
Lecture notes: Statistical Mechanics of Complex Systems Lecture 7-8

Physical examples for canonical ensembles (continued)

The simplest example is a one-dimensional box of lengthL. The potential can be taken as zero within the
box and infinity outside, giving
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where we used the Gaussian integral1 =
∫ ∞

−∞
exp(−x2/2σ2)/

√
2πσ2. The factors other thanL are

collected into a quantity of dimension lenght:λ = h/
√

2πmkBT , calledthermal de Broglie wavelength.
When it is small compared to characteristic length scales, inour caseλ ≪ L, the system can be considered
as classical; while ifλ ' L, proper quantum mechanics needs to be used. Interestingly,this does not
only involve size, but also mass and temperature. This is thereason why typically electrons are always
quantum mechanical, but full atoms can be consedered as classical (as is done in molecular dynamics
simulations). The exception is very light atoms at very low temperature, when inherently quantum effects
like superfluidity of helium can be observed.

The ideal gas is a model of gases where gas atoms or molecules are point particles which do not interact.
Since in the energy thex, y, andz components are decoupled, the coordinates of allN particles can be
consedered as independent, which using (16) and (17) leads to
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The 1/N ! comes from the fact that the particles are indistinguishable: states where eg. particle 1 has
position and momentumra,pa and particle 2 hasrb,pb is identical to the state where particle 1 ofrb,pb

and particle 2 ofra,pa; the factor corrects the double counting in the integrals. HavingZ, it is easy to show
that the average energy〈E〉 = (3/2)NkBT , the Helmholtz free energyA = NkBT (log(ρλ3) − 1), and
the entropyS = NkB(5/2 − log(ρλ3)), whereρ = N/V is the number density.

It is interesting to see that consideringV as a parameter of the system, we can apply (15) to obtain a
new relation. Plugging inα = V and∂f/∂α = ∂E/∂V = −p (the latter can be considered as a definition
of pressure):
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which using (18) gives
NkBT = 〈p〉V

This is calledequation of state, as it provides a relation between state variables like pressure, volume and
temperature.

Next we consider another fundamental system, theharmonic oscillator. One can think about it as a
point massm moving in one dimension, connected to a spring of stiffnessk, of which the other end is
kept fixed. If the positionx is measured from the equilibrium position (unstretched spring), then the force
acting on the the point mass is−kx, yielding Newton’s equationmd2x/dt2 = −kx. This has a solution
x = A sin(ωt + φ), where the amplitudeA and phaseφ are parameters set by the initial condition, and the
frequency isω =

√

k/m. The energy stored in the spring can be written askx2/2 = mω2x2/2, so the total
energy is
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Using the standard recipe we first calcualte the partition function:
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where we introduced~ = h/(2π). Then
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This last result is a realisation of the principle ofequipartition: each quadratic half-degree of freedom [like
x andp in (19)] contributeskBT/2 to the average energy, and consequentlykB/2 to the heat capacity.

We will now apply these results to calculate the heat capacity of solids. Far away from the the melting
temperature the many-body potential of the atoms in a crystal can be considered quadratic. Collecting all
3N coordinates of theN atoms into a vectorx = (x1, x2, . . . , x3N ), the potential is
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where the series expansion is truncated at the quadratic term. The equation of motion involves the3N ×3N
dynamical matrix∂2U/∂xi∂xj , which separates into3N independent one-dimensional harmonic oscil-
lators corresponding to the normal modes and eigenfrequencies. This leads toC = 3NkB , known as
Dulong-Petit law, which turns out to be correct at high temperatures.

At low temperatures quantum mechanical effects have to be taken into account, which we do simply
by replacing the classical harmonic oscillators with quantum harmonic oscillators. For our purposes the
quantum harmonic oscillator is a system with discrete energy levels: in theith stateEi = (i + 1

2 )~ω, where
i = 0, 1, . . . . Being a discrete system the partition function involves just a sum, which here is a geometric
sum:
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The average energy and heat capacity are
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At high temperature (smallβ) the argument ofsinh is small, which expands tosinhx ∼ x. This leads
to C → kB , which is the classical result.

At low temperature (largeβ) however, the argument ofsinh is large, expanding tosinhx ∼ 1
2ex.

This givesC ≈ kB
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kBT , resulting in exponential suppression at low temperatures. Naively

applying this result to crystals leads to theEinstein model of solids, which at low temperatures simply gives
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This is still incorrect, however, since all quantum harmonic oscillators are assumed to have the same
frequency. In theDebye model of solids the proper spectrum of frequencies is used, which indeed reproduces
experimental measurements at low temperatures as well. TheReader is referred to standard solid state
physics textbooks for details.

The grand canonical ensemble

We now allow the exchange of two conserved quantities with the external environment: to follow the phys-
ical example ofgrand canonical ensembles, these are the energy and the particle number. In the maximum
entropy formalism this corresponds to constraining the average energy and the average particle number. As
before the units of entropy iskB , and theith state has energyEi and particle numberNi. The Lagrange
multipliier conjugate to energy isβ = 1/(kBT ) as in the canonical ensemble. The other one, however, is
conventionally denoted by−µβ = − µ

kBT
.
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Accordingly the grand canonical partition function (denoted byΞ) and the probabilities of the states are
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while the entropy, now function of the average energy and average particle number, using (10) becomes
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The simple relations (8) and (11) become more complicated due to the fact that the physical variables,
especiallyµ, are not simply the Lagrange multipliers but functions of them:
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In the grand canonical ensemble not only the energy fluctuates, but also the particle number:
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The reciprocity relations also become more complicated, for example
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An important quantity is the grand free energy (we will see soon the relevance of the free energies),
which is defined as

Φ(T, µ) := −kBT ln Ξ = 〈E〉 − µ〈N〉 − TSGC

It is interesting to note that the partition function can be written as
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In this expression microscopic states with the same particle numberN are lumped together into a macro-
scopic state, and the sum of their Boltzmann factors is replaced by a single Boltzmann factor where the
role of the energy is played by an appropriate free energy. This manipulation is calledpartial trace, a
terminology borrowed from the quantum formalism of statistical mechanics.
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