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Stochastic models of complex systems

Problem sheet 1

Sheet counts 20/100 homework marks, all questions carry equal weight.
* Questions do not enter the mark.

1.1 Generators and eigenvalues
The analysis of linear dynamical systems shares a lot of the structure with Markov chains.

(a) Consider the harmonic oscillator φ : R→ R given by the equation

d2

dt2
φ(t) = φ̈(t) = −kφ with k > 0 .

Using the vector valued notation x(t) =
(φ(t)

φ̇(t)

)
write the system in the form

d

dt
x(t) = Mx(t) with M ∈ R2×2 .

Compute the eigenvalues λ1 and λ2 of M and find a solution of the form

φ(t) = a eλ1t + b eλ2t ,

fixing a, b ∈ R by the initial conditions φ(0) = 1, φ̇(0) = 0.

(b) Consider the Fibonacci numbers (Fn : n ∈ N0) defined by the recursion

Fn = Fn−1 + Fn−2 (n ≥ 2) with F0 = 0, F1 = 1 .

Write
(Fn+1

Fn

)
= M

(
Fn

Fn−1

)
as a discrete-time dynamical system with M ∈ R2×2.

Compute the eigenvalues of M and show that

Fn =
ηn − (1− η)n√

5
where η =

1 +
√

5
2

is the Golden ratio .

(c)* Derive a recursion relation for the generating function G(s) =
∑

n Fns
n of the Fibonacci

numbers and solve it. Sketch G(s). For which s ≥ 0 is it well defined?

1.2 Branching processes
Let Z = (Zn : n ∈ N) be a branching process, defined recursively by

Z0 = 1 , Zn+1 = Xn
1 + . . .+Xn

Zn
for all n ≥ 0 ,

where the Xn
i ∈ N are iidrv’s denoting the offspring of individuum i in generation n.

(a) Consider a geometric offspring distribution Xn
i ∼ Geo(p), i.e.

pk = P(Xn
i = k) = p (1− p)k , p ∈ (0, 1) .

Compute the prob. generating functionG(s) =
∑

k pks
k as well as E(Xn

i ) and V ar(Xn
i ).

Sketch G(s) for (at least) three (wisely chosen) values of p and compute the probability
of extinction as a function of p.
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(b) Consider a Poisson offspring distribution Xn
i ∼ Poi(λ), i.e.

pk = P(Xn
i = k) =

λk

k!
e−λ , λ > 0 .

Repeat the same analysis as in (a). (The equation for the probability of extinction cannot
be solved in this case, find an approximate solution.)

(c)* For geometric offspring with p = 1/2, show that Gn(s) = n−(n−1)s
n+1−ns and compute

P(Zn = 0). If T is the (random) time of extinction, what is its distribution and its
expected value?

1.3 (a) Random walk
Consider a simple symmetric random walk on {1, . . . , L} with
- periodic boundary conditions, i.e. pL,L−1 = pL,1 = p1,L = p1,2 = 1/2,
- closed boundary conditions, i.e. pL,L−1 = pL,L = p1,1 = p1,2 = 1/2,
- reflecting boundary conditions, i.e. pL,L−1 = p1,2 = 1,
- absorbing boundary conditions, i.e. pL,L = p1,1 = 1.
(All transition probabilities which are not specified above are 0.)
In each case, sketch the transition matrix P = (pij)ij of the process, decide whether the
process is irreducible, and give at least one stationary distribution π∗.
(Hint: Use detailed balance.)

(b)* Consider a symmetric connected graph (G,E) without loops and double edges. A simple
random walk on (G,E) has transition probabilities pi,j = ei,j/ci, where ci is the number
of outgoing edges in vertex i, and ei,j ∈ {0, 1} denotes the presence of an edge (i, j).
Find a formula for the stationary distribution π∗.
Does your formula also hold on a non-symmetric, strongly connected graph?


