Stochastic Processes

Problem sheet 3 - Part 1

3.1 Let \mathbf{B} be a standard Brownian motion in \mathbb{R}^{d}. Show the following:
(a) Scaling property:

If $\lambda>0$, then $\mathbf{B}_{\lambda}=\left(\lambda^{-1 / 2} B_{\lambda t}: t \geq 0\right)$ is a standard Brownian motion in \mathbb{R}^{d}.
(b) Orthogonal transformations:

If $U \in O(d)$ is an orthogonal $d \times d$ matrix (i.e. $\left.U^{-1}=U^{T}\right)$, then $U \mathbf{B}=\left(U \mathbf{B}_{t}: t \geq 0\right)$ is a standard Brownian motion. In particular $-\mathbf{B}$ is a standard Brownian motion.
3.2 Let $X=\left(X_{n}: n \in \mathbb{N}\right)$ be a simple random walk on \mathbb{Z} with transition probabilities

$$
p_{i, i+1}=1 / 2+\epsilon, \quad p_{i, i-1}=1 / 2-\epsilon \quad \text { for all } i \in \mathbb{Z} .
$$

Rescale time $t=\Delta t n$ and derive the Fokker-Planck equation for an appropriate scaling of space and ϵ, analogous to the derivation of Section 2.1. What is the right scaling of the asymmetry $\epsilon(\Delta t)$ to get a limit with non-zero drift and diffusion?
3.3 Fokker-Planck approximation of the Moran model:

Consider the Moran model $X=\left(X_{t}: t \geq 0\right)$ with population size N, including selection (characterized by α) and mutation (characterized by ϵ), i.e. for $i \in\{0, \ldots, N\}$

$$
\begin{aligned}
& g_{i, i+1}=\alpha(1-\epsilon) i \frac{N-i}{N+1}+\epsilon(N-i) \frac{N-i}{N+1} \\
& g_{i, i-1}=(1-\epsilon)(N-i) \frac{i}{N+1}+\alpha \epsilon i \frac{i}{N+1}
\end{aligned}
$$

(a) Set $\pi_{i}(t)=f(t, x)$ with $x=i / N$ and write the master equation in terms of f and x.
(b) For $\epsilon=0$ expand the master equation up to the second derivative of f. It is (very!) useful to actually do the expansion not for f but for the function $g(t, x):=f(t, x) x(1-x)$.
For which function $\alpha=\alpha(N)$ woulde the drift and diffusion term be of the same order in $1 / N$?
(c) Compute the drift $a(x)$ and diffusion coefficient $b(x)$ as a function of α, ϵ and N according to the formula

$$
\begin{aligned}
\mathbb{E}\left(X_{t+h}-X_{t} \mid X_{t}=[x N]\right) & =a(x) h+o(h), \\
\mathbb{E}\left(\left(X_{t+h}-X_{t}\right)^{2} \mid X_{t}=[x N]\right) & =b(x) h+o(h) .
\end{aligned}
$$

To compute the expectations, remember that h is very small and use the interpretation of a jump rate g. Compare your result to the one from (b).
Write down the Fokker-Planck equation for general α, ϵ and N. A derivation as in (b) is not necessary.

