
The maximum entropy framework

The maximum entropy principle — an example

Suppose we have a random variableX with known states (values of the observations,x1, . . . , xn) but
unknown probabilitiesp1, . . . , pn; plus some extra constrains, eg.〈X〉 is known. We are given the task to
attempt to have a good guess for the probabilities.

Example:X can take 1, 2 or 3 with unknown probabilities, and〈X〉 = x is known. What is the “best
guess” for the probabilities?

Need to find the maximum ofH(p1, p2, p3) as a function ofp1, p2, p3, under two constraints:
〈X〉 = 1p1 + 2p2 + 3p3 = x, andp1 + p2 + p3 = 1.
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the curly brackets need to be zero:

− log(pi)− 1− λi− µ = 0 , i = 1, 2, 3

which with the notationλ0 = µ+ 1 gives

pi = e−λ0−λi .

The constraint on the sum of probabilities:
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The other constraint,〈X〉 = x:
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Multiplying the equation with the denominator gives a second degree equation fore−λ:
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3− x− p2

2
, p3 =

x− 1− p2

2

Maximum entropy principle — general form

Suppose we have a random variableX taking (known) valuesx1, . . . , xn with unknown probabilities
p1, . . . , pn. In addition, we havem constraint functionsfk(x) with 1 ≤ k ≤ m < n, where

〈fk(X)〉 = Fk ,

1



theFks are fixed. Then the maximum entropy principle assigns probabilities in such a way that maximises
the information entropy of X under the above constraints.
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Since this is zero for anydpi, all n braces have to be zero:
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The sum of probabilities give
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Introducingpartition function:
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With this notation
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The value of the maximised information entropy:

S(F1, . . . , Fm) = H(p1, . . . , pn
︸ ︷︷ ︸
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Now calculate the partial derivatives ofS w.r.t. theFks, being careful about what is kept constant in the
partial derivatives
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