
Lecture notes: Statistical Mechanics of Complex Systems Lecture 10

Fluctuations and thermodynamics

In the previous section we calculated the energy and particle number fluctuations in the canonical and grand
canonical ensembles. Considering how therelativefluctuations depend on the system size, we obtain
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In both cases the relative fluctuations decay as the− 1
2 power of the system size. In theN → ∞ limit,

calledthermodynamic limit, the fluctuating quantities (when rescaling with the systemsize) become definite,
not random. Thus we can replace〈E〉 with E etc. This is why statistical mechanics is the microscopic
foundation of thermodynamics.

In many cases fluctuations are the aggregate effect of many independent contributions. To consider
this case more rigorously, supposeXi areiid (independent, identically distributed) random variables, with
〈Xi〉 = µ andVar(Xi) = σ2. Then theCentral limit theoremstates that
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HereN (0, 1) is the distribution of standard normal (Gaussian) random variables, ie. with zero mean and

unit variance. The notation
D→ means convergence in distribution:

lim
n→∞

P (Zn < z) = P (ζ < z)

whereζ is a standard normal random variable. Note that this is pointwise convergence of the cumulative
distribution fuction, which is weaker than the convergenceof the probibility density function.

The Central limit theorem is behind the fact that the normal distribution is so prevalent: for macroscopic
fluctuationns often the microscopic contributions are sufficiently independent. As we have seen before the
relative fluctuations of the sum decrease as1/
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A simple application is the one-dimensional random walk:Xi takes values±1 each with probility1/2.
The resulting trajectory,Sn = X1 + · · · + Xn is like a Gaussian variable with mean zero and standard
deviation

√
n, when sufficiently coarse grained to remove the discreteness.

Certain important cases fall outside the applicability of the Central limit theorem, like distributions
where the variance (or the mean as well) is undefined. One suchexample is the Cauchy (or Lorentz)
distribution, defined by the probability density function
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Surprisingly the average ofn iid Cauchy random variables has the same distribution as just one, which
means that if one deals with such quantities, taking averages is useless.

When generalising this phenomena one arrives at the concept of stable distributions: these are families
of distributions where the sum of such random variables is from the same family. More formally, let Fam(Θ)
represent a family of distributions whereΘ denotes all the parameters. SupposeX1 andX2 are from this
family. If their linear combination is also from this family:

X1 ∼ Fam(Θ1), X2 ∼ Fam(Θ2) ⇒ aX1 + bX2 ∼ Fam(Θ3) + c

16



Lecture notes: Statistical Mechanics of Complex Systems Lecture 10

then we call Fam a stable distribution.
We have seen that both the normal and the Cauchy are stable distributions. One more where the proba-

bility density function can be given in closed form is the Levy distribution:
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which can be generalised to the 4-parameter Levy-skew-α-stable family.
This distribution underpins theLevy flight, which is similar to a random walk, but the increments are

taken from a heavy tailed distribution,

f(x) ∼ 1/|x|α+1 , where0 < α < 2 .
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