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Introduction

In this module we will cover the basics to study models of complex systems with stochastic time
evolution. There are two different origins of stochasticity:

• Classical mechanics: stochasticity due to lack of information
In principle all components involved in the system are believed to follow a deterministic
system of equations of motion. But in practice all microscopic details are not accessible
and the unknown influences on the dynamics are approximated as effective random noise
with a certain postulated distribution. The actual origin of the noise may be related to
chaotic motion, i.e. deterministic time evolution with random initial data such as a dice or
pendulum, or neglected interactions in a large system such as gases or fluids leading to a
stochastic time evolution.

• Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a sys-
tem is therefore given by a complex probability density function (wave function), rather than
a single element in the set of all possible configurations.

Examples. (gas, branching process)

In this course we only cover classical stochastic systems. After a general introduction to
stochastic processes we will study some examples of particle systems with thermal interactions.
The first and most classical example of this phenomenon is Brownian motion (see Gardiner, Sec-
tion 1.2). In 1827 Robert Brown observed the irregular motion of small pollen grains suspended
in water. A first satisfactory theoretical description of this phenomenon was given by Einstein in
1905. A mathematically idealized version of this is called the Wiener process and can be described
by the theory of stochastic calculus which was developed in the 1950s by Itô. Due to the continu-
ous state space of the system this theory is rather involved, and will be discussed towards the end
of the module. Simpler to analyse are models with a discrete state space such as birth-death pro-
cesses, which appear for example in predator-prey models in biology (see Gardiner, Section 1.3).
In the first part of the course we concentrate on Markov chains (following [GS] Chapter 6), which
are certain stochastic processes with discrete state space. We conclude the introductory section by
two general definitions.
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Definition 0.1 A stochastic process X = (Xt : t ∈ T) is a family of random variables Xt : Ω→
S with state space S and time index set T ⊆ R.

A stochastic process X : T × Ω → S is a function of two variables, time t and ω ∈ Ω. For
fixed ω, the function t 7→ Xt(ω) is called a sample path. The probability space Ω is arbitrary, but
has to be big enough to encode all possible time evolutions. A canonical choice is the set of all
possible sample paths Ω = {f : T → S}, or often one requires some regularity of the functions
f , such as continuity.

Definition 0.2 A stochastic process is a Markov process if for all t1 < t2 < . . . < tn ∈ T, n ∈ N,
for all s1, . . . , sn−1 ∈ S and all (measurable) A ⊆ S,

P
(
Xtn ∈ An

∣∣Xt1 = s1, . . . , Xtn−1 = sn−1

)
= P

(
Xtn ∈ An

∣∣Xtn−1 = sn−1

)
. (0.1)

A Markov process is called homogeneous if for all (measurable) A,B ⊆ S and t > t′ ∈ T

P
(
Xt ∈ A

∣∣Xt′ ∈ B
)

= P
(
Xt−t′ ∈ A

∣∣X0 ∈ B
)
. (0.2)

A homogeneous Markov process is called a Markov chain, if S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate on
the choices T = N, Z for discrete time and T = [0,∞), R for continuous time processes. Typical
choices for state spaces are S = Z (e.g. random walk, birth-death processes), N (e.g. counting
processes), Rd (e.g. Brownian motion).

Examples. (RW, Brownian motion, deck of cards)
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1 Markov chains

1.1 General properties

Definition 1.1 For a Markov chain we define the transition probabilities

pij(t) := P(Xt = j|X0 = i) ∈ [0, 1] for all i, j ∈ S , (1.1)

and the transition ’matrices’ (which might be infinite)

P (t) :=
(
pij(t) : i, j ∈ S

)
∈ [0, 1]|S|×|S| . (1.2)

A homogeneous Markov chain starting at time t = 0 is uniquely determined by an initial
distribution π(0) with πi(0) = P(X0 = i), i ∈ S and the transition probabilities, because every
joint probability can be written as

P
(
Xt1 ∈ A1, . . . , Xtn ∈ An

)
=

=
∑

i0∈S,i1∈A1,..,in∈An

πi0(0)pi0i1(t1)pi1i2(t2 − t1) · · · pin−1in(tn − tn−1) (1.3)

for all 0 < t1 < . . . < tn ∈ T and A1, . . . , An ⊆ S. In particular, the distribution at time t is

πj(t) = P(Xt = j) =
∑
i∈S

πi(0) pij(t) , so π(t) = π(0)P (t) . (1.4)

Example. (RW)

Proposition 1.1 P (0) = Id and the family
(
P (t) : t ≥ 0

)
satisfies the Chapman-Kolmogorov

equations,

P (t+ t′) = P (t)P (t′) for all t, t′, t+ t′ ∈ T . (1.5)

Proof. pij(0) = δij by definition, and for all t, t′, t+ t′ ∈ T

pij(t+ t′) = P(Xt+t′ = j|X0 = i) =

=
∑
k∈S

P(Xt+t′ = j|X0 = i,Xt = k) P(Xt = k|X0 = i) =
∑
k∈S

pik(t) pkj(t′) , (1.6)

using the total probability sum rule, the Markov property and homogeneity. 2
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For discrete time with T = N this leads to

P (n+ 1) = P (1)P (n) = P (n)P (1) ⇒ P (n) = Pn , (1.7)

where we denote P = P (1). Therefore a discrite time Markov chain is uniquely determined by
the initial distribution π(0) and the transition matrix P and in particular

π(n) = π(0)Pn . (1.8)

Example. (RW with various BCs)

For continuous time with T = [0,∞) we require some regularity of the function t 7→ P (t) at
t = 0. We only study processes where it is continuous and differentiable, i.e.

lim
t↘0

P (t) = P (0) = Id and G := lim
t↘0

P (t)− Id
t

exists , (1.9)

so that P (t) = Id+ tG+o(t) for small t. Together with the Chapman-Kolmogorov equations
this implies that

P (t+ ∆t)− P (t)
∆t

=
P (∆t)− Id

∆t
P (t) = P (t)

P (∆t)− Id
∆t

, (1.10)

and thus taking ∆t↘ 0, P (t) is differentiable for all t ≥ 0 and fulfills

d

dt
P (t) = GP (t) = P (t)G ⇒ P (t) = exp(tG) . (1.11)

These are called backward and forward equation, respectively. Subject to the boundary conditions
P (0) = Id, they often have a unique solution given by the matrix exponential

P (t) = exp(tG) =
∞∑
k=0

tk

k!
Gk . (1.12)

For example this is the case if |S| <∞, and subject to certain technical conditions also for inifite
state space S. Therefore a continuous-time Markov chain is uniquely determined by the initial
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distribution and the matrix G which is called the generator of the process.
The distribution at time t is then given by

π(t) = π(0) exp(tG) . (1.13)

What is the meaning of the entries of G and how do the sample paths of X look?

Entries of G. Assume that Xt = i. For small times ∆t we have from (1.12)

pij(∆t) = gij∆t+ o(∆t) for all i 6= j ∈ S . (1.14)

So during a time interval (t, t+ ∆t) the chain jumps from state i to j with probability gij∆t, and
gij ≥ 0 can be interpreted as a jump rate. On the diagonal we have

pii(∆t) = 1 + gii∆t+ o(∆t) for all i ∈ S , (1.15)

which gives the probability that nothing happens in the time interval (t, t+ ∆t). By normalization
we have

1 =
∑
j∈S

pij(∆t) = 1 + ∆t
∑
j∈S

gij ⇒
∑
j∈S

gij = 0 for all i ∈ S . (1.16)

Therefore the diagonal entries of G are

gii = −
∑
j 6=i

gij ≤ 0 for all I ∈ S , (1.17)

and |gii| ≥ 0 can be interpreted as the total rate to leave state i.

Sample paths. Assume that X0 = i and define the holding time

Wi := inf
{
t ≥ 0 : Xt 6= i

}
, (1.18)

i.e. the (random) time until a jump occurs. This is actually independent of t by homogeneity. If i
is absorbing, gij = 0 for all j ∈ S and Wi =∞.

Proposition 1.2 The random variable Wi is exponentially distributed with parameter |gii| and if
|gii| > 0, the probability that the chain jumps to j 6= i after time Wi is gij/|gii|.

Proof. Wi has ’loss of memory’ property, i.e. for all s, u > 0

P(Wi > s+ u|Wi > s) = P(Wi > s+ u|Xs = i) = P(Wi > u) , (1.19)

where we have used the Markov property and homogeneity. Therefore

P(Wi > s+ u) = P(Wi > u) P(Wi > s) . (1.20)

Analogous to the Chapman-Kolmogorov equations (1.5) this can be used to derive a differential
equation for F̄ (s) = P(Wi > s) which has an exponential solution

F̄ (s) = P(Wi > s) = eλs where λ = F̄ ′(0) . (1.21)
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Together with (1.15) we get

F̄ ′(0) = lim
∆t↘0

P(Wi > ∆t)− 1
∆t

= lim
∆t↘0

pii(∆t) + o(∆t)− 1
∆t

= gii ≤ 0 , (1.22)

and therefore P(Wi > s) = e−|gii|s and Wi ∼ Exp(|gii|).
Now the probability that the chain jumps to j, conditioned on the event that it actually jumps
somewhere in the time interval (t, t+ ∆t], is given by

P(Xt+∆t = j|Xt = i,Wi < ∆t) =
P(Xt+∆t = j|Xt = i)
P(Wi < ∆t|Xt = i)

'

' pij(∆t)
1− pii(∆t)

→ gij
−gii

as ∆t↘ 0 . (1.23)

So conditioned on jumping at time t we get the required result. 2

Picture of sample path.

The chain jumps at the jump time Jn =
n−1∑
k=0

WYk
to state Yn = XJn .

Y = (Yn : n ∈ N) is called the jump chain, and it is a discrete time Markov chain with transition
Matrix P Y given by

pYij =
{

0 , i = j
gij/|gii| , i 6= j

if gii > 0 , and pYij = δij if gii = 0 . (1.24)

So a continuous-time Markov chain can also be characterized by its jump chain Y and a sequence
of independent exponentially distributed holding times (WYn : n ∈ N).
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Examples. (Poisson, CTRW)

For the Poisson process there exists also another characterization.

Proposition 1.3 X = (Xt : t ≥ 0) is a Poisson process with rate λ if and only if it has stationary,
independent increments, i.e.

Xt+t′ −Xt′ is distributed like Xt −X0 and independent of (Xs : s ≤ t′) , (1.25)

and for each t, Xt has Poisson distribution with parameter λt, i.e. P(Xt = k) = (λt)k

k! e−λt.

Proof. (differentiate πn(t))

Using the forward equation (1.11) we can also get an evolution equation for the distribution,
d

dt
π(t) = π(0)

d

dt
P (t) = π(0)P (t)G = π(t)G . (1.26)

This is called the Master equation and using (1.17) the coordinate form is given by

d

dt
πi(t) =

∑
j 6=i

(
πj(t) gji − πi(t) gij

)
. (1.27)
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1.2 Stationary distributions and reversibility

Definition 1.2 A probability distribution π∗ is called stationary if π∗P (t) = π∗ for all t ≥ 0.

This will play an important role in the long-time behaviour of Markov chains, since ’often’
π(t)→ π∗. How and when this is true will be seen later.

Proposition 1.4 π∗ is stationary if and only if

π∗P = π∗ for a discrete-time chain with transition matrix P ,

π∗G = 0 for a continuous-time chain with generator G . (1.28)

Proof. Assume finite state space S.For discrete time this follows directly from P (n) = Pn. For
continuous time we have

π∗G = (0, . . . , 0) ⇒ π∗Gk = (0, . . . , 0) for all k ≥ 1

⇒
∞∑
k=1

tk

k!
π∗Gk = (0, . . . , 0) for all t ≥ 0

⇒ π∗
∞∑
k=0

tk

k!
Gk = π∗ for all t ≥ 0 since G0 = Id

⇒ π∗P (t) = π∗ for all t ≥ 0 . (1.29)

The backward direction follows directly from differentiating π∗P (t) = π∗ at t = 0. 2

Theorem 1.5 (Existence)
A Markov chain with finite state space S has at least one stationary distribution.

Proof. Based on linear algebra (an extended version of the Perron-Frobenius Theorem):
Since P and G have row sum 1 and 0, respectively, we have P1 = 1 and G1 = 0, where 1 is the
column vector with all entries 1. So 1 and 0 are eigenvalues of P and G, respectively, and thus
there exist also corresponding left eigenvectors. These can be shown to have non-negative entries
and can be normalized to be a stationary distribution.

Definition 1.3 State i ∈ S communicates with state j ∈ S if pij(t) > 0 for some t ∈ T, and we
write i→ j. States i and j are connected if i→ j and j → i, and we write i↔ j.
The Markov chain is called irreducible if i↔ j for all i, j ∈ S.
A state i is called absorbing, if i 6→ j for all j 6= i.

Remark. The state space of a Markov chain can be decomposed into communicating classes Sk
which are disjoint subsets of connected states such that S = ∪kSk. The chain is irreducible if
there is only one such class S1 = S.

Theorem 1.6 (Uniqueness)
An irreducible Markov chain has at most one stationary distribution.
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Proof. Again based on linear algebra and Perron-Frobenius (see e.g. [GS], Section 6.4). The
irreducible structure of the transition matrix P (discrete time) and the generator G (continuous
time) can be shown to imply that the eigenvector to eigenvalue 1 and 0, respectively, are unique
up to normalization.

Therefore, a finite state, irreducible Markov chain has a unique stationary distribution.

For inifinite state space S the chain can ’disappear at infinity’ and there is no stationary distribution
(see handout).

Examples. (RW with absorbing BC, on Z)

Definition 1.4 A Markov chain (Xt : t ∈ T) is called reverisble w.r.t. π (or π is called reverisble
for (Xt : t ∈ T)) if

πipij(t) = πjpji(t) for all t ∈ T and i 6= j ∈ S . (1.30)

Proposition 1.7 If π is reversible then it is also stationary.

Proof. For all j ∈ S we have
(
πP (t)

)
j

=
∑
i∈S

πipij(t) =
∑
i∈S

πjpji(t) = πj . 2

Proposition 1.8 π is reversible for the Markov chain (Xt : t ∈ T) if and only if it fulfilles the
detailed balance conditions

(discrete time) πipij = πjpji

(continuous time) πigij = πjgji for all i, j ∈ S . (1.31)

Proof. analogous to the proof of Prop. 1.4.
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Proposition 1.9 Let
(
Xt : t ∈ Z

R
)

be a finite state irreducible Markov chain with transition
matrix PX (discrete time) or generator GX (continuous time). Assume further that the chain is
stationary (i.e. Xt ∼ π∗ for all t) which makes it possible to define it also for negative times. Then
the reversed chain Y =

(
Yt : t ∈ Z

R
)

with Yt = X−t is a stationary Markov chain with

transition matrix pYij =
π∗j
π∗i

pXji (discrete time)

generator gYij =
π∗j
π∗i

gXji (continuous time) for all i, j ∈ S . (1.32)

Proof. Using stationarity and the Markov property of X we get for discrete time

P
(
Yn+1 = in+1

∣∣Yn = in, . . . , Y0 = i0
)

=

=
P(Yk = ik, 0 ≤ k ≤ n+ 1)

P(Yk = ik, 0 ≤ k ≤ n)
=

P(XN−k = ik, 0 ≤ k ≤ n+ 1)
P(XN−k = ik, 0 ≤ k ≤ n)

=

=
π∗in+1

pin+1in · · · pi1i0
π∗inpinin−1 · · · pi1i0

=
π∗in+1

pin+1in

π∗in
(1.33)

as required. Continuous time works analogously. 2

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this only
holds for stationary chains. Obviously, π∗ is then also the stationary distribution for the reversed
chain Y .

Prop. 1.9 together with (1.31) implies that a reversible Markov chain and its time-reversal
are indistinguishable, i.e.

(
Yt : t ∈ Z

R
)
∼
(
Xt : t ∈ Z

R
)

since they have the same transition
probabilities

pYij =
π∗j
π∗i

pXji =
π∗i
π∗i

pXij = pXij . (1.34)

An analogous relation holds for rates in continuous time. The detailed balance relations (1.31)
can be a useful tool to find stationary distributions. For certain Markov chains ’without loops’, i.e.
with a ’tree-like’ structure of allowed transitions, every stationary distribution is also reversible.

Examples. (RW with PBC, semi-infinite RW)
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1.3 Ergodicity

Definition 1.5 Consider a Markov chain (Xt : t ∈ T). Suppose that X0 = i ∈ S and define the
return time (or recurrence time) Ti by

Ti := min{n ≥ 1 : Xn = i} (discrete time)

Ti := inf{t ≥ J1 : Xt = i} (continuous time) . (1.35)

The mean recurrence time of state i ∈ S is then µi = E(Ti).

For continuous-time processes the condition of being larger than the first jump time ensures that
Ti is non-zero and gives the time of first return to i after an excursion. Note that Ti = ∞ can
happen with positive probability, e.g. if the chain gets stuck in an absorbing state and does not
return to i. If Ti < ∞ with probability 1 still µi = ∞ is possible, i.e. the distribution of Ti does
have a heavy tail with infinite expectation.

Theorem 1.10 For an irreducible Markov chain with finite state space µi ∈ (0,∞) for all i ∈ S,
and the unique stationary distribution π∗ is given by

π∗i =
1
µi

(discrete time)

π∗i =
E(Wi)
µi

=
1

µi|gii|
(continuous time) , (1.36)

where Wi ∼ Exp(|gii|) is the holding time of state i.

Proof. see e.g. [GS] pp 229 - 230.

In particular, this implies that π∗i > 0 for all i ∈ S and is determined by the average fraction of
the time the chain spends in state i. For discrete-time processes the holding time can be thought
of being 1 (one time step).

Picture of sample path.

Definition 1.6 A discrete time Markov chain is called aperiodic if for all i ∈ S, pii(n) is eventu-
ally positive, i.e.

there exists Ni ∈ N such that pii(n) > 0 for all n ≥ Ni . (1.37)
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Remark. Note that for irreducible Markov chains, aperiodicity implies that for all i, j ∈ S, pij(n)
is eventually positive.

Example. (RW)

Note that for continuous time there is no issue of periodicity, since

if i→ j then pij(t) > 0 for all t > 0 . (1.38)

This is because i→ j is equivalent to

gii1gi1i2 · · · gin−1j > 0 for some i1, . . . in−1 ∈ S, n ∈ N , (1.39)

which implies that pij(t) ≥ pii1(t/n) · · · pin−1j(t/n) > 0 .

Theorem 1.11 An irreducible (aperiodic) Markov chain with finite state space is ergodic, i.e. it
has a unique stationary distribution π∗ and

pij(t) = P(Xt = j |X0 = i)→ π∗j as t→∞ , for all i, j ∈ S . (1.40)

Proof. For discrete time this follows from the Perron-Frobenius Theorem:
If P is the transition matrix of a finite state, aperiodic, irreducible Markov chain then
(i) λ1 = 1 is a single eigenvalue of P
(ii) and the remaining (complex) eigenvalues λ2, . . . , λ|S| satisfy |λj | < 1.
Note that (i) includes uniqueness of the stationary distribution claimed in Theorem 1.6.
Suppose further that all the eigenvalues are distinct, then P can be diagonalized, i.e.

B P B−1 = Λ =

 λ1 . . . 0
...

. . .
...

0 . . . λ|S|

 (1.41)

where the rows of B are the left and the columns of B−1 are the right eigenvectors of P , normal-
ized such that BB−1 = Id. Thus

Pn =
(
B−1ΛB

)n = B−1

 λn1 . . . 0
...

. . .
...

0 . . . λn|S|

B → B−1

 1 . . . 0
...

. . .
...

0 . . . 0

B (1.42)

13



as n → ∞, since λ1 = 1 and |λi| < 1 for all i > 1. Since the first column of B−1 is 1 (right
eigenvector to λ1 = 1), the right-hand side is equal to the matrix 1 0 . . . 0

...
...

. . .
...

1 0 . . . 0

B =

 π∗1 . . . π
∗
|S|

...
π∗1 . . . π

∗
|S|

 which implies the statement. (1.43)

The proof can be extended to more general cases and works similar for continuous time by using
the corresponding jump chain. 2

Remark. Theorem 1.11 implies that for every initial distribution π(0),

π(t) = π(0)P (t)→ π∗ as t→∞ . (1.44)

In general, the distribution at discrete time n is the solution to a linear first order equation. There-
fore it is given by a linear combination of left eigenvectors vi of the transition matrix P the form

π(n) = A1v1λ
n
1 + . . .+A|S|v|S|λ

n
|S| (1.45)

with A1 = 1 and v1 = π∗. As n→∞ all contributions with |λi| < 1 decay, and with λ1 = 1 the
limit is π∗. Analogously, for continuous time

π(t) = π∗etλ1 + . . .+A|S|v|S|e
tλ|S| , (1.46)

where λi ∈ C are the eigenvalues of the generator G with λ1 = 0 and Reλi < 0 for i > 1.

Example. (RW on finite interval)

Theorem 1.12 (Ergodic Theorem)
Let X = (Xt, t ∈ T) be an ergodic Markov chain with unique stationary distribution π∗. Then
for every observable f : S → R

1
t

∫ t

0
f(Xs) ds or

1
N

N∑
n=0

f(Xn) −→ Eπ∗(f) as t,N →∞ . (1.47)

Proof. see e.g. [GS], chapter 9.5

So stationary expectations can be approximated by time averages over long periods. This is
the basis for Markov chain Monte Carlo (MCMC) which is used to sample from the stationary
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distribution of a chain. In particular, using indicator functions f(Xt) = δXt,i the right-hand side
of (1.47) is equal to π∗i . To improve the speed of convergence in practice, the chain is run for a
while before starting to sample (equilibration).

Further remarks on periodicity (non-examinable)
The period d(i) of a state i ∈ S is defined as

d(i) := gcd
{
t ≥ 1 : pii(t) > 0

}
, (1.48)

the greatest common divisor of the epochs at which return is possible.
For an irreducible Markov chain all states have the same period (for a proof see p.224 in [GS]). If
the chain is aperiodic we have d(i) = 1 for all i ∈ S. Note, however, that the requirement d = 1
is weaker than Def. 1.6 and is often used as an alternative definition of aperiodicity.
Ergodicity follows again from a more general version of the Perron-Frobenius Theorem:
If P is the transition matrix of a finite state irreducible Markov chain with period d then
(i) the d complex roots of unity are eigenvalues of P ,

λ1 = w0 = 1, λ2 = w1, . . . , λd = wd−1 where w = e2πi/d , (1.49)

(ii) and the remaining eigenvalues λd+1, . . . , λ|S| satisfy |λj | < 1.

1.4 Countably infinite state spaces

For infinite state space S, the Markov chain can ’get lost at infinity’, and therefore not have a
stationary probability distribution.
Let X0 = i and Ti be the time of first return to state i as defined in Def. 1.5 for continuous and
discrete time.

Definition 1.7 A state i ∈ S is called

transient, if P(Ti =∞) > 0 ,
null recurrent, if P(Ti <∞) = 1 and E(Ti) =∞ ,

positiv recurrent, if P(Ti <∞) = 1 and E(Ti) <∞ . (1.50)

Theorem 1.13 Let X be an irreducible Markov chain. Then all states are either transient, null
recurrent or positive recurrent. X has a unique stationary distribution if and only if it is positive
recurrent. In this case X is also ergodic (subject to aperiodicity in case of discrete time).

Proof. see Section 6.2 in [GS]

Examples. (BD process)
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So the positive recurrent Markov chains behave like chains with finite state space concerning their
stationary distributions and long time behaviour. Transient continuous time chains can get lost at
infinity even in finite time. This phenomenon is called explosion. Define the explosion time

J∞ := lim
n→∞

Jn =
∞∑
i=1

Wi ∈ (0,∞] . (1.51)

This is a random variable that usually takes the value∞, and we say that the chain is non-explosive
if P(J∞ =∞) = 1. For example this is the case if |S| <∞ or supi∈S |gii| <∞.

Example. (birth chain)
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Theorem 1.14 Polya’s Theorem.
The simple random walk (in discrete or continuous time) on S = Zd is null recurrent for d = 1, 2
and transient for d ≥ 3.

Proof. The simplest proof follows an interesting connection between Markov chains and electrical
network theory. Consider a continuous time SRW on Zd with rate q across each bond (discrete
time works analogously). The resistence of a bond is then given by r = 1/q, and Kirchhoff’s laws
apply, i.e. the total resistence r is given by

r = r1 + r2 for resistances in series (sums of waiting times) (1.52)

r =
(
1/r1 + 1/r2

)−1 for resistences in parallel (sums of rates) . (1.53)

Denote by R(n) the total resistence between the origin and the set
{
x ∈ Zd : ‖x‖1 = n

}
, and

by R = limn→∞R(N) the resistence to infinity. It can be shown that the SRW is transient if and
only if R <∞, and a rough estimates gives

R(n) ≈
(
nd−1 1

n

)−1 = nd−2 (1.54)

counting nd−1 parallel paths of length n to reach distance n from the origin. This implies R =∞
for d = 1 and R = 0 for d ≥ 3, for d = 2 a more careful analysis reveals logarithmic corrections
that lead also to R =∞.
For more details and infinite expected return times see e.g. [G]. 2

2 Stochastic particle systems

2.1 Basic examples

Stochastic particle systems, or often also called interacting particle systems (IPS), are Markov
chains where the state space has a particular structure. Let Λ = {1, . . . , L} be a finite set of L
points, which we call lattice. The state space is given by the set of all configurations

η =
(
η(x) : x ∈ Λ

)
∈ S = {0, 1}L

(
often also written as {0, 1}Λ)

)
, (2.1)

where η(x) = 1 is interpreted as the presence of a particle or an infection at site x. The dynamics
of the IPS we consider is given by local continuous-time transitions of the following two kinds:

η → ηx with rate c(η, ηx) ,
η → ηxy with rate c(η, ηxy) (2.2)

for all x, y ∈ Λ, where we use the shorthand notation

ηx(z) =
{

η(z) , z 6= x
1− η(x) , z = x

and ηxy(z) =


η(z) , z 6= x, y
η(y) , z = x
η(x) , z = y

, (2.3)

so that ηx corresponds to creation/annihilation of a particle at site x and ηxy to motion of a particle
between x and y. In the following qx,y ≥ 0 will be transition rates of a continuous time random
walk on Λ, and (Λ, Q) can be interpreted as a graph with adjacency matrix Q = (qx,y : x, y ∈ Λ).
To avoid degeneracies we will always assume that

the walk on Λ with rates qx,y is irreducible , (2.4)

so that particles/infections can reach all parts of the lattice.
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Definition 2.1 Let qx,y ∈ {0, λ} for all x, y ∈ Λ with infection rate λ > 0, and write x ∼ y if
qx,y = λ. The contact process (CP) is an IPS with rates

c(η, ηx) = η(x) + λ
(
1− η(x)

)∑
y∼x

η(y) for all x ∈ Λ . (2.5)

Sites with η(x) = 1 are interpreted as being infected and recover independently at rate 1, and
healthy sites with η(x) = 0 get infected by each of their neighbours independently at rate λ. A
short way of writing this is

1 1−→ 0 and 0
λ#IN−→ 1 . (2.6)

Properties.

• The CP has one absorbing state, η = 0 = (0, . . . , 0) (all healthy), and is not irreducible.
For finite Λ 0 can be reached from all η ∈ S and therefore π∗ = δ0 is the unique stationary
distribution and

π(t) t→∞−→ δ0 for all λ ≥ 0 and all initial conditions π(0) . (2.7)

Therefore, the CP on finite lattices is ergodic and the infection eventually dies out.

• For infinite Λ, it can be shown that there exists another stationary distribution π∗ with
ρ = Eπ∗

(
η(x)

)
> 0 where the infection persists, provided that the infection rate λ is

greater than a critical value λc. The loss of ergodicity in infinite system limits is also called
ergodicity breaking. Depending on the lattice structure there can be further different cases,
for details see e.g. [G].

Graphical construction.
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Definition 2.2 The (linear) voter model (VM) is an IPS with rates

c(η, ηx) =
∑
y∼x

qx,y

(
η(x)

(
1− η(y)

)
+
(
1− η(x)

)
η(y)

)
for all x ∈ Λ . (2.8)

η(x) = 0, 1 are interpreted as two opinions, and x adopts the opinion of y independently at rate
qx,y, in short

1x0y
qx,y−→ 0x0y and 0x1y

qx,y−→ 1x1y . (2.9)

Properties.

• The linear VM is symmetric under relabelling opinions 0 ↔ 1 and is dual to a system of
coalescing random walkers, which can be seen from the graphical construction in reversed
time (see below).

• The VM is not ergodic and has two absorbing states η = 0, 1 (all of the same opinion). It is
therefore also not ergodic (even on finite lattices), and

π(t) t→∞−→ αδ0 + (1− α)δ1 where α ∈ [0, 1] depends on the initial conditions.(2.10)

Eventually only one opinion will survive, and the r.h.s. denotes all stationary distributions
of the finite process.

• For inifinite Λ there may be other stationary distributions π∗ with ρ = Eπ∗
(
η(x)

)
∈ (0, 1)

where both opinions persist.

• There are many generalizations of the linear VM, including non-linear majority rules or
models with more than two opinions such as the Axelrod model.

Graphical construction.
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Definition 2.3 The exclusion process (EP) is an IPS with rates

c(η, ηxy) = qx,yη(x)
(
1− η(y)

)
for all x, y ∈ Λ . (2.11)

So particles (η(x) = 1) jump to empty sites (η(y) = 0) independently with rate qx,y, in short

1x0y
qx,y−→ 0x1y . (2.12)

For Λ ⊆ Zd and qx,y > 0 only for nearest neighbours x ∼ y the EP is called simple (SEP). If in
addition qx,y = qy,x for all x, y ∈ Λ it is called symmetric (SSEP), otherwise asymmetric (ASEP).
If d = 1 and qx,y = qδx+1,y it is called totally asymmetric (TASEP).

Properties.

• The EP conserves the number of particles and is therefore not irreducible on the state space
S = {0, 1}Λ. On the subspaces

SN =
{
η :
∑
x∈Λ

η(x) = N
}

for N = 0, . . . , L (2.13)

the EP is irreducible and ergodic with a unique stationary distribution π∗L,N .

• Of particular importance for systems with a conserved quantity is the corresponding station-
ary current

jx,y := Eπ∗L,N

(
c(η, ηxy)

)
= qx,y Eπ∗L,N

(
η(x)(1− η(y))

)
. (2.14)

For the spatially homogeneous SEP with qx,y = qδx∼y the stationary distributions factorize
for large system size and this simplifies to

jx,y ≡ j(ρ) = qρ(1− ρ) with particle density ρ = N/L ∈ [0, 1] . (2.15)

• The ASEP is one of the most studied so-called driven diffusive systems in non-equilibrium
statistical mechanics and has various connections to many other models, such as surface
growth, directed percolation or random polymer models.

Graphical construction.
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General properties of the time evolution of IPS.
Let us focus on IPS with flip dynamics such as CP and VM, transport systems like the EP can be
treated analogously. Due to the local dynamics, the master equation of an IPS with state space
S = {0, 1}Λ can be written as

d

dt
πη(t) =

∑
x∈Λ

(
πηx(t) c(ηx, η)− πη(t) c(η, ηx)

)
for all η ∈ S . (2.16)

This is the coordinate form of the general vector equation d
dtπ(t) = π(t)G, and the r.h.s. provides

a compact notation for the generator G with intuitive gain and loss terms. Due to the fact that only
one site can flip at a time, most of the entries of G are 0.

To get an equation for the time evolution of an observable f : S → R, we note that

Eπ(t)(f) =
∑
η∈S

πη(t) f(η) = π(t) ◦ f (2.17)

can be written as a scalar product. Using the master equation we get

d

dt
Eπ(t)(f) =

(
π(t)G

)
◦ f = π(t) ◦ (Gf) = Eπ(t)(Gf) . (2.18)

When acting on the observable f (column vector) rather than the distribution π(t) (row vector)
one often also writes L for the generator of the process as an operator on observables. The action
on f leads to another function Lf (column vector) and takes a particularly simple form:

(Lf)(η) =
∑
x∈Λ

c(η, ηx)
(
f(ηx)− f(η)

)
, (2.19)

which can be interpreted as a discrete derivative of the function f under the dynamics of the pro-
cess. There is a fully developed mathematical theory of generators and corresponding semigroups
for stochastic particle systems, see [G] and references therein for details.

Example. (number of infections for CP)
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For a general continuous-time Markov chain on a state space S with jump rates gij as introduced
in Section 1, the generator is given by

Lf(i) =
∑
j∈S

gij
(
f(j)− f(i)

)
, i ∈ S , (2.20)

for all functions f : S → R. Like the master equation, this also has an intuitive interpretation as
a ’discrete derivative’ describing the change of f under all possible jumps out of state i weighted
by the jump rates.

2.2 The Ising model and Markov chain Monte Carlo

The Ising model is a very basic model for magnetic behaviour from Statistical Mechanics. The
state space is given by S = {−1, 1}Λ and configurations are denoted by σ = (σx : x ∈ Λ),
consisting of spin variables σx = ±1 interacting on a lattice (or graph) Λ. The interaction is
defined by an energy function (or Hamiltonian) H : S → R, and the equilibrium distribution of
the spins is given by

π(σ) =
1
Z
e−βH(σ) where Z =

∑
σ∈S

e−βH(σ) (2.21)

is the normalizing constant called partition function. β ≥ 0 is interpreted of the inverse tempera-
ture in the system, and for

β →∞ very low temperature ⇒ π concentrates on lowest energy configurations ,

β → 0 very high temperature ⇒ π becomes uniform (energy irrelevant) .

The distribution (2.21) is also called the Gibbs distribution, and can be postulated from general
principles of equipartition of energy in a physical system in equilibrium without referring to any
dynamics.

The Hamiltonian for the Ising model is given by

H(σ) = −
∑
x,y∈Λ

Jxyσ(x)σ(y) (2.22)

where the coupling constants Jxy determine the interaction of the spins on the graph Λ. The
classical situation is to consider a regular lattice Λ ⊆ Zd with nearest neighbour interaction

Jxy =
{

1 , x ∼ y
0 , otherwise

. (2.23)

The goal is now to compute expected values w.r.t. the Gibbs distribution (2.21) for the Ising model,
which is not a simple task since the σ(x) are correlated due to the interaction in the Hamiltonian,
and the the size of the state space |S| = 2L is huge even for moderate lattice sizes L = 100. The
trick is to invent a Markov chain (σt : t ≥ 0) (often also done in discrete time) with stationary
distribution π, and use the Ergodic Theorem to sample from π. This method is called Markov
chain Monte Carlo, and the conditions on (σt : t ≥ 0) usually imposed are the following:
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• it should be ergodic, i.e. irreducible on S (which is large, but finite)

• it should be reversible w.r.t. π, i.e. the rates c(σ, σ′) fulfill the detailed balance relations

c(σ, σ′)e−βH(σ) = c(σ′, σ)e−βH(σ′) for all σ, σ′ ∈ S . (2.24)

In fact, stationarity would be enough, but reversibility is easier to implement via detailed
balance.

To ensure both conditions, one usually restricts to local (spin flip) dyanmics analogous to
stochastic particle systems, where only single spins are flipped σ → σx with rates c(σ, σx). The
most basic choices are

• the heat bath algorithm, with

c(σ, σx) =
eβH(σ)

eβH(σ) + eβH(σx)
∈ (0, 1) , (2.25)

where the system is sampled at rate 1 and proposed flips are accepted with probability
c(σ, σx). This can be motivated on physical grounds (coupling to a heat bath), but has the
disadvantage that the sampling rate is higher than necessary and acceptance probabilities
are typically < 1.

• the Metropolis algorithm, with

c(σ, σx) =
{
e−β(H(σx)−H(σ)) , if H(σx) > H(σ)

1 , if H(σx) ≤ H(σ)
∈ (0, 1] , (2.26)

i.e. the system is sampled at rate 1 and whenever a proposed flip does not increase the
energy it is accepted with probability 1, otherwise with probability < 1. Therefore, imple-
mentations of this algorithm are in general faster than the heat bath algorithm.

There are more involved non-local dynamics where whole clusters of spins are flipped (e.g. Swendsen-
Wang algorithm) which are much faster than either of the above when the system is close to a phase
transition.
The phase transition observed in the Ising model is that for dimensions d ≥ 2 there exists a finite
critical temperature Tc = 1/βc ∈ (0,∞), such that for β > βc (small temperature) the system
exhibits a spontaneous magnetization m∗ 6= 0 in the limit L → ∞. Precisely, there exist two
limiting Gibbs measures π+ and π−, such that Eπ±(σ(x)) = ±m∗ 6= 0, and the limit of π will
be given by a mixture of those (which depends in general on the boundary conditions). On the
other hand, for β < βc (high temperature) there exists only one limit π0 with Eπ0(σ(x)) = 0
(uniqueness of the Gibbs measure).

Picture.
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3 Processes with continuous state space

3.1 Brownian motion and the Central limit theorem

Let Y1, Y2, . . . ∈ R be iidrvs with mean E(Yi) = 0 and variance var(Yi) = σ2 > 0. Then define
the discrete-time process

Xn :=
n∑
i=1

Yi with X0 = 0 . (3.1)

For example if Yi ∼ U
(
{−1, 1}

)
thenX is a simple symmetric random walk. Then by the Central

Limit Theorem (CLT) as n→∞

Xn√
n
→ ξ ∼ N(0, σ2) (Gaussian rv with mean 0 and variance σ2) , (3.2)

or, equivalently, for all y ∈ R

P
(Xn√

n
≤ y
)
→
∫ y

−∞

1√
2πσ2

e−x
2/(2σ2)︸ ︷︷ ︸

fX(x)

dx with Gaussian pdf fX(x) . (3.3)

We can use the CLT to look at the process Xn in rescaled time t = n∆t and space b = x∆b.
According to CLT (3.2), with ∆t ∼ 1/nwe should choose ∆b ∼ 1/

√
n =
√

∆t so that ∆bX[t/∆t]

converges to a t-dependent random variable as ∆t→ 0. We define

Bt := lim
∆t→0

√
∆tX[t/∆t] = lim

∆t→0

√
t√

t/∆t

[t/∆t]∑
i=1

Yi =
√
t ξt ∼ N(0, tσ2) . (3.4)

Here the ξt ∼ N(0, 1) are different for each t, but they are certainly not independent. The relation
between time and space rescaling which follows from the CLT can be summarized as

t = ∆t n , b = (∆b)x with ∆b = ∆α
t , α = 1/2 . (3.5)

On all other spatial scales, the limiting process does either not exist or is degenerate,

Bt = 0 for α > 1/2 , Bt is not well defined for α < 1/2 . (3.6)
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Distributional properties of the process B = (Bt : t ≥ 0).

B0 = 0 , Bt ∼ N(0, tσ2) and analogously to (3.4)

Bt −Bs = lim
∆t→0

√
∆t

[t/∆t]∑
i=[s/∆t]

Yi ∼ N(0, (t− s)σ2) (3.7)

for all t ≥ s ≥ 0. SoB has stationary increments, i.e. Bt−Bs ∼ Bt−s−B0, and by independence
of the Yi, B has independent increments, i.e.

Bt −Bs is independent of {Bu : u ≤ s} for all t ≥ s ≥ 0 . (3.8)

Regularity properties of a sample path.
From (3.4) we expect for Brownian motion

Bt+h −Bt =
√
h ξ ∼ N(0, hσ2)→ 0 as h→ 0 . (3.9)

Therefore Brownian sample paths are continuous (and more precisely, Hölder continuous with
index 1/2). But they are nowhere differentiable, since

Bt+h −Bt
h

=
σ√
h
ξ has no limit as h→ 0 . (3.10)

These properties do not follow from (3.7) and (3.8), which can be fulfilled also by discontinuous
processes. But under the restriction that t 7→ Bt(ω) is a continous function of t for all ω ∈ Ω, BM
can be shown to be a well defined stochastic process (see end of this section for further remarks).

Examples of sample paths.
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Definition 3.1 A real-valued process B = (Bt : t ≥ 0) with continuous paths and stationary
independent increments, such that Bt ∼ N(0, t) for all t ≥ 0, is called a standard Brownian
motion (BM) or Wiener process.

It suffices to look at standard BMsB with σ2 = 1 andB0 = 0, then σB+x0 is a BM with variance
σ2 starting in x0. Note also that if the increments Yi in (3.2) are not identically distributed or
weakly dependent, the CLT still holds under more general conditions (see e.g. Gardiner, Section
2.8.2). So Brownian motion is the natural scaling limit for a very general class of models.

Definition 3.2 A d-dimensional standard Brownian motion B = (Bt : t ≥ 0) is a collection of d
independent one-dimensional BMs B1, . . . , Bd as given in Def. 3.1, i.e.

Bt = (B1
t , . . . , B

d
t ) for all t ≥ 0 . (3.11)

So the pdf of the increments Bt −Bs is ft−s(x) = (2π(t− s))−d/2 exp
(
− ‖x‖22

2(t−s)

)
.

3.2 General properties

This chapter is about processes with continuous state space S = R or Rd and continuous time
T = [0,∞). This is mathematically more complicated than Markov chains, and we will discuss
some of the technical issues below. On the other hand, the sample paths are now real valued
functions, our state space has an analytic structure and we will be able to use concepts from usual
calculus.

For example we will often integrate over sets A ∈ R of possible values with respect to the
distribution function F (x) = P(X ≤ x) of a random variable X , e.g.

P(X ∈ A) =
∫
A
dF (x) =

∫
A
f(x) dx where f = F ′ is the pdf (if it exists) . (3.12)

Technical side remark: This cannot be done for all sets A ⊆ R but only for A ∈ A, where
A ( P(R) is a so-called σ-algebra. This is a set of measurable sets where the measure dF (x)
can be consistently defined on.

Characterization of processes on R.
As for Markov chains, the distributional properties of a general stochastic process are deter-
mined by fixing all finite-dimensional distributions (fdds)

Ft1,..,tn(x1, . . . , xn) = P
(
Xt1 ≤ x1, . . . , Xtn ≤ xn

)
, (3.13)

for all t1, . . . , tn ∈ [0,∞), ti 6= tj , x1, . . . , xn ∈ R and n ∈ N. We focus here on the state space
S = R where the fdds are given by joint distribution functions F as above, in principle this can be
extended to more general state spaces.

In contrast to Markov chains, for continuous state space the fdds do not determine the process
uniquely. Two processes with the same fdds are called versions of each other, and their sample
paths can have very different properties. This fact cannot be ignored, since it is very important
when studying properties such as first-passage times (first random time to enter a given set). One
is usually interested in the most regular version of the process (in order to avoid complications)
and there are basically two classes of processes that are usually considered.
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• Diffusion processes (see Section 2.4) have continuous sample paths, i.e. t 7→ Xt(ω) ∈
C
(
[0,∞),R

)
, and the most basic example is Brownian motion.

• More generally, if one wants to allow for discontinuities in the sample paths (such as Lévy
processes or as a special case also continuous time Markov chains), one restricts to the
following class of paths:

Definition 3.3 A real-valued, continuous-time process X is called càdlàg if its sample paths are
right continuous (continue à droite) and have left limits (limite à gauche), i.e.

lim
s↘t

Xs(ω) = Xt(ω) and lim
s↗t

Xs(ω) exists , for all ω ∈ Ω, t ∈ [0,∞) . (3.14)

Example. (Lévy processes)

Description of the dynamics.
The transition probabilities of a Markov chain can also be generalized.

Definition 3.4 Let X be a stochastic process on R. The conditional distribution function

F (t, x|s, y) = P(Xt ≤ x|Xs = y) , (3.15)

is called the transition kernel of X . If it has a density we call this the transition density,

f(t, x|s, y) =
∂F

∂x
(t, x|s, y) . (3.16)

Note that for a homogeneous process, the kernel is actually only a function of t− s.

Proposition 3.1 The fdds of a Markov process are uniquely determined by the transition kernels
and the initial distribution.

Proof. Sample calculation for 0 ≤ t1 ≤ t2 with densities using the Markov property,

P
(
Xt1 ≤ x1, Xt2 ≤ x2

)
=
∫ x2

−∞

∫ x1

−∞

∫ ∞
−∞

f(0, x) f(t1, y|0, x) f(t2, z|t1, y) dx dy dz .

2
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Example.

Proposition 3.2 Let B be a standard BM. For all t1, . . . , tn, n ∈ N

(Bt1 , . . . , Btn) ∼ N(0,Σ) with σij = min{ti, tj} , (3.17)

i.e. the fdds for BM are multivariate Gaussian with zero mean and covariance matrix Γ = (σij)i,j .
In general, processes X with Gaussian fdds are called Gaussian processes, and are characterized
by their mean m(t) = E(Xt) and covariance function σ(s, t) = cov(Xs, Xt).
Conversely, if X is a Gaussian process with covariance function σ(s, t) = min{s, t}, then X is a
standard BM.

See Hand-out 3 for details on the PDF for multivariate Gaussians.

Proof. For standard BM Bt ∼ N(0, t) and it suffices to show that cov(Bs, Bt) = min{s, t}. Take
s < t, then

E(BsBt) = E
(
B2
s +Bs(Bt −Bs)

)
= E(B2

s ) + 0 , (3.18)

since B has independent increments and E(Bs) = 0. Thus cov(Bs, Bt) = var(Bs) = s . On
the other hand, for a Gaussian process X with covariances σ(s, t) = min{s, t} we have for t > s
and all u ≤ s

E
(
(Xt −Xs)Xu

)
= E(XtXu)− E(XsXu) = u− u = 0 , (3.19)

so the incrementsXt−Xs are uncorrelated with (Xu : u ≤ s). So the joint distribution ofXt−Xs

and Xu is multivariate Gaussian with vanishing covariances, so they are in fact independent.
(Note that in general uncorrelated rvs could still be dependent, only for Gaussian rvs these con-
cepts are equivalent, since they are fully characterized by their means and covariances.)
Finally, Xt −Xs is Gaussian with mean 0 and variance (for s < t)

var(Xt −Xs) = var(Xt) + var(Xs)− 2cov(Xt, Xs) = t+ s− 2s = t− s , (3.20)

so the increments are also stationary. 2
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Further non-examinable remarks.

Theorem 3.3 If a collection {Ft} of fdds fulfills the Kolmogorov consistency relations

Ft,tn+1(x, xn+1) → Ft(x) as xn+1 →∞ , and

FΠt(Πx) = Ft(x) for all permutations Π of (1, . . . , n) , (3.21)

then there exists a stochastic process X = (Xt : t ≥ 0) (on some probability space Ω) that has
fdds {Ft}. Here we use the notation t = (t1, . . . , tn) and x = (x1, . . . xn).

Proof. Is related to the Skorohod representation theorem. Basically one takes Ω to be the path
space of the process. Some hints are given in [GS] Section 8.6

Existence and uniqueness of standard BM with the properties in Definition 3.1 has been established
by Wiener, via a measure on path space.

Theorem 3.4 Existence and Uniqueness of Brownian motion (Wiener)
There exists a unique probability measureW on the path space C

(
[0,∞),R

)
(called the Wiener

measure), such that the process with sample paths distributed according toW has the properties
of Brownian motion as defined in 3.1.

Proof. see e.g. Rogers and Williams, Section I.6

3.3 Brownian motion and the heat equation

We are looking for an evolution equation for the transition densities, analogous to the master
equation for Markov chains. First we will derive it for Brownian motion as scaling limit from the
simple random walk.

Let (Xn : n ∈ N) be a simple random walk. Then the distribution at time n is given by
π(n+ 1) = π(n)P , which can be written in the following incremental form

π(n+ 1)− π(n) = π(n)(P − Id) , (3.22)

where P − Id is proportional to the discrete Laplacian ∆,

P − Id =


. . . . . . . . .

1
2 −1 1

2
. . . . . . . . .

 =
1
2


. . . . . . . . .

1 −2 1
. . . . . . . . .

 =
1
2

∆ . (3.23)

In coordinate form (3.22) this equation looks like

πk(n+ 1)− πk(n) =
1
2
(
πk−1(n)− 2πk(n) + πk+1(n)

)
(3.24)

In the previous section we saw that under the scaling t = ∆t n, x = ∆x k with ∆x =
√

∆t ,
∆xX[t/∆t] → Bt converges to Brownian motion as ∆t → 0. Therefore, we expect that πk(n)
converges to the pdf f(t, x) of Bt, i.e.

lim
∆t→0

1
∆x

πx/∆x(t/∆t) = f(t, x) = (2πt)−1/2 exp
(
− x2/(2t)

)
. (3.25)
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Here 1/∆x = 1/
√

∆t is the volume element to turn the probability πk(n) into a density.

Plugging the scaling into the discrete-time Master equation (3.24), we can derive a differential
equation for f . We assume that for large n, k (i.e. small ∆t, ∆x), πk(n) is approximately given
by

πk(n) ' ∆x f
(
n∆t, k∆x

)
= ∆x f(t, x) . (3.26)

Then we get by Taylor expansion

πk±1(n)
∆x

' f(t, x±∆x) = f(t, x)±∆x
∂f(t, x)
∂x

+
(∆x)2

2
∂2f(t, x)
∂x2

+O
(
(∆x)3

)
πk(n+ 1)

∆x
' f(t+ ∆t, x) = f(t, x) + ∆t

∂f(t, x)
∂t

+O
(
(∆t)2

)
. (3.27)

Thus with ∆x =
√

∆t (otherwise the limit is again degenrate) equation (3.24) leads to

∂

∂t
f(t, x) = lim

∆t→0

πk(n+ 1)− πk(n)
∆t∆x

= lim
∆t→0

1
2∆t∆x

(
πk−1(n)− 2πk(n) + πk+1(n)

)
=

= lim
∆t→0

(∆x)2

2∆t
∂2

∂x2
f(t, x) +O

(
∆t/∆x

)
=

1
2
∂2

∂x2
f(t, x) . (3.28)

So since standard BM starts in the origin, its pdf fulfills

∂

∂t
f(t, x) =

1
2
∂2

∂x2
f(t, x) with initial condition f(0, x) = δ0(x) . (3.29)

This PDE is the so-called heat equation (or diffusion equation) which has been well studied, and
indeed (3.25) is its unique solution.
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Note that f(t, x) = f(t, x|0, 0) is in fact a transition density with special initial conditionX0 = 0.
Since BM and the heat equation are time-homogeneous, an analogous derivation conditioned on
Bs = y gives the same equation for the transition density f(t, x|s, y) with the more general initial
condition f(s, x|s, y) = δy(x) (where s is the new starting point in time).

Indeed, as we have seen before Bt −Bs ∼ N(0, t− s) for t ≥ s, and therefore the transition
density is given by

f(t, x|s, y) =
(
2π(t− s)

)−1/2 exp
(
− (x− y)2

2(t− s)

)
. (3.30)

f(t, x|s, y) is also called the heat kernel, since for s = 0 it is the fundamental solution to that PDE
(3.29). That means that for every intial distribution f(0, y) we have

f(t, x) =
∫

R
f(t, x|0, y) f(0, y) dy . (3.31)

We can also derive (3.29) from the master equation (1.27) of a continuous-time Markov chain,
by rescaling space as x = ∆x k with ∆x→ 0, and speeding up the process to see a time evolution
on the macroscopic scale t′ = (∆x)2t. In these derivations the exact structure of the generator G
or P − Id is not important and this equation holds for a whole class of processes, including e.g.
symmetric jumps of finite range, which will just influence the prefactor of the Laplacian.

3.4 Diffusion processes and Fokker-Planck equations

Definition 3.5 A Markov processX is called a diffusion process, if it has continuous sample paths
and as h↘ 0

E
(
Xt+h −Xt

∣∣Xt = x
)

= a(t, x)h+ o(h) ,
E
(
(Xt+h −Xt)2

∣∣Xt = x
)

= b(t, x)h+ o(h) , (3.32)

for some functions a(t, x) ∈ R (drift coefficient) and b(t, x) ≥ 0 (diffusion coefficient).

The distributional properties are uniquely characterized by the drift and the diffusion coefficient.

Theorem 3.5 LetX be a diffusion process with drift a(t, x) and diffusion coefficient b(t, x). Then
the transition density f = f(t, x|s, y) exists and satisfies the (forward) Fokker-Planck equation

∂f

∂t
= − ∂

∂x

(
a(t, x) f

)
+

1
2
∂2

∂x2

(
b(t, x) f

)
(3.33)

for all 0 ≤ s ≤ t, x, y ∈ R. In particular, this equation holds also for the density

f(t, x) =
∫

R
f(t, x|0, y) f(0, y) dy (3.34)

with general initial conditions f(0, y).

Proof. by Taylor expansion for observables (see hand-out 6 if you are interested).

The Fokker-Planck equation is often written in the short form ∂
∂t f = L∗f ,

with the (adjoint) generator(
L∗f

)
(t, x) = − ∂

∂x

(
a(t, x) f

)
+

1
2
∂2

∂x2

(
b(t, x) f

)
. (3.35)
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Examples. (BM with drift, OU process)

Stationary pdfs f∗(x) of a time-homogeneous diffusion process with constant drift a(x) and
diffusion b(x) are given by stationary solutions to (3.33), i.e.

0 = − ∂

∂x

(
a(x) f∗(x)

)
+

1
2
∂2

∂x2

(
b(x) f∗(x)

)
. (3.36)

Integrating (3.36) and denoting the derivative by ′ we get under mild regularity assumptions on
a(x) and b(x) (see also later remarks)

0 = −
∫ x

−∞

(
a(y) f∗(y)

)′
dy +

1
2

∫ x

−∞

(
b(y) f∗(y)

)′′
dy =

= −a(x) f∗(x) +
1
2
(
b(x) f∗(x)

)′ (+const.) (3.37)

Under the assumption that f∗(x) vanishes sufficiently fast as x→ −∞ we can ignore the bound-
ary terms and the above constant vanishes. If we consider processes on other state spaces, such as
S = [0, 1] with boundary conditions, this has to be taken into account in the derivation. The above
is a first order linear differential equation and differentiating with the product rule we get

f∗′(x) =
2a(x)− b′(x)

b(x)
f∗(x) . (3.38)

So the solution is

f∗(x) = f∗(0) exp
(∫ x

0

2a(y)− b′(y)
b(y)

dy
)

(3.39)
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where f∗(0) is fixed by normalization
∫

R f
∗(x) dx = 1.

Examples. (BM with drift, OU process)

Time evolution of observables.
Let (Xt : t ≥ 0) be a diffusion process on S = R and g : S → R be an observable, such as
g(x) = x. Then the expected value

E
(
g(Xt)

)
=
∫

R
g(x) f(t, x) dx (3.40)

obeys the following evolution equation (using the notation (3.35)),

d

dt
E
(
g(Xt)

)
=
∫

R
g(x)

∂f(t, x)
∂t

dx =
∫

R
g(x) (L∗f)(t, x) dx =

=
∫

R
(Lg)(t, x) f(t, x) dx = E

(
(Lg)(Xt)

)
. (3.41)

This follows from integration by parts, since∫
R
g(x)

∂

∂xi

(
ai(t, x) f(t,x)

)
dx = −

∫
R

( ∂

∂xi
g(x)

)
ai(t, x) f(t, x)dx , (3.42)

where we again assume that f(t, x) → 0 as |x| → ∞ sufficiently fast, so that we can ignore the
boundary terms. For the diffusion part this can be done twice and leads to

L = a(t, x)
∂

∂x
+

1
2
b(t, x)

∂2

∂x2
. (3.43)
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This operator is called the generator of the process (Xt : t ≥ 0) and describes the expected time
evolution of observables. Mathematically, L∗ acting on the PDF is the adjoint operator to L on the
Hilbert space L2. It is often simpler to work with the generator L rather than the adjoint L∗, and
therefore diffusion processes are typically characterized by defining their generator.

Examples.
The time evolution of the mean mt = E(Xt) is given by choosing g(x) = x and computing
Lx = a(t, x), which gives

d

dt
E(Xt) = E

(
a(t,Xt)

)
. (3.44)

This is not very surprising when looking at the definition 3.5 of diffusion processes. For the second
moment with g(x) = x2 we get Lx2 = 2xa(t, x) + b(t, x) and thus

d

dt
E(X2

t ) = 2E
(
Xt a(t,Xt)

)
+ E

(
b(t,Xt)

)
, (3.45)

so the drift also influences the time evolution of higher moments.

(OU process)
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3.5 Further remarks (non-examinable)

Diffusion processes can be generalized to higher dimensions. X in Rd is called a diffusion process
if in addition to the continuity property analogous to Definition 3.5

E
(
Xt+h −Xt

∣∣Xt = x
)

= a(t,x)h+ o(h) ,

E
(
(Xt+h −Xt)(Xt+h −Xt)T

∣∣Xt = x
)

= b(t,x)h+ o(h) , (3.46)

with drift vector a(t, x) ∈ Rd and diffusion matrix b ∈ Rd×d, where

bij = E
(
(Xi

t+h −Xi
t)(X

j
t+h −X

j
t )
∣∣Xt = x

)
. (3.47)

This is the covariance matrix of the increments of the process. The Fokker-Planck equation for
f = f(t,x) is now given by

∂f

∂t
= −

d∑
i=1

∂

∂xi

(
ai(t,x) f

)
+

1
2

d∑
i,j=1

∂2

∂xi∂xj

(
bij(t,x) f

)
= L∗f . (3.48)

where the right-hand side defines a linear operator L∗ on the set of functions f : Rd → R. L∗ is
called the (adjoint) generator of the process X and is the analogous quantity of the generator of a
continuous-time Markov chain.

Definition 3.6 Let X be a diffusion process with time-independent drift a(x) and diffusion b(x).
V : Rd → R is called a potential for X, if a(x) = −∇V (x). If bij(x) = b δij we call X a
(noise-perturbed) gradient flow.

The Fokker-Planck equation of a gradient flow is given by

∂f(t,x)
∂t

= ∇ ·
(
(∇V (x)) f(t,x)

)
+
b

2
∆f(t,x) . (3.49)

Examples. (all 1D processes and OU)

Proposition 3.6 Assume that V : Rd → R is smooth and that

Z :=
∫

Rd

e−2V (x)/b ddx <∞ . (3.50)
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Then the diffusion process X with (3.48) is ergodic. The unique stationary distribution is the Gibbs
distribution with density

f∗(x) =
1
Z
e−2V (x)/b , (3.51)

and the normalization factor Z is called partition function.

Proof. We have from (3.51)∇f∗ = −2
b (∇V ) f∗ and thus

b

2
∆f∗ =

b

2
∇ · (∇f∗) = −∇ ·

(
(∇V ) f∗

)
. (3.52)

Substituting this in (3.49) the right-hand side vanishes L∗f∗ = 0, and f∗ is stationary.
Uniqueness and ergodicity follow from the fact gradient flows fulfill general conditions such that
the Fokker-Planck equation (3.49) has a unique (time-dependent) solution. 2

Examples.

Defining the probability current J(f) with i-th component

Ji(x, f) := ai(x) f − 1
2

d∑
j=1

∂

∂xj

(
bij(x) f

)
, (3.53)

the Fokker-Planck equation (3.48) can be written as a continuity equation

∂f(t,x)
∂t

+∇x · J
(
x, f(t,x)

)
= 0. (3.54)
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Integrating this equation over a domain A ⊆ Rd and using integration by parts like above we get

∂

∂t

∫
A
f(t,x) ddx = −

∫
A
∇x · J

(
x, f(t,x)

)
ddx = −

∫
∂A

J
(
x, f(t,x)

)
· dS . (3.55)

The second identity follows from Stokes’ theorem (also called Gauss’ integration theorem).
If A = Rd or the system is closed in A then J

(
x, f(t,x)

)
= 0 for all x ∈ ∂A. So the right-hand

side of (3.55) vanishes and the total probability is conserved, i.e.

P(Xt ∈ A) =
∫
A
f(t,x) ddx = 1 . (3.56)

An important class of diffusion processes with direct connections to statistical mechanics are
noise-perturbed gradient flows.

For time-independent drift a(x) and diffusion b(x) existence and uniqueness of the initial value
problem

∂f(t,x)
∂t

= (L∗f)(t,x) , f(0,x) = f0(x) , (3.57)

is well understood under the assumption of uniform ellipticity, i.e.

ξ b(x) ξT =
d∑

i,j=1

bij(x) ξi ξj ≥ α‖ξ‖22 for some α > 0 and all ξ ∈ Rd . (3.58)

Theorem 3.7 Under the assumption (3.58) and the growth conditions

f0(x) ≤ Ceα‖x‖22 ,
∣∣∣∂ai(x)
∂xi

∣∣∣ ≤ C1

(
1 + ‖x‖22

)
,
∣∣∣∂2bij(x)
∂xi∂xj

∣∣∣ ≤ C2

(
1 + ‖x‖22

)
(3.59)

for some constants C,C1, C2 > 0, the initial value problem (3.57) has a unique classical
C1,2

(
(0,∞),Rd

)
solution.
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4 Some stochastic calculus

4.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equations. LetX be a diffusion
process in R with drift a(t, x) and diffusion coefficient b(t, x) = σ2(t, x) given by

E
(
Xt+h −Xt

∣∣Xt = x
)

= a(t, x)h+ o(h) ,
E
(
(Xt+h −Xt)2

∣∣Xt = x
)

= σ2(t, x)h+ o(h) . (4.1)

In general for a random variable Y with mean µ and variance σ2 we can write

Y = µ+ σξ where ξ =
Y − µ
σ

. (4.2)

Also the increments of the process X at time t are random variables with mean and variance
depending on Xt and given by

E
(
Xt+h −Xt

∣∣Xt

)
= a(t,Xt)h+ o(h) ,

var
(
Xt+h −Xt

∣∣Xt

)
= σ2(t,Xt)h− a(t,Xt)2 h2 + o(h) = σ2(t,Xt)h+ o(h) . (4.3)

Therefore with ξt,t+h =
(
Xt+h −Xt − a(t,Xt)

)
/
√
σ2(t,Xt)h we get

Xt+h −Xt = a(t,Xt)h+ σ(t,Xt)
√
h ξt,t+h + o(h) . (4.4)

Then

E(
√
h ξt,t+h) = 0 and var(

√
h ξt,t+h) = h , (4.5)

which looks an awful lot like the increment of a Brownian motion. Indeed, if the process X has
independent increments also the ξt,t+h are independent and

ξt,t+h =
n∑
k=1

ξt+(k−1)/n,t+k/n (4.6)

can be written as a sum of arbitrarily many independent random variables with mean 0 and variance
1/n. Therefore

√
h ξt,t+h ∼ N(0, h) are Gaussian and can thus be interpreted as increments of a

Brownian motion. Now we can write

Xt+h −Xt = a(t,Xt)h+ σ(t,Xt)(Bt+h −Bt) + o(h) for a BM B . (4.7)

Deviding by h we get in the limit h→ 0

dXt

dt
= a(t,Xt) + σ(t,Xt)

dBt
dt

. (4.8)

This is a differential equation for each path of X , i.e. for fixed ω ∈ Ω. But paths of a BM are not
differentiable and therefore (4.8) is often written as

dXt = a(t,Xt) dt+ σ(t,Xt) dBt . (4.9)

Definition 4.1 (4.9) is called a stochastic differential equation (SDE) with drift a(t, x) and diffu-
sion σ(t, x). Alternatively, physicists often write

dXt

dt
= a(t,Xt) + σ(t,Xt) ηt , (4.10)

and call this a Langevin equation, where ηt = dBt/dt is called white noise.
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The (non-existing) derivative ηt = dBt/dt can be understood as a normalized random force
term on X uncorrelated in time. Formally it is given by a Gaussian process with mean 0 and
covariance δ(t− s) Id, which makes sense if integrated over time.

As for ordinary differential equations, it is often better to look at the integrated version of
(4.9), since it requires less regularity assumptions.

Definition 4.2 A continuous process X = (Xt : t ≥ 0) is a solution of the SDE (4.9) with initial
condition X0 = x0 if

Xt = x0 +
∫ t

0
a(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs (4.11)

holds with probability 1 for all t ≥ 0 (or t ∈ [0, T ]). The solution is called unique, if any two
solutions X1 and X2 satisfy

P
(
X1
t = X2

t for all t ≥ 0
)

= 1
(

or t ∈ [0, T ] resp.
)
. (4.12)

So in order to solve SDEs we have to make sense of the two stochastic integrals in (4.11).
Let X = (Xt : t ≥ 0) and Y = (Yt : t ≥ 0) be two continuous processes.

We partition the time interval [0, t] such that

0 = t0 < t1 < . . . < tn = t with tk − tk−1 → 0 for all k = 1, . . . , n, as n→∞ .(4.13)

Then we would like to approximate the stochastic integral I = (It : t ≥ 0) by

Int =
n∑
k=1

Ytk−1
(Xtk −Xtk−1

)→ It =
∫ t

0
Ys dXs as n→∞ . (4.14)

This is a (particular) Riemann sum approximation of the integrals in (4.11), the simple choice
Xt = t yields the first, and Xt = Bt the second. The general question we investigate in the
following is, for which processes X and Y the approximations converge and in what sense they
converge. Answers turn out to be quite different for the two integrals. But it turns out that the
choice of the time partition is not crucial, so we can arbitrarily choose tk = k/n to fix ideas.
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4.2 Stochastic integration and Itô calculus

Proposition 4.1 For the integrator Xt = t and continuous integrand Y the limit in (4.14) exists
pointwise and we can define

It(ω) =
∫ t

0
Ys(ω) ds := lim

n→∞
Int (ω) = lim

n→∞

1
n

n∑
k=1

Ytk−1
(ω) . (4.15)

Proof. Usual convergence for the Riemann sum approximations holds for each fixed ω since the
total variation of Xt = t is finite, i.e.

lim
n→∞

n∑
k=1

∣∣Xtk(ω)−Xtk−1
(ω)
∣∣ = t <∞ for all t ≥ 0 . (4.16)

Examples.

Theorem 4.2 Itô integral
Let Y be a continuous process and X = B a standard BM. If

E
(∫ t

0
Y 2
s ds

)
<∞ (4.17)

for some t ≥ 0, then

It =
∫ t

0
Ys dBs := lim

n→∞
Int = lim

n→∞

n∑
k=1

Ytk−1
(Btk −Btk−1

) (4.18)

exists in the L2-sense, i.e. for all s ≤ t, E
(
(Ins − Is)2

)
→ 0 .

If (4.17) holds for all t ≥ 0, then I = (It : t ≥ 0) is a continuous process with E(It) = 0 and is
called the (stochastic) Itô integral of Y w.r.t. B.

Proof. see e.g. Rogers and Williams
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How do we calculate Itô integrals? Let’s start with a simple example.

We see that for the Itô integral with α = 0 we get∫ t

t0

Bs dBs =
1
2
(
(B2

t −B2
t0)− (t− t0)

)
. (4.19)

Another common choice are centred intermediate points with α = 1/2. Here we get

S

∫ t

t0

Bs dBs =
1
2

(B2
t −B2

t0) , (4.20)

and this integral is called the Stratonovich integral. The advantage of this choice is that it obeys
the usual rules of calculus and arises naturally in approximations of Brownian motion by smooth
processes (see later). But now dependence of Yτk and the increment Xtk − Xtk−1

is more com-
plicated, leading to several technical difficulties compared to Itô. Therefore the preferred choice
is usually the Itô integral, and from this one can recover the Stratonovich version by a simple
transformation. The unexpected term (t − t0) in (4.19) has to be there, since the result should
have vanishing expectation. These additional terms can be easily understood by the rules of Itô
calculus, introduced below.

It is often convenient to use the following intuitive differential notation,

It = It0 +
∫ t

t0

Ys dXs ⇔ dIt = Yt dXt . (4.21)

For example for the integral (4.19) this gives Bt dBt = 1
2(dB2

t − dt) , leading to the rule

d(B2
t ) = 2Bt dBt + dt . (4.22)
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From the above derivation we see that the origin of this chain rule is

(dBt)2 = dt or more generally (σdBt)2 = σ2dt . (4.23)

For a consistent calculus all terms up to order dt have to be taken into account. For usual calculus
this involves only first order expansions, but in stochastic calculus this means going up to second
order.

Proposition 4.3 The Itô integral It =
∫ t

0 Ys dBs of a diffusion process (Yt : t ≥ 0) w.r.t. Brown-
ian motion is a martingale, i.e.

E
(
It|{Iu : u ≤ v}

)
= Iv for all 0 ≤ v ≤ t . (4.24)

Proof.

4.3 Diffusion processes and Itô’s formula

Let X be a solution of the SDE

dXt = a(t,Xt) dt+ σ(t,Xt) dBt . (4.25)

The following very useful result summarizes our findings in Section 3.2 and gives an explicit
formula for time evolution of an observable g(Xt).

Theorem 4.4 Itô’s formula
Let X be a solution of (4.25) and g ∈ C2(R,R). Then

dg(Xt) = g′(Xt) dXt +
1
2
g′′(Xt)σ2 dt , (4.26)

or in the (extended) integrated version

g(Xt) = g(X0) +
∫ t

0
g′(Xs)σ(s,Xs)dBs

+
∫ t

0

(
g′(Xs) a(s,Xs) + 1

2g
′′(Xs)σ2(s,Xs)

)
ds . (4.27)

Proof. Taylor expansion with terms up to order dt, using (4.23) and the Itô chain rule (4.22).

In incremental form this gives

dg(Xt) = g′(Xt) dXt +
1
2
g′′(Xt) (dXt)2 =

= g′(Xt)
(
a(t,Xt) dt+ σ(t,Xt) dBt

)
+

1
2
g′′(Xt)σ2(t,Xt) dt . (4.28)
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Let f(t, x) be the pdf of the process X that solves the SDE (4.9). Taking the expectation on both
sides, we get from Itô’s formula using partial integration

d

dt
E
(
g(Xt)

)
=
∫

R
g(x)

∂

∂t
f(t, x) dx =

=
∫

R

(
g′(x) a(t, x) +

1
2
g′′(x)σ2(t, x)

)
f(t, x) dx =

=
∫

R
g(x)

(
− ∂

∂x

(
a(t, x) f(t, x)

)
+

1
2
∂2

∂x2

(
σ2(t, x) f(t, x)

))
dx , (4.29)

since boundary terms and the expected value of the Itô integral vanishes (it is a martingale). This
holds for arbitrary functions g, and therefore we must have

∂

∂t
f(t, x) = − ∂

∂x

(
a(t, x) f(t, x)

)
+

1
2
∂2

∂x2

(
σ2(t, x) f(t, x)

)
= L∗f(t, x) . (4.30)

Thus f(t, x) fulfilles the Fokker-Planck equation with adjoint generator L∗ introduced in (3.48)
and X is a diffusion process with drift a(t, x) and diffusion σ2(t, x). In Section 3.1 we have
derived the opposite statement, so let us summarize both of them.

Proposition 4.5 X is a diffusion process as defined in Def. 3.5 if and only if it is a solution of the
SDE (4.25) with σ2(t, x) = b(t, x).

Remember that the generator L of a diffusion process introduced in (3.43) is given by

L = a(t, x)
∂

∂x
+

1
2
σ2(t, x)

∂2

∂x2
, (4.31)

and describes the time evolution of expected values of observables (3.41). Using L we can rewrite
Itô’s formula

g(Xt) = g(X0) +
∫ t

0
(Lg)(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs . (4.32)

So we see that the time evolution of g(Xt) is given by the generator part plus fluctuations in terms
of an Itô integral, which is a martingale with vanishing expected value.

Example. (geometric BM, see [GS] p546, [Ga] p103)
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Non-examinable remarks.

With considerable technical effort, the Itô integral can be generalized to non-continuous processes.
But there is a particularly important class of integrators for which this can be done quite easily.

Definition 4.3 Let N = (Nt : t ≥ 0) ∼ PP (λ) and Z1, Z2, . . . a sequence of iidrv’s with
E
(
|Zk|

)
<∞ and distribution function F . Then

Q = (Qt : t ≥ 0) with Qt =
Nt∑
k=1

Zk (4.33)

is called a compound Poisson process or jump process. For a, σ ∈ R and B a standard BM a
process of the form

Xt = X0 + a t+ σBt +Qt with stationary, independent increments (4.34)

is called a Lévy process. X is completely determined by the Lévy triple (a, σ2, λF ).

Lévy processes are the simplest generalization of Brownian motion to non-continuous processes
with jumps. By definition t 7→ Qt(ω) is piecewise constant for each ω, so the integral can be
computed directly. The condition of stationary, independent increments implies that F cannot be
arbitrary, but has to be an infinitely divisible law. Examples are Gaussians or α-stable laws.

Another interesting question is, how many solutions to the SDE (4.25) there are. For time-
independent drift and diffusion there is a general theorem about existence and uniqueness for
SDEs.

Theorem 4.6 Suppose that a : R→ R and σ : R→ R are Lipschitz-continuous, i.e.∣∣a(x)− a(y)
∣∣ ≤ K|x− y| for some K > 0 and all x, y ∈ R . (4.35)

Then (for each probability space Ω and BM B) there exists a unique solution to the SDE

dXt = a(Xt) dt+ σ(Xt) dBt (4.36)

for any initial condition X0 = x0 ∈ R.

Proof. analogous to ordinary differential equations using the contraction mapping theorem and
Gronwall’s Lemma.

There are more elaborate notions of ’solutions’ to SDEs in a weak and strong sense, which
we did not discuss. A proper understanding of these involves a substantial amount of measure
theory. Itô’s formula and the existence and uniqueness theorem can be extended to higher space
dimensions. There is also a Stratonovich interpretation of SDEs which is directly connected to the
Itô version given here. Both can be found in Gardiner, Section 4.3.
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