Stochastic Models of Complex Systems

Problem sheet 3

Sheet counts 30/100 homework marks, question 3.3 carries double weight, the others equal.

3.1 Scaling limits

Consider a continuous-time random walk $(X_{\tau} : \tau \geq 0)$ on \mathbb{Z} with next nearest neighbour jumps and master equation

$$\frac{d}{d\tau} \pi_k(\tau) = \alpha \pi_{k-2}(\tau) + (\frac{1}{2} - \alpha) \pi_{k-1}(\tau) - \pi_k(\tau) + (\frac{1}{2} - \alpha) \pi_{k+1}(\tau) + \alpha \pi_{k+2}(\tau) , \quad k \in \mathbb{Z} ,$$

where $\alpha \in [0, 1/2]$.

(a) Derive the heat equation

$$\frac{\partial}{\partial t} f(t, x) = D \frac{\partial^2}{\partial x^2} f(t, x)$$

in a scaling limit $x = \Delta x \, k$, $t = \Delta t \, \tau$ analogous to the lectures. What is the required relation between Δx and Δt , and what is the value of D (depending on α)?

(b) Take $\alpha=0$, i.e. consider only nearest neighbour jumps. Add a *weak drift* to the random walk depending on Δx , such that in the same scaling limit as in (a) you get the Fokker-Planck equation

$$\frac{\partial}{\partial t} f(t, x) = -c \frac{\partial}{\partial x} f(t, x) + \frac{1}{2} \frac{\partial^2}{\partial x^2} f(t, x)$$

for some fixed c>0. Give the master equation of the modified process, and derive the scaling limit analogously to (a).

3.2 Moran model

We consider the Moran model in continuous time, which is a simple model for evolution: In a population of size N each individuum can be of type A or B. Each individuum independently reproduces at rate 1 passing on its type to the offspring. When this happens, one of the now N+1 individuals is chosen uniformly at random and dies instantaneously, to keep the population size constant to N.

Let X_{τ} be the number of type A individuals at time τ . Then $X = (X_{\tau} : \tau \ge 0)$ is a continuous-time Markov chain with state space $S = \{0, \dots, N\}$.

- (a) Find the generator of *X* and write down the master equation. Is *X* irreducible? Does it have absorbing states? What are the stationary distributions?
- (b) Rescale space $x = i/N \in [0,1]$ and set $\pi_i(\tau) = f(\tau,x) \frac{1}{N}$. Write the master equation in terms of f and x.

Do a Taylor expansion of the right-hand side up to second order in x. It is (very!) useful to actually do the expansion not for f but for the function $g(\tau, x) := f(\tau, x)x(1-x)$.

(c) Rescale time appropriately $(t = \Delta t \tau)$ and derive the Fokker-Planck equation

$$\frac{\partial}{\partial t} f(t,x) = \frac{\partial^2}{\partial x^2} \Big(x(1-x)f(t,x) \Big) \quad \Big(= (\mathcal{L}^*f)(t,x) \Big)$$

in the limit $N \to \infty$. How are Δt and N related?

- (d) The limiting process $(Y_t: t \ge 0)$ on [0,1] from (c) is called **Wright-Fisher diffusion**. Give the generator $\mathcal L$ of that process, such that $\frac{d}{dt}\mathbb E\big(g(Y_t)\big)=\mathbb E\big((\mathcal Lg)(Y_t)\big)$ for observables $g:[0,1]\to\mathbb R$. Show that $\mathbb E(Y_t)=\mathbb E(Y_0)$ for all t>0 and discuss the limit of Y_t as $t\to\infty$.
- (e)* For $Y_0 = 1/2$, derive an equation for $Var(Y_t)$, solve it, and interpret its solution.
- (f)* Repeat the analysis in (a) to (c) with an additional *mutation* rate μ/N , $\mu > 0$ at which an individuum spontaneously changes type.

3.3 Simulation of the contact process. (Sample code on the course webpage)

Consider the contact process $(\eta_t : t \ge 0)$ as defined in Q2.2, but now on the one-dimensional lattice $\Lambda_L = \{1, \ldots, L\}$ with connections only between nearest neighbours and periodic boundary conditions.

The critical value λ_c is defined such that the infection on the infinite lattice $\Lambda = \mathbb{Z}$ started from the fully infected lattice dies out for $\lambda < \lambda_c$, and survives for $\lambda > \lambda_c$. It is known numerically up to several digits, depends on the dimension, and lies in the interval [1,2] in our case.

- (a) Simulate the process with initial condition $\eta(x)=1$ for all $x\in\Lambda$ and several values of $\lambda\in[1,2]$. Plot the number of infected individuals $N_t=\sum_{x\in\Lambda_L}\eta_t(x)$ as a function of time averaging over 100 realizations in a double-logarithmic plot. What is the expected behaviour of N_t depending on λ for times up to order L? For a given system size L, find the window of interest choosing $\lambda=1,1.2,\ldots,1.8,2$ and then use increments 0.01 for λ to find an estimate of the critical value $\lambda_c(L)\in[1,2]$. Repeat this for different lattice sizes, e.g. L=64,128,256,512, and plot your estimates of $\lambda_c(L)$ against 1/L. Extrapolate to $1/L\to 0$ to get an estimate of $\lambda_c=\lambda_c(\infty)$. This approach is called **finite size scaling**, in order to correct for **finite size effects** which influence the critical value.
- (b) Simulate the process for L=128 with initial condition $\eta(x)=1$ for all $x\in\Lambda$ and several (at least 3) values of λ around $\lambda_c(L)$. After an equilibration time $\tau_{equ}=L$, sample from the distribution of the number of infections $N_t=\sum_{x\in\Lambda_L}\eta_t(x)$, i.e. over a time interval of length $\tau_{meas}=L$ count the fraction of time N_t spent in n for each $n\in\{0,\ldots,L\}$. Average this measurement over 100 realizations and plot your estimate of the distribution for all values of λ in a single plot (it might be a good idea to use a log-scale on the y axis). Explain the form of the observed curves.
- (c)* Repeat the analysis of (a) on the fully connected graph Λ_L , and compare your estimate of λ_c with the mean-field prediction from Q2.2.