ..., eMt) P!

0 2
Characteristic equation det(A — A5) = 0= (A +2)(A —2) = 0.

Example 2. A = ( 21 )

and

Pair of complex eigenvalues

Consider a 2 x 2 matrix with a pair of complex eigenvalues p & iw. The associated complex
eigenvector is ¢ such that
Aq=(p+iw)g, qe¢eC?

Let ¢ = u + iv where u,v € R? and equate real and imaginary parts:

Au = pu — wv

Av = wu + pv
or

_ p —w

A =fd (£ 7F)
Hence, set
_ _ _ P —Ww
Pl = Ima) Retl, A= (4 )

to see that

AP =PA, orA=PlAP

Having obtained the normal form, we need to solve the equation

T=pr—wy, Yy=wr+py, zyeR



Let 2 =2 +7y. Then
=341y = (p+iw)z (3)
Introduce polar coordinates z = re' (x = rcosf,y = rsinf). Then an equivalent form for % is
5 =re 4 irfe” (4)
Comparing equations ({3]) and (4 we deduce that
P4 irf = (p + iw)r

which, on equating real and imaginary parts yields

Hence, we obtain the solution
T’(t) :eptro, H(t) :wt+€0

After writing z(t) = r(t) cos(wt + 6p) and y(t) = r(t)sin(wt + 0) with o = rocosfy and
Yo = 7o sin by, it follows that

z(t) | oot [ COSWE = sinwt Zo
y(t) | sinwt  coswt Yo
Stability dependent upon Re(p + iw) = p.

2 1
Example 3. A = ( 9 0 )

Characteristic equation det(A — A\) =0= (A —2)A+2=0.

A=1+4, q=<_11+i>v lm(Q):(Sl))’ Re(Q):(—ll)
Pe(25) (1)

A ¢ cost —sint 1 . [ cost+sint sint
© ( sint  cost ) © ( —2sint  cost —sint

Degenerate eigenvalues

and

Suppose that A has p distinct eigenvalues Aq, ..., \,, p < n. Then
p
det(A — \I,) H (A= A)"

where n, > 1 and > 7_, ny = n. If all the eigenvectors are distinct then p = n and n; = 1 for
all k. If p < n then at least one n; > 1 and the characteristic polynomial has repeated roots.
Number n;, called the multiplicity of Ag.

Consider 2-D case. Recall Cayley-Hamilton theorem: the matrix A satisfies its own characteristic
equation. Therefore, (A — A\I,)?x = 0 for all z € R?. There are then two possibilities:

1. (A—)\I2)x:OforallxeR2:>/\:(6\ ?\)
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2. (A— AlL)ep # 0 for some vector e; # 0. Define e; = (A — Alp)ea. Then (A— Ap)e; =0
so that

Ael = )\61, A@z =e1+ X\ep = A[@l,eg] = [61,62] ( Al )

0 A
Al
P:[el,ez], A= ( 0 )\)

Solution of normal form equation (solve as an inhomogeneous system)

Hence, we may set

r=Ar+y, y=Ay

z(t) = eM(mo + two),  y(t) = eMyo

Phase portrait. That is determine direction of trajectories at various points in phase-space to
build up phase-portrait. Here

d_
de Az +y
2 j
1t iso0 V70
0 1
1t : : y
<0 1 §<0
2 s s s - s s )
2 1 0 1 2 2)3=1
Solving linear systems
e Real eigenvalue ) = CeM
e Real eigenvalue \ of multiplicity = CreM 4 CoteM + -« + Cot7teM
e Pair of complex eigenvalues A = p + iw = e’ (B coswt + C'sinwt)
e Pair of complex eigenvalues A = p + iw, each with multiplicity r =

e’'( By coswt + Oy sinwt + Byt coswt + Cot sinwt + - - - + B, "t coswt + C,t" " sin wt)
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