CO905 07.02.2008

Stochastic Processes

Problem sheet 3 – Part 1

3.1 Let **B** be a standard Brownian motion in \mathbb{R}^d . Show the following:

- (a) Scaling property: If $\lambda > 0$, then $\mathbf{B}_{\lambda} = (\lambda^{-1/2} B_{\lambda t} : t \ge 0)$ is a standard Brownian motion in \mathbb{R}^d .
- (b) Orthogonal transformations: If $U \in O(d)$ is an *orthogonal* $d \times d$ matrix (i.e. $U^{-1} = U^T$), then $U \mathbf{B} = (U \mathbf{B}_t : t \ge 0)$ is a standard Brownian motion. In particular $-\mathbf{B}$ is a standard Brownian motion.

[4]

3.2 Let $X = (X_n : n \in \mathbb{N})$ be a simple random walk on \mathbb{Z} with transition probabilities

$$p_{i,i+1} = 1/2 + \epsilon$$
, $p_{i,i-1} = 1/2 - \epsilon$ for all $i \in \mathbb{Z}$.

Rescale time $t = \Delta t n$ and derive the Fokker-Planck equation for an appropriate scaling of space and ϵ , analogous to the derivation of Section 2.1. What is the right scaling of the asymmetry $\epsilon(\Delta t)$ to get a limit with non-zero drift and diffusion?

[6]

3.3 Fokker-Planck approximation of the Moran model:

Consider the Moran model $X = (X_t : t \ge 0)$ with population size N, including selection (characterized by α) and mutation (characterized by ϵ), i.e. for $i \in \{0, ..., N\}$

$$g_{i,i+1} = \alpha(1-\epsilon)i\frac{N-i}{N+1} + \epsilon(N-i)\frac{N-i}{N+1}$$
$$g_{i,i-1} = (1-\epsilon)(N-i)\frac{i}{N+1} + \alpha\epsilon i\frac{i}{N+1}$$

- (a) Set $\pi_i(t) = f(t, x)$ with x = i/N and write the master equation in terms of f and x.
- (b) For ε = 0 expand the master equation up to the second derivative of f. It is (very!) useful to actually do the expansion not for f but for the function g(t, x) := f(t, x)x(1 x). For which function α = α(N) would the drift and diffusion term be of the same order in 1/N?
- (c) Compute the drift a(x) and diffusion coefficient b(x) as a function of α , ϵ and N according to the formula

$$\mathbb{E}(X_{t+h} - X_t | X_t = [xN]) = a(x) h + o(h) ,$$

$$\mathbb{E}((X_{t+h} - X_t)^2 | X_t = [xN]) = b(x) h + o(h) .$$

To compute the expectations, remember that h is very small and use the interpretation of a jump rate g. Compare your result to the one from (b).

Write down the Fokker-Planck equation for general α , ϵ and N. A derivation as in (b) is not necessary.