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Stochastic Models of Complex Systems

Problem sheet 3

Sheet counts 30/100 homework marks, question 3.3 carries double weight, the others equal.

3.1 Scaling limits
Consider a continuous-time random walk (Xτ : τ ≥ 0) on Z with next nearest neighbour jumps
and master equation

d

dτ
πk(τ) = απk−2(τ) + (1

2−α)πk−1(τ)− πk(τ) + (1
2−α)πk+1(τ) + απk+2(τ) , k ∈ Z ,

where α ∈ [0, 1/2].

(a) Derive the heat equation

∂

∂t
f(t, x) = D

∂2

∂x2
f(t, x)

in a scaling limit x = ∆x k, t = ∆t τ analogous to the lectures. What is the required
relation between ∆x and ∆t, and what is the value of D (depending on α)?

(b) Take α = 0, i.e. consider only nearest neighbour jumps. Add a weak drift to the random
walk depending on ∆x, such that in the same scaling limit as in (a) you get the Fokker-
Planck equation

∂

∂t
f(t, x) = −c ∂

∂x
f(t, x) +

1

2

∂2

∂x2
f(t, x)

for some fixed c > 0. Give the master equation of the modified process, and derive the
scaling limit analogously to (a).

3.2 Moran model
We consider the Moran model in continuous time, which is a simple model for evolution:
In a population of size N each individuum can be of type A or B. Each individuum indepen-
dently reproduces at rate 1 passing on its type to the offspring. When this happens, one of the
now N + 1 individuals is chosen uniformly at random and dies instantaneously, to keep the
population size constant to N .
LetXτ be the number of typeA individuals at time τ . ThenX = (Xτ : τ ≥ 0) is a continuous-
time Markov chain with state space S = {0, . . . , N}.

(a) Find the generator of X and write down the master equation.
Is X irreducible? Does it have absorbing states? What are the stationary distributions?

(b) Rescale space x = i/N ∈ [0, 1] and set πi(τ) = f(τ, x) 1
N . Write the master equation in

terms of f and x.
Do a Taylor expansion of the right-hand side up to second order in x. It is (very!) useful
to actually do the expansion not for f but for the function g(τ, x) := f(τ, x)x(1− x).
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(c) Rescale time appropriately (t = ∆t τ ) and derive the Fokker-Planck equation

∂

∂t
f(t, x) =

∂2

∂x2

(
x(1− x)f(t, x)

) (
= (L∗f)(t, x)

)
in the limit N →∞. How are ∆t and N related?

(d) The limiting process (Yt : t ≥ 0) on [0, 1] from (c) is called Wright-Fisher diffusion.
Give the generator L of that process, such that d

dtE
(
g(Yt)

)
= E

(
(Lg)(Yt)

)
for observables g : [0, 1]→ R.
Show that E(Yt) = E(Y0) for all t > 0 and discuss the limit of Yt as t→∞.

(e)* For Y0 = 1/2, derive an equation for Var(Yt), solve it, and interpret its solution.

(f)* Repeat the analysis in (a) to (c) with an additional mutation rate µ/N , µ > 0 at which an
individuum spontaneously changes type.

3.3 Simulation of the contact process. (Sample code on the course webpage)
Consider the contact process (ηt : t ≥ 0) as defined in Q2.2, but now on the one-dimensional
lattice ΛL = {1, . . . , L}with connections only between nearest neighbours and periodic bound-
ary conditions.
The critical value λc is defined such that the infection on the infinite lattice Λ = Z started from
the fully infected lattice dies out for λ < λc, and survives for λ > λc. It is known numerically
up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.

(a) Simulate the process with initial condition η(x) = 1 for all x ∈ Λ and several values of
λ ∈ [1, 2]. Plot the number of infected individuals Nt =

∑
x∈ΛL

ηt(x) as a function of
time averaging over 100 realizations in a double-logarithmic plot.
What is the expected behaviour of Nt depending on λ for times up to order L?
For a given system size L, find the window of interest choosing λ = 1, 1.2, . . . , 1.8, 2 and
then use increments 0.01 for λ to find an estimate of the critical value λc(L) ∈ [1, 2].
Repeat this for different lattice sizes, e.g. L = 64, 128, 256, 512, and plot your estimates
of λc(L) against 1/L. Extrapolate to 1/L→ 0 to get an estimate of λc = λc(∞).
This approach is called finite size scaling, in order to correct for finite size effects which
influence the critical value.

(b) Simulate the process forL = 128 with initial condition η(x) = 1 for all x ∈ Λ and several
(at least 3) values of λ around λc(L). After an equilibration time τequ = L, sample from
the distribution of the number of infections Nt =

∑
x∈ΛL

ηt(x), i.e. over a time interval
of length τmeas = L count the fraction of time Nt spent in n for each n ∈ {0, . . . , L}.
Average this measurement over 100 realizations and plot your estimate of the distribution
for all values of λ in a single plot (it might be a good idea to use a log-scale on the y axis).
Explain the form of the observed curves.

(c)* Repeat the analysis of (a) on the fully connected graph ΛL, and compare your estimate of
λc with the mean-field prediction from Q2.2.


