
CO904: Problem set 1 – Solutions Gareth P. Alexander

question 1

(i) This is false.

The joint entropy is S(X ∩ Y ) = −
∑

x,y p(x ∩ y) ln p(x ∩ y). When the events are
independent the probabilities factor as a product of marginals, p(x ∩ y) = p(x)p(y). It
follows that the entropy is additive, S(X ∩ Y ) = S(X) + S(Y ).

(ii) This is false.

The conditional entropy is defined as S(X|Y ) =
∑

y p(y)S(X|y), where S(X|y) =
−
∑

x p(x|y) ln p(x|y). One may state that the conditional probabilities p(x|x) are evi-
dently unity. Otherwise, one might say that in general p(x|y) = p(x ∩ y)/p(y) and the
joint probabilities p(x ∩ x) are evidently equal to p(x). More generally p(x|x′) is 1 if
x = x′ and zero otherwise. It follows that S(X|X) = 0; there is no uncertainty in X if
you already know X.

(iii) This is true.

The mutual information is defined as I(X,Y ) = S(X) +S(Y )−S(X ∩Y ). On the basis
that p(x∩ x′) equals p(x) if x = x′ and zero otherwise, one finds S(X ∩X) = S(X) and
hence that I(X,Y ) = S(X). Knoweldge of X tells you everything about X.

(iv) This is false.

Let f be a constant function. Then S
(
f(X)

)
= 0 independently of S(X).
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question 2

We will refer to the following table of possible outcomes and values of the properties P
and Q.

outcome 1 2 3 4 5 6

P 0 1 1 0 1 0

Q 0 1 0 1 0 1

(i) From the table we see that the probability of the outcome being prime and the proba-
bility of it being non-prime are both 1

2 . It follows that the Shannon entropy is

S(P ) = −
∑
α

pα ln(pα) = −
[

1

2
ln

(
1

2

)
+

1

2
ln

(
1

2

)]
= ln(2).

Similarly, the probability of the outcome being even and the probability of it being odd
are both 1

2 and it follows that S(Q) = ln(2) as well.

(ii) There are four joint events; {P,Q} = {0, 0}, {0, 1}, {1, 0}, {1, 1}. Their probabilities are

p{0,0} =
1

6
, p{0,1} =

1

3
, p{1,0} =

1

3
, p{1,1} =

1

6
,

and it follows immediately that the joint entropy is

S(P,Q) =
1

6
ln(6) +

1

3
ln(3) +

1

3
ln(3) +

1

6
ln(6) = ln(3) +

1

3
ln(2).

(iii) The conditional probabilities are given by p(P |Q) = p(P ∩ Q)/p(Q) and p(Q|P ) =
p(P ∩Q)/p(P ). We quickly find that

p(P = 0|Q = 0) =
1

3
, p(P = 1|Q = 0) =

2

3
; p(P = 0|Q = 1) =

2

3
, p(P = 1|Q = 1) =

1

3
;

p(Q = 0|P = 0) =
1

3
, p(Q = 1|P = 0) =

2

3
; p(Q = 0|P = 1) =

2

3
, p(Q = 1|P = 1) =

1

3
.

We can then use these conditional probabilities in the expression for the Shannon entropy
and find

S(P |Q = 0) = −
∑

p(P |Q = 0) ln
(
p(P |Q = 0)

)
=

1

3
ln(3)+

2

3
ln

(
3

2

)
= ln(3)−2

3
ln(2).

The same value is found for S(P |Q = 1), S(Q|P = 0) and S(Q|P = 1). Hence the
conditional entropies are

S(P |Q) =
∑
q

p(P |Q = q)S(P |Q = q) = ln(3)− 2

3
ln(2),

and the same for S(Q|P ).

We can readily verify that the relation S(P |Q) = S(P,Q)− S(Q) is indeed satisfied

S(P |Q) = ln(3)− 2

3
ln(2) = ln(3) +

1

3
ln(2)− ln(2) = S(P,Q)− S(Q).

Likewise we can verify the relation S(Q|P ) = S(P,Q)− S(P ) from an identical check.
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(iv) The mutual information is given by

I(P,Q) = S(P ) + S(Q)− S(P,Q) = 2 ln(2)− ln(3)− 1

3
ln(2) =

5

3
ln(2)− ln(3).

We can check the expected relation I(P,Q) = S(P )− S(P |Q) as follows

I(P,Q) =
5

3
ln(2)− ln(3) = ln(2)−

(
ln(3)− 2

3
ln(2)

)
= S(P )− S(P |Q).

A similar check verifies the relation I(P,Q) = S(Q)− S(Q|P ).

We are told that an unfair die on average rolls a 4, or
∑6

α=1 αpα = 4. We can use
maximum entropy inference to estimate the probabilities pα subject to this constraint on the
average. Using Lagrange multipliers λ0 and λ1 for the constraint on the total probability
being 1 and the average roll being 4 we have

d

[
−
∑
α

pα ln(pα)− λ0
(∑

α

pα − 1
)
− λ1

(∑
α

αpα − 4
)]

= 0,

⇒ −
∑
α

[
ln(pα) + 1 + λ0 + λ1α

]
dpα = 0,

and it follows that the probabilities are given by

pα =
1

Z
e−λ1α, Z =

∑
α

e−λ1α.

The Lagrange multiplier λ1 can be determined from the constraint on the average roll, giving∑
α

(α− 4)pα = 0 = 2 e−6λ1 + e−5λ1 − e−3λ1 − 2 e−2λ1 − 3 e−λ1 ,

or 2x5 + x4 − x2 − 2x− 3 = 0, x = e−λ1 .

The solution may be found numerically. For instance, I used the FindRoot function in Math-
ematica, which gave x = 1.1908. I then obtain for the probabilities

p1 = 0.10, p2 = 0.12, p3 = 0.15, p4 = 0.17, p5 = 0.21, p6 = 0.25,

so that the maximum entropy estimate for the probability of getting a 6 is p6 = 0.25.
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question 3

(i) There are two main ways to do this; using transfer matrices or by defining a convenient
expansion of the Boltzmann factor as we did for the Ising model in the lectures. For
the first approach, the transfer matrix is a q×q matrix with entries eβJ on the diagonal
and 1 elsewhere. One can check that the vector with all entries 1 is an eigenvector with
eigenvalue eβJ + (q− 1) and that the vector with entries 1,−1, 0, . . . , 0 is an eigenvector
with eigenvalue eβJ − 1. In fact the symmetry of the problem tells us that all of the
other eigenvectors have this same eigenvalue. Hence the partition function is

Z = trTN =
∑
a

λNa =
(

eβJ + q − 1
)N

+ (q − 1)
(

eβJ − 1
)N

.

For the second approach we write

Z =
∑
{si}

eβJ
∑
i δsi,si+1 =

∑
{si}

∏
i

C
[
1 + x

(
qδsi,si+1 − 1

)]
,

where the second expression defines both C and x. Taking separately si+1 = si and
si+1 6= si we find

eβJ = C
[
1 + x(q − 1)

]
, 1 = C

[
1− x

]
,

=⇒ x =
eβJ − 1

eβJ + q − 1
, C =

eβJ + q − 1

q
.

When we multiply out the product we will encounter sums over the possible values of
the spins of functions of the form qδsi,si+1 − 1 and products of such. These are given by

q∑
si=1

(
qδsi,sj − 1

)
= 0,

q∑
sj=1

(
qδsi,sj − 1

)(
qδsj ,sk − 1

)
= q
(
qδsi,sk − 1

)
,

q∑
s=1

(
qδs,s − 1

)
= q(q − 1).

With these we can compute the partition function and find

Z = CNqN + CNxNqN−1q(q − 1) = (Cq)N + (Cq)NxN (q − 1),

=
(

eβJ + q − 1
)N

+ (q − 1)
(

eβJ − 1
)N

.

(ii) The partition function is Z = e−βF , so the free energy per site is

F

N
= −kBT ln

(
eβJ + q − 1

)
+

1

N
ln

[
1 + (q − 1)

(
eβJ − 1

eβJ + q − 1

)N]
,

→ −kBT ln
(

eβJ + q − 1
)
.
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(iii) To find the correlation length we may compute the expectation value of qδsk,sk+r − 1,
which may be done either with transfer matrices, or by the expansion technique used
for the partition function. Pursuing the latter approach we find〈

qδsk,sk+r − 1
〉

=
1

Z

∑
{si}

∏
i

(
qδsk,sk+r − 1

)
C
[
1 + x

(
qδsi,si+1 − 1

)]
,

=
1

Z

[
CNqr.xN−rqN−r−1q(q − 1) + CNqN−r.xrqr−1q(q − 1)

]
,

=
(q − 1)xN−r + (q − 1)xr

1 + (q − 1)xN
,

→ (q − 1)xr,

= er lnx+ln(q−1),

which gives a correlation length of (ln 1/x)−1 or

ξ =
1

ln eβJ+q−1
eβJ−1

.
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question 4

(i) We write the argument of the logarithm as

(1 + x2)2 − 2x(1− x2)
[
cos(q1) + cos(q2)

]
= 1 + 2x2 + x4 − 4x(1− x2)

+ 4x(1− x2)
[
sin2(q1/2) + sin2(q2/2)

]
,

=
(
x2 + 2x− 1

)2
+ 4x(1− x2)

[
sin2(q1/2) + sin2(q2/2)

]
,

and both terms are non-negative as x takes values in [0, 1].

(ii) The argument of the logarithm vanishes when q1 = q2 = 0 and x2 + 2x − 1 = 0. This
latter is solved by

x = xc =
√

2− 1.

In the lectures we found using Kramers-Wannier duality that sinh(2βcJ) = 1. Using
standard hyperbolic trig identities this can be written as

1 = 2 sinh(βcJ) cosh(βcJ) = 2 tanh(βcJ) cosh2(βcJ),

so that it is equivalent to

2 tanh(βcJ) = sech2(βcJ) = 1− tanh2(βcJ),

or 2xc = 1− x2c . Evidently the two expressions are the same.

(iii) Write x = xc + (x− xc) and expand assuming x− xc is small. We find(
x2+2x−1

)2
+4x(1−x2)

[
sin2(q1/2)+sin2(q2/2)

]
=
(
2
√

2(x−xc)
)2

+xc(1−x2c)
[
q21+q22

]
+h.o.t.,

where h.o.t. means ‘higher order terms’. Hence the integral in the expression for the
partition function can be written

I =

∫ π

−π

dq1
2π

∫ π

−π

dq2
2π

ln

[
(1 + x2)2 − 2x(1− x2)

(
cos(q1) + cos(q2)

)]
,

=

∫
d2q

(2π)2
ln
[
8(x− xc)2 + 2x2c q

2
]

+ regular,

where ‘regular’ means that the integral is finite, even setting x = xc. We note that the
divergent contribution to the integral comes from close to the origin, q ≈ 0, and so split
the domain of integration into a circle, of radius π, say, about the origin, and everything
else. The latter contribution, being at non-zero q is regular, so we can absorb it into
the terms that we are neglecting. Hence, the leading contribution is

I =

∫ π

0

qdq

2π
ln
[
8(x− xc)2 + 2x2c q

2
]

+ regular,

=
1

2π

1

4x2c

(
8(x− xc)2 + 2x2c q

2
)

ln
[
8(x− xc)2 + 2x2c q

2
]∣∣∣∣π
q=0

−
∫ π

0

dq

2π
q + regular,

=
(x− xc)2

πx2c
ln
[
8(x− xc)2

]
+ regular,

where in the second line we have integrated by parts (cleverly) and in the third continue
to place unimportant contributions into the ‘regular’ part. We see that the leading
singular behaviour of the free energy at the transition comes from the contribution

F ∼ (x− xc)2

πx2c
ln |x− xc|.
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Since the heat capacity is proportional to the second derivative of F with respect to T ,
and x−xc and T−Tc are related in a generic fashion (use the implicit function theorem),
we find that the heat capacity exhibits a logarithmic singularity at the transition, CV ∼
ln |T − Tc|.
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