Stochastic Models of Complex Systems

Problem sheet 2

Sheet counts 50/100 homework marks, all questions carry equal weight.

2.1 Birth-death processes

A birth-death process X is a continuous-time Markov chain with state space $S = \mathbb{N} = \{0, 1, ...\}$ and jump rates

 $i \xrightarrow{\alpha_i} i + 1$ for all $i \in S$, $i \xrightarrow{\beta_i} i - 1$ for all $i \ge 1$.

- (a) Write down the generator G. Under which conditions is X irreducible? Using detailed balance, find a formula for the stationary probablities π_k^* in terms of π_0^* .
- (b) Suppose α_i = α for i ≥ 0 and β_i = β for i > 0. This is called an M/M/1 queue. Under which conditions on α and β can the stationary distribution be normalized? Give a formula for π^{*}_k in that case. What kind of situation is this a good model for?
- (c) Suppose α_i = α and β_i = iβ for i ≥ 0. This is called an M/M/∞ queue. Under which conditions on α and β can the stationary distribution be normalized? Give a formula for π^{*}_k in that case. What kind of situation is this a good model for?
- (d) Suppose α_i = iα, β_i = iβ for i ≥ 0 and X₀ = 1. Discuss qualitatively the behaviour of X_t as t → ∞. What kind of situation is this a good model for?
- **2.2** Consider the contact process $(\eta_t : t \ge 0)$ on the complete graph $\Lambda = \{1, \ldots, L\}$ (all sites connected) with state space $S = \{0, 1\}^L$ and transition rates

$$c(\eta, \eta^x) = \eta(x) + \lambda \left(1 - \eta(x)\right) \sum_{y \neq x} \eta(y) ,$$

where $\eta, \eta^x \in S$ are connected states such that $\eta^x(y) = \begin{cases} 1 - \eta(x) & , y = x \\ \eta(y) & , y \neq x \end{cases}$, (η with site x flipped).

(a) Let $N_t = \sum_{x \in \Lambda_L} \eta_t(x) \in \{0, \dots, L\}$ be the number of infected sites at time t. Show that $(N_t : t \ge 0)$ is a Markov chain with state space $\{0, \dots, L\}$ by computing the transition rates c(n, m) for $n, m \in \{0, \dots, L\}$.

Write down the master equation for the process $(N_t : t \ge 0)$.

- (b) Is the process $(N_t : t \ge 0)$ irreducible, does it have absorbing states? What are the stationary distributions?
- (c) Assume that $\mathbb{E}(N_t^k) = \mathbb{E}(N_t)^k$ for all $k \ge 1$. This is called a **mean-field assumption**, meaning basically that we replace the random variable N_t by its expected value. Use this assumption to derive the **mean-field rate equation** for $\rho(t) := \mathbb{E}(N_t)/L$,

$$\frac{d}{dt}\rho(t) = f(\rho(t)) = -\rho(t) + L\lambda(1-\rho(t))\rho(t) .$$

(d) Analyze this equation by finding the stable and unstable stationary points via $f(\rho^*) = 0$. What is the prediction for the stationary density ρ^* depending on λ ?

Simple sample codes for the following questions is on the course webpage.

2.3 The totally asymmetric simple exclusion process (**TASEP**) with open boundaries is an exclusion process on the one-dimensional lattice $\Lambda = \{1, ..., L\}$ with transition rates

 $10 \xrightarrow{1} 01$ in the bulk, and $|0 \xrightarrow{\rho_l} |1, 1| \xrightarrow{1-\rho_r} 0|$ at the boundaries.

So particles jump one site to the right with rate 1 if possible and are injected and ejected at the boundary, where the system is coupled to reservoirs with densities $\rho_l, \rho_r \in [0, 1]$. The state space is $S = \{0, 1\}^L$ and we denote a particle configuration by $\eta = (\eta(x) : x \in \Lambda)$.

(a) Draw the initial occupation numbers $\eta(x)$ independently with $\eta(x) \sim Be(\rho_l)$ for x < L/2 and $\eta(x) \sim Be(\rho_r)$ for $x \ge L/2$. Then simulate the process using random sequential update, and record the configuration η in regular time intervals Δt up to time T. Visualize the time evolution (e.g. by using 'image' in MATLAB) for the following situations (three cases each)

$ \rho_l = 1, 0.8, 0.6 $	and $\rho_r = 0$	(traffic light)
$ \rho_l = 0.2, \text{ and} $	$\rho_r = 0.6, 0.8, 1$	(end of traffic jam)

Suggested parameter values are L = 200, T = 400, $\Delta t = 2$. Interpret your findings in a few sentences, results get clearer if you averge 5 or 10 realizations.

(b) Initialize the system with $\eta(x) = 0$ for all $x \in \Lambda$ and measure the total density of particles $\rho(t) = \frac{1}{L} \sum_{x \in \Lambda} \eta_t(x)$ as a function of time for the parameter values

 $(\rho_l, \rho_r) = (0.2, 0.2), (0.8, 0.1)$ and (0.8, 0.8).

Plot $\rho(t)$ for $t \leq T$ large enough to predict the limiting behaviour $\lim_{t\to\infty} \rho(t)$. Interpret your findings in a few sentences, again results get clearer if you averge 5 or 10 realizations.

- (c) Study the effect of a narrow road or a hill, by changing the jump rate in the bulk for x ≥ L/2 from 1 to 0.8. Use ρ_l = ρ_r = ρ and initialize η(x) ~ Be(ρ) independently for all x ∈ Λ. Simulate the process for ρ = 0.2, 0.4, 0.6, 0.8 and visualize the profiles as in (a), for e.g. L = 200, T = 400 and Δt = 2. Interpret your findings in a few sentences.
- **2.4** Adapt your programme from Q2.3 to simulate a generalized TASEP, using now periodic boundary conditions on the lattice $\Lambda = \{1, \ldots, L\}$. The jump rates should depend on the neighbourhood configuration in the following way:

$$0100 \xrightarrow{1} 0010$$
, $1101 \xrightarrow{\alpha} 1011$, $0101 \xrightarrow{\beta} 0011$, $1100 \xrightarrow{\gamma} 1010$.

For this model, the average stationary current is a function of the number N of particles, or the density $\rho = N/L$. It is defined by $j(\rho) = \mathbb{E}(c(\eta, \eta^{x,x+1}))$, where $c(\eta, \eta^{x,x+1})$ is the jump rate of a particle from x to x + 1 as given above.

(a) Making use of the ergodic theorem, measure the **fundamental diagram**, i.e. $j(\rho)$ as a function of the density. The easiest way is to just count all jumps up to a given time and normalize properly.

For fixed lattice size L (e.g. 500) vary the number of cars N to get j for $\rho = 0, 0.1, \ldots, 0.9, 1$. Do this for $\alpha = \beta = \gamma = 1$ (usual TASEP) and at least two other choices of rates. Explain what your choices correspond to in terms of driver behaviour if you interpret this as a traffic model.

(b) Calculate the stationary current using a mean-field approximation for the parameters you chose in (a), and compare this to your measurement results in a plot. Discuss how the different shapes of the fundamental diagram are related to your choice of rates.