Stochastic Processes

Problem sheet 1

1.1 Let $A, B, C_1, \ldots, C_n \subseteq \Omega$ be events in a probability space Ω such that $C_i \cap C_j = \emptyset$ for all $i \neq j$ and $\bigcup_{n=1}^{n} C_i = \Omega$. Using the law of total probability, show that

$$\mathbb{P}(A|B) = \sum_{i=1}^{n} \mathbb{P}(A|B \cap C_i) \mathbb{P}(C_i|B) .$$
[3]

1.2 Let X and Y be two discrete random variables taking values in \mathbb{N} , with joint probability mass function $f(x, y) = \mathbb{P}(X = x, Y = y)$.

Using conditional probabilities we write
$$\mathbb{E}(Y|X=x) = \sum_{y \in \mathbb{N}} y \mathbb{P}(Y=y|X=x)$$
.
Show that $\mathbb{E}(Y) = \sum_{x \in \mathbb{N}} \mathbb{E}(Y|X=x) \mathbb{P}(X=x)$. [3]

This formula is often written as $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X))$ and $\mathbb{E}(Y|X)$ is called the *conditional* expectation. Note that in this notation $\mathbb{E}(Y|X)$ is a random quantity, depending on the value taken by X.

For example, let $Y = \sum_{k=1}^{X} Z_i$, where the Z_i are iddrvs with expected value $\mu_Z = \mathbb{E}(Z_i)$. Denote by $\mu_X = \mathbb{E}(X)$ and compute $\mathbb{E}(Y)$ in terms of μ_Z and μ_X . [2]

- **1.3** A dice is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the transition matrix.
 - (a) The largest number X_n shown up to the *n*th roll.
 - (b) The number N_n of sixes in n rolls.
 - (c) At time n, the time B_n since the most recent six.
 - (d) At time n, the time C_n until the next six.

1.4 Ehrenfest urn model of diffusion

A total of M balls is distributed over two urns. In each time step, one ball is chosen uniformly at random and is transferred from its urn to the other urn.

Let $X_n \in \{0, ..., M\}$ be the number of balls in the left urn after n time steps. Clearly, $(X_n : n \in \mathbb{N})$ is a finite state, irreducible Markov chain.

- (a) What are the transition probabilities of this process?
- (b) What is the stationary distribution π^* ? (Think about (c) before you answer.)
- (c) Is the process reversible with respect to π^* ?
- (d) Show that $\mathbb{E}\left(X_n \frac{M}{2} \mid X_{n-1}\right) = \left(X_{n-1} \frac{M}{2}\right)\left(1 \frac{2}{M}\right),$

and deduce that for all initial conditions $X_0 = i$

$$\mathbb{E}\left(X_n - \frac{M}{2}\right) = \left(i - \frac{M}{2}\right) \left(1 - \frac{2}{M}\right)^n \to 0 \quad \text{as } n \to \infty$$

[8]

[4]