
Lecture notes: Statistical Mechanics of Complex Systems Lecture 13
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Figure 2: The Gibbs free energy of a droplet as a function of its radius.

Abrupt phase transitions

Phase transitions can be grouped into to classes:abrupt phase transitions, where the order parameter has
a discontinuity, andcontinuous phase transitions, where the order parameter has a singularity but still
continuous.

Abrupt phase transitions are sometimes called first order, and the continuous one as second order. This
terminoligy originates from Ehrenfest’s classification, which considered the lowest derivative of the free
energy that is discontinuous at the transition. Ehrenfest’s approach is no longer used, as it turned out that
different higher order phase transitions are not fundamentally different, some even do not fit in (eg. divergent
derivatives).

First let us consider abrupt phase transition, and our example will be water held at fixedT andp. As
illustrated on Fig. 1, if we change the parameters (T andp) on a path which crosses a phase coexistance
curve, a sudden jump in properties occur, which can be captured by the order parameter, the densityρ.

What underlies of an abrupt phase transition is that in the parameter space one crosses from a domain A
where the free energy of phase A is lower to domain B where thatof phase B is lower.

When the coexistance curve (of equal free energies) is crossed, the system does not necessarily recognise
immediately that some other state would be lower in free energy: this happens via fluctuations. Suppose
that by fluctuations a small sphere of radiusR of the lower free energy phase is formed. To fix notation let
us consider cooling down a gas to form liquid at fixed pressure. Then the Gibbs free energy of the small
liquid droplet is

Gdroplet(R) = c1R
2
− c2R

3∆T ,

see Fig. 2. The first term corresponds to surface tension: it costs free energy to create an interface between
the two phases. This is positive and quadratic inR, dominating the expression for smallR. The origin of
the second term is the difference between the bulk free energies: this is proportional to the volume of the
droplet (∼ R3). The prefactor is proportional to∆T (the difference between the coexistance temperature
and the actual temperature), as the bulk free energies are smooth functions of the temporature, therefore
their difference can be approximated to be linear in∆T . This term is negative, and dominates at largeR.

The free energy of a large droplet is negative, therefore this is the thermodynamically stable state.
However, the system needs to
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