Stochastic Processes

Problem sheet 3 – Part 2

3.4 Let $X = (X_n : n \in \mathbb{N})$ be a stochastic process. Prove or disprove:

- (a) X is a martingale \Rightarrow X is a Markov process.
- (b) X is a Markov process \Rightarrow X is a martingale.

[2]

- **3.5** Let $X \sim PP(\lambda)$ be a Poisson process with intensity $\lambda > 0$.
 - (a) Is X a martingale? (Justify your answer.)
 - (b) Find two nontrivial martingales associated to X and show that they fulfill the definition.

[3]

- **3.6** Let $X = (X_n : n \in \mathbb{N})$ be a simple symmetric random walk on \mathbb{Z} starting in the origin. Define the stopping time $T = \inf\{n \in \mathbb{N} : X_n^2 \ge N^2\}$ for some $N \in \{1, 2, \ldots\}$. Use the optional stopping theorem for an appropriate martingale associated to X to find $\mathbb{E}(T)$. [4]
- **3.7** Let $B = (B_t : t \ge 0)$ be a standard Brownian motion in \mathbb{R} .
 - (a) Define $B' = (B'_t : t \ge 0)$ by $B'_t = \begin{cases} t B_{1/t} & , t > 0 \\ 0 & , t = 0 \end{cases}$. Show that B' is a standard Brownian motion.

(Hint: Show that it is a Gaussian process with the right covariances.)

(b) Define $S = \sup\{t \le 1 : B_t = 0\}$ and $T = \inf\{t \ge 1 : B_t = 0\}$. Are these random times stopping times? Justify your answers. Show that S has the same distribution as T^{-1} .

[5]

3.8 Brownian bridge

Let $B = (B_t : 0 \le t \le 1)$ be a standard Brownian motion in \mathbb{R} . For each $y \in \mathbb{R}$ we define

$$Z^y = (Z_t^y : 0 \le t \le 1) , \quad Z_t^y := y t + B_t - t B_1 .$$

- (a) Compute $\mathbb{E}(Z_t^y)$ and $\operatorname{Var}(Z_t^y)$. (Note that B_t and B_1 are not independent!)
- (b) What is the pdf $f_{Z^y}(t, x)$ for the process Z^y ? (Justify your answer.)
- (c) Depending on y, can Z^y be a martingale with respect to B?
- (d) Why is Z^y called a *Brownian bridge*?