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Stochastic Models of Complex Systems

Problem sheet 2

Sheet counts 50/100 homework marks, all questions carry equal weight.

2.1 Birth-death processes
A birth-death process X is a continuous-time Markov chain with state space S = N =
{0, 1, . . .} and jump rates

i
αi−→ i+ 1 for all i ∈ S , i

βi−→ i− 1 for all i ≥ 1 .

(a) Write down the generator G. Under which conditions is X irreducible?
Using detailed balance, find a formula for the stationary probablities π∗k in terms of π∗0 .

(b) Suppose αi = α for i ≥ 0 and βi = β for i > 0. This is called an M/M/1 queue.
Under which conditions on α and β can the stationary distribution be normalized? Give a
formula for π∗k in that case. What kind of situation is this a good model for?

(c) Suppose αi = α and βi = iβ for i ≥ 0. This is called an M/M/∞ queue.
Under which conditions on α and β can the stationary distribution be normalized? Give a
formula for π∗k in that case. What kind of situation is this a good model for?

(d) Suppose αi = iα, βi = iβ for i ≥ 0 and X0 = 1.
Discuss qualitatively the behaviour of Xt as t→∞.
What kind of situation is this a good model for?

2.2 Consider the contact process (ηt : t ≥ 0) on the complete graph Λ = {1, . . . , L} (all sites
connected) with state space S = {0, 1}L and transition rates

c(η, ηx) = η(x) + λ
(
1− η(x)

)∑
y 6=x

η(y) ,

where η, ηx ∈ S are connected states such that ηx(y) =

{
1− η(x) , y = x
η(y) , y 6= x

,

(η with site x flipped).

(a) Let Nt =
∑

x∈ΛL
ηt(x) ∈ {0, . . . , L} be the number of infected sites at time t. Show that

(Nt : t ≥ 0) is a Markov chain with state space {0, . . . , L} by computing the transition
rates c(n,m) for n,m ∈ {0, . . . , L}.
Write down the master equation for the process (Nt : t ≥ 0).

(b) Is the process (Nt : t ≥ 0) irreducible, does it have absorbing states?
What are the stationary distributions?

(c) Assume that E
(
Nk
t

)
= E(Nt)

k for all k ≥ 1. This is called a mean-field assumption,
meaning basically that we replace the random variable Nt by its expected value.
Use this assumption to derive the mean-field rate equation for ρ(t) := E(Nt)/L,

d

dt
ρ(t) = f

(
ρ(t)

)
= −ρ(t) + Lλ

(
1− ρ(t)

)
ρ(t) .

(d) Analyze this equation by finding the stable and unstable stationary points via f(ρ∗) = 0.
What is the prediction for the stationary density ρ∗ depending on λ?
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Simple sample codes for the following questions is on the course webpage.

2.3 The totally asymmetric simple exclusion process (TASEP) with open boundaries is an exclu-
sion process on the one-dimensional lattice Λ = {1, . . . , L} with transition rates

10
1−→ 01 in the bulk, and |0 ρl−→ |1 , 1| 1−ρr−→ 0| at the boundaries .

So particles jump one site to the right with rate 1 if possible and are injected and ejected at the
boundary, where the system is coupled to reservoirs with densities ρl, ρr ∈ [0, 1]. The state
space is S = {0, 1}L and we denote a particle configuration by η = (η(x) : x ∈ Λ).

(a) Draw the initial occupation numbers η(x) independently with η(x) ∼ Be(ρl) for x <
L/2 and η(x) ∼ Be(ρr) for x ≥ L/2. Then simulate the process using random sequential
update, and record the configuration η in regular time intervals ∆t up to time T . Visualize
the time evolution (e.g. by using ’image’ in MATLAB) for the following situations (three
cases each)

ρl = 1, 0.8, 0.6 and ρr = 0 (traffic light)

ρl = 0.2, and ρr = 0.6, 0.8, 1 (end of traffic jam) .

Suggested parameter values are L = 200, T = 400, ∆t = 2.
Interpret your findings in a few sentences, results get clearer if you averge 5 or 10 realiza-
tions.

(b) Initialize the system with η(x) = 0 for all x ∈ Λ and measure the total density of particles
ρ(t) = 1

L

∑
x∈Λ ηt(x) as a function of time for the parameter values

(ρl, ρr) = (0.2, 0.2), (0.8, 0.1) and (0.8, 0.8) .

Plot ρ(t) for t ≤ T large enough to predict the limiting behaviour limt→∞ ρ(t).
Interpret your findings in a few sentences, again results get clearer if you averge 5 or 10
realizations.

(c) Study the effect of a narrow road or a hill, by changing the jump rate in the bulk for
x ≥ L/2 from 1 to 0.8. Use ρl = ρr = ρ and initialize η(x) ∼ Be(ρ) independently for
all x ∈ Λ. Simulate the process for ρ = 0.2, 0.4, 0.6, 0.8 and visualize the profiles as in
(a), for e.g. L = 200, T = 400 and ∆t = 2. Interpret your findings in a few sentences.

2.4 Adapt your programme from Q2.3 to simulate a generalized TASEP, using now periodic bound-
ary conditions on the lattice Λ = {1, . . . , L}. The jump rates should depend on the neighbour-
hood configuration in the following way:

0100
1−→ 0010 , 1101

α−→ 1011 , 0101
β−→ 0011 , 1100

γ−→ 1010 .

For this model, the average stationary current is a function of the number N of particles, or the
density ρ = N/L. It is defined by j(ρ) = E

(
c(η, ηx,x+1)

)
, where c(η, ηx,x+1) is the jump rate

of a particle from x to x+ 1 as given above.

(a) Making use of the ergodic theorem, measure the fundamental diagram, i.e. j(ρ) as a
function of the density. The easiest way is to just count all jumps up to a given time and
normalize properly.
For fixed lattice sizeL (e.g. 500) vary the number of carsN to get j for ρ = 0, 0.1, . . . , 0.9, 1.
Do this for α = β = γ = 1 (usual TASEP) and at least two other choices of rates. Ex-
plain what your choices correspond to in terms of driver behaviour if you interpret this as
a traffic model.

(b) Calculate the stationary current using a mean-field approximation for the parameters you
chose in (a), and compare this to your measurement results in a plot. Discuss how the
different shapes of the fundamental diagram are related to your choice of rates.


