# Stochastic Models of Complex Systems 

## Problem sheet 2

Sheet counts 50/100 homework marks, all questions carry equal weight.

### 2.1 Birth-death processes

A birth-death process $X$ is a continuous-time Markov chain with state space $S=\mathbb{N}=$ $\{0,1, \ldots\}$ and jump rates

$$
i \xrightarrow{\alpha_{i}} i+1 \quad \text { for all } i \in S, \quad i \xrightarrow{\beta_{i}} i-1 \quad \text { for all } i \geq 1 .
$$

(a) Write down the generator $G$. Under which conditions is $X$ irreducible? Using detailed balance, find a formula for the stationary probablities $\pi_{k}^{*}$ in terms of $\pi_{0}^{*}$.
(b) Suppose $\alpha_{i}=\alpha$ for $i \geq 0$ and $\beta_{i}=\beta$ for $i>0$. This is called an $M / M / 1$ queue.

Under which conditions on $\alpha$ and $\beta$ can the stationary distribution be normalized? Give a formula for $\pi_{k}^{*}$ in that case. What kind of situation is this a good model for?
(c) Suppose $\alpha_{i}=\alpha$ and $\beta_{i}=i \beta$ for $i \geq 0$. This is called an $M / M / \infty$ queue.

Under which conditions on $\alpha$ and $\beta$ can the stationary distribution be normalized? Give a formula for $\pi_{k}^{*}$ in that case. What kind of situation is this a good model for?
(d) Suppose $\alpha_{i}=i \alpha, \beta_{i}=i \beta$ for $i \geq 0$ and $X_{0}=1$.

Discuss qualitatively the behaviour of $X_{t}$ as $t \rightarrow \infty$.
What kind of situation is this a good model for?
2.2 Consider the contact process $\left(\eta_{t}: t \geq 0\right)$ on the complete graph $\Lambda=\{1, \ldots, L\}$ (all sites connected) with state space $S=\{0,1\}^{L}$ and transition rates

$$
c\left(\eta, \eta^{x}\right)=\eta(x)+\lambda(1-\eta(x)) \sum_{y \neq x} \eta(y),
$$

where $\eta, \eta^{x} \in S$ are connected states such that $\eta^{x}(y)=\left\{\begin{array}{cc}1-\eta(x) & , y=x \\ \eta(y) & , y \neq x\end{array}\right.$, ( $\eta$ with site $x$ flipped).
(a) Let $N_{t}=\sum_{x \in \Lambda_{L}} \eta_{t}(x) \in\{0, \ldots, L\}$ be the number of infected sites at time $t$. Show that $\left(N_{t}: t \geq 0\right)$ is a Markov chain with state space $\{0, \ldots, L\}$ by computing the transition rates $c(n, m)$ for $n, m \in\{0, \ldots, L\}$.
Write down the master equation for the process ( $N_{t}: t \geq 0$ ).
(b) Is the process $\left(N_{t}: t \geq 0\right)$ irreducible, does it have absorbing states?

What are the stationary distributions?
(c) Assume that $\mathbb{E}\left(N_{t}^{k}\right)=\mathbb{E}\left(N_{t}\right)^{k}$ for all $k \geq 1$. This is called a mean-field assumption, meaning basically that we replace the random variable $N_{t}$ by its expected value.
Use this assumption to derive the mean-field rate equation for $\rho(t):=\mathbb{E}\left(N_{t}\right) / L$,

$$
\frac{d}{d t} \rho(t)=f(\rho(t))=-\rho(t)+L \lambda(1-\rho(t)) \rho(t) .
$$

(d) Analyze this equation by finding the stable and unstable stationary points via $f\left(\rho^{*}\right)=0$. What is the prediction for the stationary density $\rho^{*}$ depending on $\lambda$ ?

## Simple sample codes for the following questions is on the course webpage.

2.3 The totally asymmetric simple exclusion process (TASEP) with open boundaries is an exclusion process on the one-dimensional lattice $\Lambda=\{1, \ldots, L\}$ with transition rates

$$
10 \xrightarrow{1} 01 \text { in the bulk, and }\left|0 \xrightarrow{\rho_{l}}\right| 1, \quad 1\left|\xrightarrow{1-\rho_{r}} 0\right| \quad \text { at the boundaries . }
$$

So particles jump one site to the right with rate 1 if possible and are injected and ejected at the boundary, where the system is coupled to reservoirs with densities $\rho_{l}, \rho_{r} \in[0,1]$. The state space is $S=\{0,1\}^{L}$ and we denote a particle configuration by $\eta=(\eta(x): x \in \Lambda)$.
(a) Draw the initial occupation numbers $\eta(x)$ independently with $\eta(x) \sim \operatorname{Be}\left(\rho_{l}\right)$ for $x<$ $L / 2$ and $\eta(x) \sim B e\left(\rho_{r}\right)$ for $x \geq L / 2$. Then simulate the process using random sequential update, and record the configuration $\eta$ in regular time intervals $\Delta t$ up to time $T$. Visualize the time evolution (e.g. by using 'image' in MATLAB) for the following situations (three cases each)

$$
\begin{array}{ccc}
\rho_{l}=1,0.8,0.6 & \text { and } \quad \rho_{r}=0 & \\
\rho_{l}=0.2, \quad \text { and } \quad \rho_{r}=0.6,0.8,1 & \text { (enaffic light) } \\
\text { (ef traffic jam). }
\end{array}
$$

Suggested parameter values are $L=200, T=400, \Delta t=2$.
Interpret your findings in a few sentences, results get clearer if you averge 5 or 10 realizations.
(b) Initialize the system with $\eta(x)=0$ for all $x \in \Lambda$ and measure the total density of particles $\rho(t)=\frac{1}{L} \sum_{x \in \Lambda} \eta_{t}(x)$ as a function of time for the parameter values

$$
\left(\rho_{l}, \rho_{r}\right)=(0.2,0.2),(0.8,0.1) \quad \text { and } \quad(0.8,0.8) .
$$

Plot $\rho(t)$ for $t \leq T$ large enough to predict the limiting behaviour $\lim _{t \rightarrow \infty} \rho(t)$.
Interpret your findings in a few sentences, again results get clearer if you averge 5 or 10 realizations.
(c) Study the effect of a narrow road or a hill, by changing the jump rate in the bulk for $x \geq L / 2$ from 1 to 0.8 . Use $\rho_{l}=\rho_{r}=\rho$ and initialize $\eta(x) \sim \operatorname{Be}(\rho)$ independently for all $x \in \Lambda$. Simulate the process for $\rho=0.2,0.4,0.6,0.8$ and visualize the profiles as in (a), for e.g. $L=200, T=400$ and $\Delta t=2$. Interpret your findings in a few sentences.
2.4 Adapt your programme from Q2.3 to simulate a generalized TASEP, using now periodic boundary conditions on the lattice $\Lambda=\{1, \ldots, L\}$. The jump rates should depend on the neighbourhood configuration in the following way:

$$
0100 \xrightarrow{1} 0010, \quad 1101 \xrightarrow{\alpha} 1011, \quad 0101 \xrightarrow{\beta} 0011, \quad 1100 \xrightarrow{\gamma} 1010 .
$$

For this model, the average stationary current is a function of the number $N$ of particles, or the density $\rho=N / L$. It is defined by $j(\rho)=\mathbb{E}\left(c\left(\eta, \eta^{x, x+1}\right)\right)$, where $c\left(\eta, \eta^{x, x+1}\right)$ is the jump rate of a particle from $x$ to $x+1$ as given above.
(a) Making use of the ergodic theorem, measure the fundamental diagram, i.e. $j(\rho)$ as a function of the density. The easiest way is to just count all jumps up to a given time and normalize properly.
For fixed lattice size $L$ (e.g. 500) vary the number of cars $N$ to get $j$ for $\rho=0,0.1, \ldots, 0.9,1$. Do this for $\alpha=\beta=\gamma=1$ (usual TASEP) and at least two other choices of rates. Explain what your choices correspond to in terms of driver behaviour if you interpret this as a traffic model.
(b) Calculate the stationary current using a mean-field approximation for the parameters you chose in (a), and compare this to your measurement results in a plot. Discuss how the different shapes of the fundamental diagram are related to your choice of rates.

