The maximum entropy framework

The maximum entropy principle — an example

Suppose we have a random variablewith known states (values of the observations, .. ., x,) but
unknown probabilitie®;, . .., p,; plus some extra constrains, egy) is known. We are given the task to
attempt to have a good guess for the probabilities.

Example: X can take 1, 2 or 3 with unknown probabilities, afid) = = is known. What is the “best
guess” for the probabilities?

Need to find the maximum dff (p1, p2, p3) as a function op, p», p3, under two constraints:
(X) =1p1 +2p2 + 3p3 =, andp; + p2 +p3 = 1.
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the curly brackets need to be zero:
—log(p;)) —1—Xi—p=0, 1=1,2,3

which with the notatiorn\y = u + 1 gives

The constraint on the sum of probabilities:
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The other constraint,X) = z:
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Multiplying the equation with the denominator gives a setdagree equation far:
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Maximum entropy principle — general form

Suppose we have a random variabletaking (known) valuesey, ..., x, with unknown probabilities
p1,---,Pn- In addition, we haven constraint functiongy,(x) with 1 < k¥ < m < n, where
(fu(X)) = Fi
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the F;s are fixed. Then the maximum entropy principle assigns fifti@s in such a way that maximises
the information entropy of X under the above constraints.
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Since this is zero for anylp;, all n braces have to be zero:
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The sum of probabilities give
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Introducingpartition function:
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Ao =log Z(M\1,..., A\m) (4)

The other constraints are
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The value of the maximised information entropy:
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Now calculate the partial derivatives fw.r.t. the F,s, being careful about what is kept constant in the
partial derivatives
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