Functions of many variables, partial derivatives

Suppose f is a function of two variables, x and $y: f(x, y)$. Its differential, $d f$ can be written as

$$
\begin{equation*}
d f=\left.\frac{\partial f}{\partial x}\right|_{y} d x+\left.\frac{\partial f}{\partial y}\right|_{x} d y \tag{1}
\end{equation*}
$$

Now we change variables: instead of x, y we will use u, v. The old variables are expressed in the new variables: $x=x(u, v)$ and $y=y(u, v)$, and through this $f=f(x(u, v), y(u, v))=\hat{f}(u, v)$, where the second equation sign can be thought of the definition of \hat{f}. We often simply write $f(u, v)$, with the understanding that $f(x, y)$ and $f(u, v)$ are really two different functions (eg. they don't depend the same way on ther first argument), not the same function evaluated with different arguments.

We can now evaluate quantities like $\left.\frac{\partial f}{\partial u}\right|_{v}$. Depending taste, we can either use the differential form (1) above to get

$$
\left.\frac{\partial f}{\partial u}\right|_{v}=\left.\left.\frac{\partial f}{\partial x}\right|_{y} \frac{\partial x}{\partial u}\right|_{v}+\left.\left.\frac{\partial f}{\partial y}\right|_{x} \frac{\partial y}{\partial u}\right|_{v}
$$

(noting that the prefactors $\left.\frac{\partial f}{\partial x}\right|_{y}$ and $\left.\frac{\partial f}{\partial y}\right|_{x}$ remain there). Or alternatively, apply the $\left.\frac{\partial}{\partial u}\right|_{v}$ operator on $f(x, y)$, and use the chain rule:

$$
\left.\frac{\partial f}{\partial u}\right|_{v}=\left.\frac{\partial f(x(u, v), y(u, v))}{\partial u}\right|_{v}=\left.\left.\frac{\partial f}{\partial x}\right|_{y} \frac{\partial x}{\partial u}\right|_{v}+\left.\left.\frac{\partial f}{\partial y}\right|_{x} \frac{\partial y}{\partial u}\right|_{v}
$$

For many variables, like $f\left(x_{1}, \ldots, x_{n}\right)$ this becomes

$$
\left.\frac{\partial f}{\partial u_{k}}\right|_{\{u\}}=\left.\left.\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right|_{\{x\}} \frac{\partial x_{i}}{\partial u_{k}}\right|_{\{u\}}
$$

where the notation $\left.\frac{\partial f}{\partial u_{k}}\right|_{\{u\}}$ means keeping all $u_{k^{\prime}}$ fixed except u_{k}.
These general results are used throughout the MaxEnt derivations. It is fairly straightforward, but can become a bit cumbersome, as well as somewhat tricky at the grand canonical calculations where we keep changing between β, μ and $\beta,-\mu \beta$. When a product is kept fixed, one can make the calculations more straightforward to introduce a symbol for it. For example:

$$
\left.\frac{\partial \mu}{\partial \beta}\right|_{-\mu \beta}=\left.\frac{\partial \frac{C}{\beta}}{\partial \beta}\right|_{C}=-\frac{C}{\beta^{2}}=-\frac{\mu}{\beta}
$$

where $C=\mu \beta$, and keeping $\mu \beta$ or $-\mu \beta$ fixed is the same.

