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In this problem we are going to study an NP-complete problem: the subset sum

problem. This is a classic problem in computer science, and we are interested in its
connections to statistical mechanics of disordered systems.

The subset sum problem is the following: suppose we have N integers a1, a2, . . . aN ,
each in the range 1 ≤ aj ≤ 2M . The task is to tell whether there is a subset whose
sum is three seventh of the total sum.
The size of the problem is NM (this corresponds to the number of bits necessary to
describe an instance with parameters N and M). As this problem is NP-complete,
there is no known algorithm that can solve this problem in time polynomial in NM ;
but if we have a guess for the subset, it can be checked in polynomial time.

(a) First we start brute force: write a function that takes a list S of N (possibly
repeated) integers, does an exhaustive search over the 2N subsets S ′, and returns
the minimum value of
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We will call this cost ; if the cost is zero, S ′ is a three-seventh-sum subset. Test
your fuction on these examples:
S1 = [13, 38, 24, 16, 28],
S2 = [16, 28, 25, 28, 18, 16, 16],
S3 = [94, 21, 147, 132, 399, 48, 126, 279], and
S4 = [2482, 1114, 1388, 3058, 506, 2774, 208, 734].
Verify that S1 has a three-seventh-sum subset, and S2 has minimum cost 7.

(b) Write a function that generates N integers randomly chosen from {1, . . . , 2M}
(rejecting lists whose sum cannot be divided by 7 – these cannot have a three-
seventh-sum subset). Write another function that generates T trials of these lists,
calls the minimum-cost calculating routine you wrote in (a) for each trial, and
determines p, the fraction of the trials which have a three-seventh-sum subset.

Plot p against r := M/N for a few values of N (eg. 3, 5, 7, 9) and M (eg. all
integers M for which 0 < r < 2), using at least T = 100 trials each case. Do
you see signs of a phase transition for large systems, where the probability that
a three-seventh-sum subset exists changes from quite certain to quite unlikely?
At what value of r does the transition occur? (We will call this rc.)

(c) Now we look for analogies with statistical physical systems. We can look at the
problem as assigning s = +4 or −3 to each number, and asking whether
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is zero. Recall, we defined the cost as C =
∣

∣

∣

∑

j ajsj

∣

∣

∣
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glass system, we will call the signed sum E =
∑

j ajsj as “energy”. The energies

are distributed between [−3N2M , 4N2M ], but for most partitions there will be
cancellations and E will be closer to zero.
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First estimate the mean and variance of a single term ajsj in the sum, averaging
over different partitioning (changing sj) and over different number-partitioning

problems (changing aj over its range). Use the formula
∑K

1 k2 = K3/3+K2/2+
K/6, and keep only the most important term in M (M is large).

(d) Use the central limit theorem to calculate the ensemble-averaged probability
distribution P (E) for large N . Watch out for the fact that P (E) = 0 if E is not
dividable by 7, so the normalisation is multiplied by 7:
P (E) ≈ (7/

√
2πσ2) exp{−(E − E0)

2/2σ2}.

(e) If we assume that the energies are randomly selected from the distribution P (E)
(the “random-energy” approximation), what is the probability that the energy
of a given partition is zero? (N and M are large.) Show that

p = 1− (1− P (0))2
N

.

Recall that p was the probability that a three-seventh-sum subset exists. In
the random energy approximation we assume that the energies are uncorrelated.
Using the approximation (1− A/K)K ≈ exp(−A) for large K, show that

p ≈ 1− exp

[
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]

.

What is B and rc? Does rc you just calculated agree with the estimate in (b) ?

(f) At this point redo the simulations of part (b) with increasing the range of N
and/or T such that it would still take less than 10 minutes to run on the queue.
What N and T did you use? How long did it take?

(g) We can test whether the empirical values for p in (f) follow the formula you
derived in part (e). If we suitably rescale our coordinates, all curves for different
N ’s should fall on top of each other (“data collapse”). We will change variables
to x = N(r − rc) + (1/2) log2 N . What is p(x) from part (e)? Plot both this
function (the theory) and your numerical results in (f) against x. It might be
useful to connect data points of equal N and varying r. Do you get a good data
collapse?

If you did, than you can be more confident that there were no mistakes in the
calculations (in particular for the value of rc), and that the approximations we
used (random energy, large N) were good.

(Just for fun, not for credit: try plotting your numerical values (f) against x
with a wrong value of rc: no data collapse!)

Note: We will start working on part (a) and (b) in class in groups, so start with
(c) in what you hand in. These, however, including (f) should be individual work.
Please include the printout of your code as well. (Only you, and not your group
partners are responsible for mistakes in the final version of your code!)
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