Stochastic Processes

Problem sheet 2

- **2.1** Consider the continuous-time Markov chain X with generator $G = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix}$.
 - (a) Draw a diagram for X (i.e. connect the three states by their jump rates), and give the transition matrix P^Y of the corresponding jump chain Y.
 - (b) Show that for some matrix B,

$$P(t) = \exp(tG) = B^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-2t} & 0 \\ 0 & 0 & e^{-4t} \end{pmatrix} B.$$

(You may assume the result (1.20) in the notes.)

- (c) Convince yourself that P'(0) = G, $P''(0) = G^2$ etc., and use this and the result of (b) to compute $p_{11}(t)$.
- (d) What is the stationary distribution π^* of X? [8]
- **2.2** Each bacterium in a colony splits into two identical bacteria after an exponential time of parameter λ , the two then split independently in the same way, and so on. Let X_t be the number of bacteria at time t with $X_0 = 1$.

The chain $X = (X_t : t \ge 0)$ is also called a **simple birth process**.

- (a) Give the generator of X and draw a diagram.
- (b) Is *X* irreducible? Is *X* recurrent? Does it have a stationary distribution? (Justify your answers.)
- (c) Let $\mu(t) = \mathbb{E}(X_t)$ and J_1 be the time of the first split.

Convince yourselve that $E(X_t|J_1=s)=2\mu(t-s)$. Then use

$$\mu(t) = \mathbb{E}(X_t|J_1 > t) \, \mathbb{P}(J_1 > t) + \mathbb{E}(X_t|J_1 < t) \, \mathbb{P}(J_1 < t)$$

(this is a socalled renewal argument) to show that

$$\mu(t) = e^{-\lambda t} + \int_0^t 2\lambda e^{-\lambda s} \mu(t-s) \, ds \, .$$

Substitute u=t-s in the integral and show that $\ \mu'(t)=\lambda\,\mu(t)$. Calculate $\mu(t)$.

 $(d)^*$ Let $\phi(t,z)=\mathbb{E}(z^{X_t})$ be the probability generating function of X_t . Show with a similar argument as in (c) that

$$\frac{\partial}{\partial t}\phi(t,z) = \lambda\phi(t,z)\big(\phi(t,z)-1\big) \quad \text{with} \quad \phi(0,z) = z \; ,$$

and deduce that
$$\quad \mathbb{P}(X_t=n) = \frac{\partial^n}{\partial z^n} \phi(t,z) \big|_{z=0} = e^{-\lambda t} \big(1-e^{-\lambda t}\big)^{n-1} \;.$$

2.3 Birth-death processes

A birth-death process X is a generalized M/M/1 queue with state-dependent rates, i.e. a continuous-time Markov chain with state space $S = \mathbb{N}$ and jump rates

$$i \xrightarrow{\alpha_i} i + 1$$
 for all $i \in S$, $i \xrightarrow{\beta_i} i - 1$ for all $i \ge 1$.

- (a) Write down the generator G. Under which conditions is X irreducible? Using detailed balance, find a formula for the stationary probabilities π_k^* in terms of π_0^* .
- (b) Suppose $\alpha_i = \alpha$ and $\beta_i = i\beta$, so customers arrive at rate α and each of them is served separately with rate β . This is called an $M/M/\infty$ queue. Is X positive recurrent? If yes compute the stationary distribution.
- (c) Let X_t be the size of a population at time t, with $X_0 = 1$. Each member independently gets a child with rate α and dies with rate β , except if $X_t = 1$, the last remaining member does not die and the state space is $S = \{1, 2, \ldots\}$. Determine the generator of X. Is X irreducible? Under which condition on α and β does X have a stationary distribution?

2.4 Simulation of the Moran model

We consider the Moran model in continuous time: In a population of size N each individuum can be of type A or B. At rate 1, each individuum gets an identical child. When this happens, one of the now N+1 individuums is chosen uniformly at random and dies instantaneously, to keep the population size constant to N.

Let X_t be the number of type A individuals at time t. Then $X = (X_t : t \ge 0)$ is a continuous-time Markov chain with two absorbing states, 0 and N.

- (a) What is the generator of X and what is the transition matrix for the jump chain Y? What are the stationary distributions of X?
- (b) Let $h_i^0 = \inf\{t \geq 0 : X_t = 0, X_0 = i\}$ be the absorption time at 0 and h_i^N the one at N, respectively. Then starting with $X_0 = i$, the chain stops at time $\bar{h}_i = \min\{h_i^0, h_i^N\}$ and A dies out if and only if $h_i^0 < h_i^N$. Simulate X for N = 1024, measure and plot

$$\mathbb{P}(B \text{ dies out})$$
 and $\mathbb{E}(h_i^N|B \text{ dies out})$ as a function of $X_0 = i$.

- (c) Measure and plot $\mathbb{E}(\bar{h}_{N/2})$ for $N=100,200,\ldots,1000$. How does it grow with N? For N=512, measure the distribution function of the normalized absorption time $\bar{h}_{N/2}/\mathbb{E}(\bar{h}_{N/2})$ using quantiles and compare with e.g. the exponential distribution.
- (d) Introduce a bias in the model (**selection**): Type A individuals give birth with rate $\alpha \geq 1$ and type B individuals with rate 1. Do the same measurement as in (b) for $\alpha = 1 + 1/N$ and $\alpha = 1 + 10/N$.
- (e) Introduce **mutation**: Each born individuum instantaneously changes its species with probability ϵ . What happens to the stationary distributions π^* of X? For N=1024 measure π^* and plot a histogram with appropriate spacing. Do this for several values of ϵ , e.g. 0.0001, 0.001, 0.01 and 0.1 and for $\alpha=1$ and 1+1/N. Or better: Solve the detailed balance recursions (e.g. in MATLAB) and look at π^* to find interesting parameter values. Then do the simulations and compare with π^* .

[20]

These are only suggestions of what can be done. Use your own wisdom to study this model!