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4.3 Stochastic integration and Itô calculus . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Solutions to SDEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

References

[GS] G. Grimmett and D. Stirzaker: Probability and Random Processes (3rd edition), Oxford
2001

[Ga] C.W. Gardiner: Handbook of Stochastic Methods (3rd edition), Springer 2004

1

http://www.warwick.ac.uk/~masgav/teaching/co905.html


Introduction

In this module we will cover the basics to study complex systems with stochastic time
evolution. There are two different origins of stochasticity:

• Classical mechanics: stochasticity due to lack of information
In principle all components involved in the system follow a deterministic system of equa-
tions of motion. But in practice all microscopic details are not accessible and the un-
known influences on the dynamics are approximated as effective random noise with a
certain postulated distribution. The actual origin of the noise may be related to chaotic
motion, i.e. deterministic time evolution with random initial data such as a dice or pen-
dulum, or neglected interactions in a large system such as gases or fluids leading to a
stochastic time evolution.

• Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a
system is therefore given by a complex probability density function (wave function),
rather than a single element in the set of all possible configurations.

Examples.

In this course we only cover classical stochastic systems. After a general introduction
to stochastic processes we will study some examples of particle systems with thermal inter-
actions. The first and most classical example of this phenomenon isBrownian motion(see
Gardiner, Section 1.2). In 1827 Robert Brown observed the irregular motion of small pollen
grains suspended in water. A first satisfactory theoretical description of this phenomenon was
given by Einstein in 1905. A mathematically idealized version of this is called the Wiener
process and can be described by the theory of stochastic calculus which was developed in the
1950s by It̂o. Due to the continuous state space of the system this theory is rather involved, and
will be discussed towards the end of the module. Simpler to analyse are models with a discrete
state space such as birth-death processes, which appear for example in predator-prey models
in biology (see Gardiner, Section 1.3). In the first part of the course we concentrate onMarkov
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chains(following Grimmett and Stirzaker, Chapter 6), which are certain stochastic processes
with discrete state space. We conclude the introductory section by two general definitions.

Definition 0.1 A stochastic processX = (Xt : t ∈ T) is a family of random variablesXt :
Ω → S with state spaceS and time index setT ⊆ R.

A stochastic processX : T×Ω → S is a function of two variables, timet andω ∈ Ω. For
fixed ω, the functiont 7→ Xt(ω) is called asample path. The probability spaceΩ is arbitrary,
but has to be big enough to encode all possible time evolutions. A canonical choice is the set
of all sample pathsΩ = {f : T → S}, or often one requires some regularity of the functions
f , such as continuity.

Definition 0.2 A stochastic process is aMarkov processif for all t1 < t2 < . . . < tn ∈ T,
n ∈ N, for all s1, . . . , sn−1 ∈ S and all (measurable)A ⊆ S,

P
(
Xtn ∈ An

∣∣Xt1 = s1, . . . , Xtn−1 = sn−1

)
= P

(
Xtn ∈ An

∣∣Xtn−1 = sn−1

)
. (0.1)

A Markov process is calledhomogeneousif for all (measurable)A,B ⊆ S andt > t′ ∈ T

P
(
Xt ∈ A

∣∣ Xt′ ∈ B
)

= P
(
Xt−t′ ∈ A

∣∣ X0 ∈ B
)

. (0.2)

A homogeneous Markov process is called aMarkov chain, if S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate
on the choicesT = N, Z for discrete time andT = [0,∞), R for continuous time processes.
Typical choices for state spaces areS = Z (e.g. random walk, birth-death processes),N (e.g.
counting processes),Rd (e.g. Brownian motion).

Examples.
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1 Markov chains

1.1 General properties

Definition 1.1 For a Markov chain we define thetransition probabilities

pij(t) := P(Xt = j|X0 = i) ∈ [0, 1] for all i, j ∈ S , (1.1)

and thetransition ’matrices’

P (t) :=
(
pij(t) : i, j ∈ S

)
∈ [0, 1]|S|×|S| . (1.2)

A homogeneous Markov chain starting at timet = 0 is uniquely determined by an initial
distributionπ(0) with πi(0) = P(X0 = i), i ∈ S and the transition probabilities, because
every joint probability can be written as

P
(
Xt1 ∈ A1, . . . , Xtn ∈ An

)
=

=
∑

i0∈S,i1∈A1,..,in∈An

πi0(0)pi0i1(t1)pi1i2(t2 − t1) · · · pin−1in(tn − tn−1) (1.3)

for all 0 < t1 < . . . < tn ∈ T andA1, . . . , An ⊆ S. In particular, the distribution at timet is

πj(t) = P(Xt = j) =
∑
i∈S

πi(0) pij , so π(t) = π(0)P (t) . (1.4)

Example.

Proposition 1.1 P (0) = Id and the family
(
P (t) : t ≥ 0

)
satisfies theChapman-Kolmogorov

equations,

P (t + t′) = P (t) P (t′) for all t, t′, t + t′ ∈ T . (1.5)

Proof. pij(0) = δij by definition, and for allt, t′, t + t′ ∈ T

pij(t + t′) = P(Xt+t′ = j|X0 = i) =

=
∑
k∈S

P(Xt+t′ = j|X0 = i,Xt = k) P(Xt = k|X0 = i) =
∑
k∈S

pik(t) pkj(t′) ,(1.6)

using the total probability sum rule, the Markov property and homogeneity. 2
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For discrete time withT = N this leads to

P (n + 1) = P (1)P (n) = P (n) P (1) ⇒ P (n) = Pn , (1.7)

where we denoteP = P (1). Therefore a discrite time Markov chain since is uniquely deter-
mined by the initial distributionπ(0) and the transition matrixP .

Example.

For continuous time withT = [0,∞) we require some regularity of the functiont 7→ P (t)
at t = 0. We only study processes where it is continuous and differentiable, i.e.

lim
t↘0

P (t) = P (0) = Id and G := lim
t↘0

P (t)− Id

t
exists. (1.8)

Together with the Chapman-Kolmogorov equations this implies that

P (t + ∆t)− P (t)
∆t

=
P (∆t)− Id

∆t
P (t) = P (t)

P (∆t)− Id

∆t
, (1.9)

and thus taking∆t ↘ 0, P (t) is differentiable for allt ≥ 0 and fulfills

d

dt
P (t) = G P (t) = P (t) G ⇒ P (t) = exp(t G) . (1.10)

For finite state spaces|S| < ∞ the formal solution to this equation is given by a matrix
exponential which is discussed in Section 2.3 in more detail.

Definition 1.2 A probability distributionπ∗ is calledstationaryif π∗P (t) = π∗ for all t ≥ 0.

This will play an important role in the long-time behaviour of Markov chains, since ’often’
π(t) → π∗. How and when this is true will be seen later.

Theorem 1.2 (Existence)A Markov chain with finite state spaceS has at least one stationary
distribution.

Proof. Depends on discrete or continuous time, see later.

In Section 1.5 we will see a generalisation of this for inifinite state spaces. The question of
uniqueness of stationary distributions is connected to the following definition.
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Definition 1.3 Statei ∈ S communicates withstatej ∈ S if pij(t) > 0 for somet ∈ T, and
we writei → j. Statesi andj areconnectedif i → j andj → i, and we writei ↔ j.
The Markov chain is calledirreducible if i ↔ j for all i, j ∈ S.
A statei is calledabsorbing, if i 6→ j for all j 6= i.

Examples.

Theorem 1.3 (Uniqueness)An irreducible Markov chain has at most one stationary distribu-
tion.

Proof. Depends on discrete or continuous time, see later.

1.2 Discrete time

SinceP (n) = Pn a discrete time Markov chain is uniquely determined by the transition matrix
P = P (1) and its initial distribution. So with Definition1.2, π∗ is a stationary distribution if
and only ifπ∗P = π∗, i.e. π∗ is a left eigenvector with eigenvalueλ = 1.

By definition,P is astochastic matrix, i.e.pij ∈ [0, 1] and
∑

j∈S pij = 1, since the chain
starting ini has to jump somewhere inS. Soλ = 1 is an eigenvalue ofP with right eigenvector
1 = (. . . , 1, 1, . . .)T . Therefore ifS is finite, there exists at least one left eigenvectorπ∗, whose
entries can be shown to be non-negative. If the chain is irreducible this eigenvector is unique
under the condition

∑
i∈S π∗i = 1.

Theorem 1.4 A discrete time, finite state irreducible Markov chain has a unique stationary
distributionπ∗, where

π∗i = 1/µi with µi := E(Ti|X0 = i) and Ti := min{t ≥ 1 : Xt = i} , (1.11)
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so thatπ∗ is determined by the inverse of themean recurrence timesµi.
Furthermore,

π∗ = 1 (Id− P + U)−1 , where uij = 1 for all i, j ∈ S . (1.12)

Proof. see Grimmett and Stirzaker pp 229 - 230 for recurrence times.
for uniqueness see proof of Theorem1.8.

π∗ = π∗P ⇔ π∗(Id− P ) = 0 ⇔ π∗(Id + P ) + 1 = 1

⇔ π∗(Id− P + U) = 1 (1.13)

By uniqueness ofπ∗ we know that this linear system of equations has a unique solution, which
is equivalent toId− P + U) being invertible. 2

Example.

Proposition 1.5 Let X =
(
Xn : n ∈ {0, . . . , N}

)
be a finite state irreducible Markov chain

with transition matrixPX . Suppose further thatX is stationary, i.e.Xn ∼ π∗ for all n. Then
the ’reversed chain’Y with Yn = XN−n is a Markov chain with transition matrix

pY
ij =

π∗j
π∗i

pX
ji for all i, j ∈ S . (1.14)

Proof. Using stationarity and the Markov property ofX we get

P
(
Yn+1 = in+1

∣∣ Yn = in, . . . , Y0 = i0
)

=

=
P(Yk = ik, 0 ≤ k ≤ n + 1)

P(Yk = ik, 0 ≤ k ≤ n)
=

P(XN−k = ik, 0 ≤ k ≤ n + 1)
P(XN−k = ik, 0 ≤ k ≤ n)

=

=
π∗in+1

pin+1in · · · pi1i0

π∗inpinin−1 · · · pi1i0

=
π∗in+1

pin+1in

π∗in
(1.15)

as required. 2

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this
only holds for stationary chains.π∗ is then also stationary for the reversed chainY .

Definition 1.4 Let π be a probability distribution onS. A discrete time Markov chainX with
transition matrixP is calledreversible (w.r.t.π), if it fulfilles the detailed balanceconditions

πipij = πjpji for all i, j ∈ S . (1.16)
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Proposition 1.6 Suppose a discrete time Markov chainX is reversible w.r.t.π. Thenπ is a
stationary distribution ofX.

Proof. From (1.16) we deduce (πP )j =
∑

i∈S πipij =
∑

i∈S πjpji = πj . 2

Note that Proposition1.5 together with (1.16) implies that a reversible Markov chain and
its time-reversal are indistinguishable, i.e. they have the same transition probabilities, since

pY
ij =

π∗j
π∗i

pX
ji =

π∗i
π∗i

pX
ij = pX

ij . (1.17)

The detailed balance relations (1.16) can be a useful tool to find stationary distributions of cer-
tain Markov chains ’without loops’.

Example.

Definition 1.5 Theperiodd(i) of a statei ∈ S is defined as

d(i) := gcd
{
t ≥ 1 : pii(t) > 0

}
, (1.18)

the greatest common divisor of the epochs at which return is possible.

Theorem 1.7 For an irreducible Markov chain all states have the same period, and we call
the chain aperiodic ifd(i) = 1 for all i ∈ S.

Proof. see p.224 in Grimmett and Stirzaker
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Example.

Theorem 1.8 An irreducible, aperiodic Markov chain with finite state space isergodic, i.e.

pij(n) → π∗j ast →∞ , for all i, j ∈ S . (1.19)

Proof. The statement follows from thePerron-Frobenius Theorem:
If P is the transition matrix of a finite state irreducible Markov chain with periodd then
(i) thed complex roots of unity are eigenvalue ofP ,

λ1 = w0 = 1, λ2 = w1, . . . , λd = wd−1 where w = e2πi/d , (1.20)

(ii) and the remaining eigenvaluesλd+1, . . . , λ|S| satisfy|λj | < 1.
Note that this includes uniqueness of the stationary distribution claimed in Theorem1.4.
Suppose further that the eigenvalues are all distinct, thenB P B−1 = (λiδij)ij is a diagonal
matrix with entriesλ1, . . . , λ|S|, where the rows ofB are the left eigenvectors ofP . Thus

Pn = B−1

 λn
1 . . . 0
...

...
...

0 . . . λn
|S|

 B → B−1

 1 . . . 0
...

...
...

0 . . . 0

 B (1.21)

sinceλ1 = 1 and|λi| < 1 for all i > 1 if the chain is aperiodic.
The proof can be extended to countably infiniteS. 2

This implies that for every initial distribution

π(n) = π(0)Pn → π∗ = (1/µ1, . . . , 1/µ|S|) asn →∞ . (1.22)

Example.
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1.3 Continuous time

Subject to the boundary conditionsP (0) = Id, equations (1.10) often have a unique solution

d

dt
P (t) = G P (t) = P (t) G ⇒ P (t) = exp(t G) =

∞∑
k=0

tk

k!
Gk . (1.23)

For example this is the case if|S| < ∞, and subject to certain technical conditions also for
inifite state spaceS. Therefore a continuous-time Markov chain is uniquely determined by the
initial distribution and the matrixG which is called thegeneratorof the process.

How doesG look and what is the relation to the time evolution ofX?

Assume thatXt = i. For small times∆t we have from (1.23)

pij(∆t) = gij∆t + o(∆t) for all i 6= j ∈ S . (1.24)

So during a time interval(t, t + ∆t) the chain jumps from statei to j with probabilitygij∆t,
andgij ≥ 0 can be interpreted as a jump rate. On the diagonal we have

pii(∆t) = 1 + gii∆t + o(∆t) for all i ∈ S , (1.25)

which gives the probability that nothing happens in the time interval(t, t + ∆t). By normal-
ization we have

1 =
∑
j∈S

pij(∆t) = 1 + ∆t
∑
j∈S

gij ⇒
∑
j∈S

gij = 0 for all i ∈ S . (1.26)

Therefore the diagonal entries ofG are

gii = −
∑
j 6=i

gij ≤ 0 for all I ∈ S , (1.27)

and|gii| can be interpreted as the total rate to leave statei.

What does really ’happen’ in a continuous time Markov chain?

Assume thatXt = i and define theholding time

Wi := inf
{
t′ ≥ 0 : Xt+t′ 6= i

}
, (1.28)

i.e. the (random) time until a jump occurs. This is actually independent oft by homogeneity
and if i is absorbing,gij = 0 for all j ∈ S andWi = ∞.

Proposition 1.9 The random variableWi is exponentially distributed with parameter|gii| and
if |gii| > 0, the probability that the chain jumps toj 6= i after timeWi is gij/|gii|.

Proof. Wi has ’loss of memory’ property, i.e. for alls, u > 0

P(Wi > s + u|Wi > s) = P(Wi > s + u|Xt+s = i) =
= P(Wi > u|Xt = i) = P(Wi > u) , (1.29)
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where we have used the Markov property and homogeneity. Therefore we have for the tail

F̄ (s + u) = P(Wi > s + u) = P(Wi > s + u, Wi > s) , (1.30)

and thus F̄ (s + u) = F̄ (s) F̄ (u).
Analogous to the Chapman-Kolmogorov equations (1.5) this can be used to derive a differential
equation forF̄ which has an exponential solution

F̄ (s) = P(Wi > s) = eλs where λ = F̄ ′(0) . (1.31)

Together with (1.25) we get

F̄ ′(0) = lim
∆t↘0

P(Wi > ∆t)− 1
∆t

= lim
∆t↘0

pii(∆t) + o(∆t)− 1
∆t

= gii ≤ 0 , (1.32)

and therefore P(Wi > s) = e−|gii|s and Wi ∼ Exp(|gii|).
Now the probability that the chain jumps toj, conditioned on the event that it actually jumps
somewhere in the time interval(s, s + ∆t], is given by

P(Xt+s+∆t = j|Xt+s = i,Wi < ∆t) ' pij(∆t)
1− pii(∆t)

→ gij

−gii
as∆t ↘ 0 . (1.33)

Picture. 2

The chain jumps at thejump time Jn =
n−1∑
i=0

WYi to state Yn = XJn .

Y = (Yn : n ∈ N) is called thejump chain, and it is a discrete time Markov chain with
transition MatrixP Y given by

pY
ij =

{
0 , i = j

gij/|gii| , i 6= j
if gii > 0 , and pY

ij = δij if gii = 0 . (1.34)

So a continuous-time Markov chain can also be characterized by its jump chainY and a se-
quence of independent exponentially distributed holding times(WYn : n ∈ N).
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Examples.

For thePoisson processthere exists also another characterization.

Proposition 1.10 X = (Xt : t ≥ 0) is a Poisson process with rateλ if and only if it has
stationary, independent increments, i.e.

Xt+t′ −Xt′ is distributed likeXt −X0 and independent of(Xs : s ≤ t′) , (1.35)

and for eacht, Xt has Poisson distribution with parameterλt, i.e. P(Xt = k) = (λt)k

k! e−λt.

Proof.

Using equation (1.23) we can also get an evolution equation for the distribution,

d

dt
π(t) = π(0)

d

dt
P (t) = π(0)P (t) G = π(t) G . (1.36)
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This is called theMaster equationand using (1.27) the coordinate form is given by

d

dt
πi(t) =

∑
j 6=i

(
πj(t) gji − πi(t) gij

)
. (1.37)

If π = π∗ is a stationary distribution, then both sides of the equation vanish.

Proposition 1.11 LetG be the generator of a continuous time Markov chain,P (t) = exp(tG)
andP Y the transition matrix of the jump chain. Then

π∗P (t) = π∗ ⇔ π∗G = 0 ⇔ π̄P Y = π̄ , (1.38)

where π̄i = π∗i |gii| for all i ∈ S.

Proof. Assume finite state spaceS and that all|gii| > 0.

π∗G = (0, . . . , 0) ⇔ π∗Gk = (0, . . . , 0) for all k ≥ 1

⇔
∞∑

k=1

tk

k!
π∗Gk = (0, . . . , 0) for all t ≥ 0

⇔ π∗
∞∑

k=0

tk

k!
Gk = π∗ for all t ≥ 0 sinceG0 = Id

⇔ π∗P (t) = π∗ for all t ≥ 0 . (1.39)

By (1.34) we can writegij in terms of the entries ofP Y , gij = |gii|(pY
ij − δij) , and so

(π̄P Y )j − π̄j =
∑
i∈S

π̄i(pY
ij − δij) =

∑
i∈S

π∗i gij = (π∗G)j , (1.40)

and both sides vanish equivalently. 2

Theorem 1.12 A continuous time irreducible Markov chain with finite state space has a unique
stationary distributionπ∗, where

π∗i =
1

µi|gii|
with µi := E(Ti|X0 = i) and Ti := inf{t ≥ J1 : Xt = i} . (1.41)

This follows immediately from Theorem1.4 for discrete time by the tie-up with stationary
measures of the jump chain (Proposition1.11). Note thatTi is still the recurrence time for the
jump chainY . This forces a slightly different definition in terms ofX, andTi is often called a
first passage time. Thenπ∗i is determined by the average fraction of time the chain spends in
statei,

π∗i =
1

µi|gii|
=

E(Wi)
µi

with the expected holding timeE(Wi) = 1/|gii| . (1.42)

Thedetailed balanceconditions for a continuous-time Markov chain are

πigij = πjgji for all i, j ∈ S . (1.43)
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If they are fulfilled for a distributionπ, thenπ is stationary since every term in the right-hand
side of (1.37) vanishes individually.

Examples.

Theorem 1.13 An irreducible Markov chain with finite state space is ergodic, i.e.

pij(t) → π∗j ast →∞ , for all i, j ∈ S . (1.44)

Again, this follows directly by ergodicity of the jump chain (Theorem1.8), and it implies

π(t) = π(0)P (t) → π∗ =
(E(W1)

µ1
, . . . ,

E(W|S|)
µ|S|

)
ast →∞ , (1.45)

for every initial distributionπ(0).
Note that for continuous time there is no issue of periodicity, since

if i → j then pij(t) > 0 for all t > 0 . (1.46)

This is becausei → j is equivalent to

gii1gi1i2 · · · gin−1j > 0 for somei1, . . . in−1 ∈ S, n ∈ N , (1.47)

which implies that pij(t) ≥ pii1(t/n) · · · pin−1j(t/n) > 0 .
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1.4 Countably infinite state spaces

For infinite state spaceS, the Markov chain can ’get lost at infinity’, and therefore not have a
stationary probability distribution.

Examples.

Definition 1.6 A statei ∈ S is called

recurrent, if P
(
{t ≥ 0 : Xt = i} is unbounded

∣∣ X0 = i
)

= 1 and

transient, if P
(
{t ≥ 0 : Xt = i} is unbounded

∣∣ X0 = i
)

= 0 . (1.48)

Proposition 1.14 Let i ∈ S be a non-absorbing state. Then

P(Ti < ∞) = 1 ⇔
∞∑

n=0

pii(n) or
∫ ∞

0
pii(t) = ∞ ⇒ i recurrent,

P(Ti < ∞) < 1 ⇔
∞∑

n=0

pii(n) or
∫ ∞

0
pii(t) < ∞ ⇒ i transient. (1.49)

Each state is either recurrent or transient. If the chain is irreducible then the states are either
all recurrent or all transient.

Proof. see Section 6.2 in Grimmett and Stirzaker
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Examples.

Apparently recurrence and transience of a Markov chain is not enough to characterize the
existence of a stationary distributionπ∗ completely. If it exists, the entriesπ∗i ∝ 1/µi are
inversely proportional to the mean recurrence timesµi = E(Ti|X0 = i). If the chain is
transient, then certainlyµi = ∞ for all i, π∗ does not exist and in factπi(t) → 0.

Definition 1.7 A recurrent statei ∈ S is calledpositive recurrentif µi < ∞ andnull recurrent
if µi = ∞.

Theorem 1.15 LetX be an irreducible (non-explosive1) Markov chain. ThenX has a unique
stationary distribution if and only if it is positive recurrent.

So the positive recurrent (non-explosive) Markov chains behave exactly like chains with
finite state space concerning their stationary distributions. This also holds for dynamic proper-
ties and the convergence to equilibrium.

1explained at the end of this section
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Examples.

Therefore,X can be positive recurrent while the corresponding jump chainY is null recur-
rent. However, we have the following connection.

Proposition 1.16 LetX be a (non-explosive) Markov chain with jump chainY . Then

i ∈ S is transient forX ⇔ i is transient forY ,

i ∈ S is recurrent forX ⇔ i is recurrent forY . (1.50)

Transient continuous time chains can get lost at infinity even in finite time. This phenom-
enon is calledexplosion. Define theexplosion time

J∞ := lim
n→∞

Jn =
∞∑
i=1

Wi ∈ (0,∞] . (1.51)

This is a random variable that usually takes the value∞, and we say that the chain isnon-
explosiveif P(J∞ = ∞) = 1. For example this is the case if|S| < ∞ or supi∈S |gii| < ∞.

17



Example.
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2 Processes with continuous state space

2.1 Brownian motion and the Central limit theorem

Let Y1, Y2, . . . ∈ R be iidrvs with meanE(Yi) = 0 and variancevar(Yi) = σ2 > 0. Then
define the discrete-time process

Xn :=
n∑

i=1

Yi with X0 = 0 . (2.1)

For example ifYi ∼ U
(
{−1, 1}

)
thenX is a simple symmetric random walk. Then by the

Central Limit Theorem (CLT) asn →∞

Xn√
n
→ ξ ∼ N(0, σ2) (Gaussian rv with mean0 and varianceσ2) , (2.2)

or, equivalently, for ally ∈ R

P
(Xn√

n
≤ y

)
→

∫ y

−∞

1√
2πσ2

e−x2/(2σ2)︸ ︷︷ ︸
fX(x)

dx with Gaussian pdf fX(x) . (2.3)

We can use the CLT to look at the processXn in rescaled timet = n∆t. According to
(2.2), X[t/∆t]/

√
1/∆t should converge to at-dependent random variable as∆t → 0, and we

define

Bt := lim
∆t→0

√
∆t X[t/∆t] = lim

∆t→0

√
t√

t/∆t

[t/∆t]∑
i=1

Yi =
√

t ξt ∼ N(0, tσ2) . (2.4)

Here theξt ∼ N(0, 1) are different for eacht, but they are certainly not independent. Note that
by the CLT the time rescaling induces a space rescaling

t = ∆t n , b = (∆t)αx with α = 1/2 , (2.5)

and on all other spatial scales, the limiting process does either not exist or is degenerate,

Bt = 0 for α > 1/2 , Bt is not well defined forα < 1/2 . (2.6)
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Properties of the processB = (Bt : t ≥ 0):

B0 = 0 , Bt ∼ N(0, tσ2) and analogously to (2.4)

Bt −Bs = lim
∆t→0

√
t√

t/∆t

[t/∆t]∑
i=[s/∆t]

Yi ∼ N(0, (t− s)σ2) (2.7)

for all t ≥ s ≥ 0. So B hasstationary increments, i.e. Bt − Bs ∼ Bt−s − B0, and by
independence of theYi, B hasindependent increments, i.e.

Bt −Bs is independent of {Bu : u ≤ s} for all t ≥ s ≥ 0 . (2.8)

So farB is only the result of an informal derivation, an important question is wether it actually
exists as a mathematical object.

Theorem 2.1 Existence of Brownian motion (Wiener)
There exists a processB = (Bt : t ≥ 0) with stationary independent increments, such that
B0 = 0 andBt ∼ N(0, t). B is called astandard Brownian motion (BM)or Wiener process.

Proof. see e.g. Rogers and Williams, Section I.6

It suffices to look atstandardBMs B with σ2 = 1 andB0 = 0, then
√

σB + x0 is a BM
with varianceσ2 starting inx0. All distributional properties of BM are characterized by the
finite dimensional distributions.

Proposition 2.2 LetB be a standard BM. For allt1, . . . , tn, n ∈ N the vector

(Bt1 , . . . , Btn) ∼ N(0,Γ) with γij = min{ti, tj} , (2.9)

has multivariate Gaussian distribution with zero means and covariance matrixΓ = (γij)i,j .

Proof. Bt ∼ N(0, t) and it suffices to show thatcov(Bs, Bt) = min{s, t}. Takes < t, then

E(BsBt) = E
(
B2

s + Bs(Bt −Bs)
)

= E(B2
s ) + 0 , (2.10)

sinceB has independent increments andE(Bs) = 0. Thus cov(Bs, Bt) = var(Bs) = s . 2

Reminder. The pdf of the multivariat Gaussian(Bt1 , . . . , Btn) is given by

ft1,..,tn(x) =
1

(2π det Γ)n/2
exp

(
− 1

2 xΓ−1 xT
)

with x = (x1, . . . , xn) . (2.11)

What are the regularity properties of a Brownian sample path?

From (2.4) we expect for Brownian motion

Bt+h −Bt =
√

h ξ ∼ N(0, hσ2) → 0 a.s. ash → 0 . (2.12)

Therefore Brownian sample paths are continuous (and more precisely, Hölder continuous with
exponent< 1/2). But they are nowhere differentiable, since

Bt+h −Bt

h
=

σ√
h

ξ has no limit ash → 0 . (2.13)
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These properties do not follow from (2.7) and (2.8), which can be fulfilled also by discontin-
uous processes. But under the restriction thatt 7→ Bt(ω) is a continous function oft for all
ω ∈ Ω, BM is unique. So we restrict ourselves to thepath spaceC

(
[0,∞), R

)
of continuous

functions, and the process can then be described by a probability measure on that space.

Theorem 2.3 Uniqueness of Brownian motion (Wiener)
There exists a unique probability measureW on the path spaceC

(
[0,∞), R

)
(called the

Wiener measure), such that the process with sample paths distributed according toW is a
Brownian motion as defined in Theorem2.1

Proof. see e.g. Rogers and Williams, Section I.6

Examples of sample paths.

Note that if the incrementsYi in (2.2) are not identically distributed or independent, the
CLT still holds under more general conditions (see e.g. Gardiner, Section 2.8.2). So Brownian
motion is the natural limiting process for a very general class of models.

Definition 2.1 A d-dimensional standard Brownian motionB = (Bt : t ≥ 0) is a collection
of d independent one-dimensional BMsB1, . . . , Bd as defined in Theorem2.1, i.e.

Bt = (B1
t , . . . , Bd

t ) for all t ≥ 0 . (2.14)

So the pdf of the incrementsBt −Bs is ft−s(x) = (2π(t− s))−d/2 exp
(
− ‖x‖22

2(t−s)

)
.

Analogous to the random walk, one can study recurrence and transience for BM depending
on the space dimension.
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Theorem 2.4 (i) If d = 1 BM ispoint-recurrent, i.e.

P
(
{t ≥ 0 : Bt = 0} is unbounded

∣∣ B0 = 0
)

= 1 . (2.15)

(ii) If d = 2, BM isneighbourhood-recurrent, i.e. for everyε > 0

P
(
{t ≥ 0 : |Bt| < ε} is unbounded

∣∣B0 = 0
)

= 1 . (2.16)

However, points arepolar, i.e. for all x ∈ R2

P(Tx = ∞) = 1 , where Tx = inf{t > 0 : Bt = x} . (2.17)

(iii) If d ≥ 3, BM is transient, i.e.|Bt| → ∞ ast →∞ with probability one.

Proof. see e.g. Rogers and Williams, Section I.18

Proposition 2.5 For dimensiond ≥ 2, the image{Bt : t ≥ 0} ⊆ Rd of the sample path of a
BM B hasHausdorff (or fractal) dimension2.

’Proof’. see class
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2.2 General facts

In this section we discuss processes with continuous state spaceS = R or Rd and continuous
time T = [0,∞). This is mathematically more complicated than Markov chains, and we will
discuss some of the technical issues below. On the other hand, the sample paths are now real
valued functions, our state space has an analytic structure and we will be able to use concepts
from usual calculus.

For example we will often integrate over setsA ∈ R of possible values with respect to the
distribution functionF of a random variableX, e.g.

P(X ∈ A) =
∫

A
dF (x) =

∫
A

f(x) dx wheref = F ′ is the pdf (if it exists). (2.18)

This cannot be done for all setsA ⊆ R but only forA ∈ A, whereA ( P(R) is a socalledσ-
algebra. This is a set ofmeasurable setswhere the measuredF (x) can be consistently defined
on.

Remember also that a random variable is actually ameasurable functionX : Ω → R, i.e.
for each measurableA ⊆ R the preimageX−1(A) = {ω : X(ω) ∈ A

}
is measurable with

respect toP onΩ. We always us the shorthand

P(X ∈ A) = P
{
ω ∈ Ω : X(ω) ∈ A

}
, (2.19)

and the probability spaceΩ is hidden from the discussion.

Definition 2.2 Let X, Y : Ω → R be random variables andA ⊆ R measurable. Then we say

X ∈ A almost surely (a.s.), if P(X ∈ A) = 1 and

X = Y a.s. , if P(X = Y ) = P
(
{ω : X(ω) = Y (ω)}

)
= 1 and

X ∼ Y if FX(x) = P(X ≤ x) = FY (x) for all x ∈ R . (2.20)

Example.

So in general we haveX = Y a.s. ⇒ X ∼ Y .

Similar concepts exist for convergence of random variables,

Xn → X meansconvergence in distribution, i.e. FXn(x) → FX(x) ,

Xn → X a.s. meansalmost sure convergence, i.e. P(Xn → X) = 1 . (2.21)
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(Note that convergence in distribution is required only for allx ∈ R at whichF is continuous
due to technical reasons, see e.g. Grimmett and Stirzaker, Section 7.2.)
In general, ’almost sure’ is stronger then ’in distribution’ and we have

X = Y a.s. ⇒ X ∼ Y , Xn → X a.s. ⇒ Xn → X . (2.22)

As for Markov chains, the distributional properties of a general stochastic process are de-
termined by fixing allfinite-dimensional distributions (fdds)

Ft(x) = P
(
Xt1 ≤ x1, . . . , Xtn ≤ xn

)
, (2.23)

for all t = (t1, . . . , tn) ∈ [0,∞)n, ti 6= tj , x = (x1, . . . , xn) ∈ Rn andn ∈ N. For state space
S = R these are characterized by joint distribution functionsFt.

Theorem 2.6 If a collection{Ft} of fdds fulfills theKolmogorov consistency relations

Ft,tn+1(x, xn+1) → Ft(x) as xn+1 →∞ , and

FΠt(Πx) = Ft(x) for all permutationsΠ of (1, . . . , n) , (2.24)

then there exists a prob. spaceΩ and a processX = (Xt : t ≥ 0) onΩ that has fdds{Ft}.

Proof. Is related to the Skorohod representation theorem. Basically one takesΩ to be the path
space of the process. Some hints are given in Grimmett and Stirzaker, Section 8.6

Example.

So Brownian motion is an example of aGaussian process.

Definition 2.3 A real-valued, continuous-time processX is called aGaussian processif each
finite-dimensional vector(Xt1 , . . . , Xtn) ∼ N

(
µ(t), V (t)

)
is Gaussian with mean vectorµ

and covariance matrixV , which may depend ont.

Analogous to Proposition2.2, all finite dimensional distributions of a Gaussian process are
uniquely specified by its mean and covariance matrix (which has to be positive definite). But
note that Gaussian processes are not necessarily Markov. Standard Brownian motion is a
Gaussian process with zero mean and covariancemin{s, t}.

The transition probabilities of a Markov chain can also be generalized.
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Definition 2.4 Let X be a stochastic process. The conditional distribution function

F (t, x|s, y) = P(Xt ≤ x|Xs = y) , (2.25)

is called thetransition kernelof X. If it has a density we call this thetransition density,

f(t, x|s, y) =
∂F

∂x
(t, x|s, y) . (2.26)

Note that for a homogeneous process, the kernel is actually only a function oft− s.

Proposition 2.7 The fdds of a Markov process are uniquely determined by the transition ker-
nels and the initial distribution.

Proof. Sample calculation for0 ≤ t1 ≤ t2 with densities using the Markov property,

P
(
Xt1 ≤ x1, Xt2 ≤ x2

)
=

∫ x2

−∞

∫ x1

−∞

∫ ∞

−∞
f(0, x) f(t1, y|0, x) f(t2, z|t1, y) dx dy dz .

2

Example.

In contrast to Markov chains, for continuous state space the fdds do not determine the
process uniquely. Two processes with the same fdds are calledversionsof each other, and their
sample paths can have very different properties. This fact cannot be ignored, since it is very
important when studying properties such as first-passage times.

In the previous section we saw that the sample paths of BM are continuous. Many interest-
ing phenomena cannot be modeled with continuous processes alone, but one usually concen-
trates on the following class of processes.

Definition 2.5 A real-valued, continuous-time processX is calledcàdlàg if its sample paths
are right continuous (continuèa droite) and have left limits (limitèa gauche), i.e.

lim
s↘t

Xs(ω) = Xt(ω) and lim
s↗t

Xs(ω) exists , for allω ∈ Ω, t ∈ [0,∞) . (2.27)

For example continuous-time Markov chains (e.g. the Poisson process) are defined as càdl̀ag.
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2.3 Brownian motion and the heat equation

We are looking for an evolution equation for the transition densities, analogous to the forward
equation (or master equation) for Markov chains. First we will derive it for Brownian motion
as scaling limit from the simple random walk.

Let (Xn : n ∈ N) be a simple random walk. Then the distribution at timen is given by
π(n + 1) = π(n) P , which can be written in the following incremental form

π(n + 1)− π(n) = π(n)(P − Id) , (2.28)

whereP − Id is proportional to the discrete Laplacian∆ : RZ → RZ,

P − Id =


... ... ...

1
2 −1 1

2
... ... ...

 =
1
2


... ... ...

1 −2 1
... ... ...

 =
1
2
∆ . (2.29)

In the previous section we saw that under the scalingt = ∆t n, x = (∆t)αk with α = 1/2 ,

(∆t)αX[t/∆t] → Bt converges to Brownian motion as∆t → 0. Therefore the mass function
πk(n) should converge to the pdff(t, x) of Bt, i.e.

lim
∆t→0

πx/(∆t)α(t/∆t) = f(t, x) = (2πt)−1/2 exp
(
− x2/(2t)

)
. (2.30)

Plugging the scaling into the discrete-time Master equation (2.28), we can derive a differ-
ential equation forf . We assume that for largen, k (i.e. small∆t), πk(n) is approximately
given by

πk(n) ' f
(
k(∆t)α, n∆t

)
= f(t, x) . (2.31)

Then we get by Taylor expansion

πk±1(n) ' f(t, x)± (∆t)α ∂

∂x
f(t, x) +

(∆t)2α

2
∂2

∂x2
f(t, x) + O

(
(∆t)3α

)
πk(n + 1) ' f(t, x) + ∆t

∂

∂t
f(t, x) + O

(
(∆t)2

)
. (2.32)

Thus ifα = 1/2 (otherwise the limit is again degenrate),

∂

∂t
f(t, x) = lim

∆t→0

πk(n + 1)− πk(n)
∆t

= lim
∆t→0

1
2∆t

(
πk−1(n)− 2πk(n) + πk+1(n)

)
=

= lim
∆t→0

(∆t)2α

2∆t

∂2

∂x2
f(t, x) + O

(
(∆t)3α−1

)
=

1
2

∂2

∂x2
f(t, x) . (2.33)
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So since standard BM starts in the origin, its pdf should fulfill

∂

∂t
f(t, x) =

1
2

∂2

∂x2
f(t, x) with initial condition f(0, x) = δ0(x) . (2.34)

This PDE is the socalledheat equationwhich has been well studied and indeed (2.30) is its
unique solution.

Note that with the implicit initial conditionf(t, x) = f(t, x|0, 0) in terms of transition den-
sities. An analogous derivation conditioned onBs = y gives the same equation forf(t, x|s, y)
with the more general initial conditionf(s, x|s, y) = δy(x).

Indeed, as we have seen beforeBt ∼ N(0, t − s) for t ≥ s, and therefore the transition
kernelF (t, x|s, y) has density function

f(t, x|s, y) =
∂

∂x
F (t, x|s, y) =

(
2π(t− s)

)−1/2 exp
(
− (x− y)2

2(t− s)

)
. (2.35)

f(t, x|s, y) is also called theheat kernel, since it is the fundamental solution to that PDE (2.34),
i.e. for every intial distributionf(0, y) we have

f(t, x) =
∫

R
f(t, x|0, y) f(0, y) dy . (2.36)

We can also derive (2.34) from the forward equationddtP (t) = P (t) G or the master equa-
tion (1.37) of a continuous-time Markov chain, by rescaling only space asx = εk with ε → 0.
In these derivations the exact structure of the generatorG or P − Id is not important and this
equation holds for a whole class of processes.

2.4 Diffusion processes and Fokker-Planck equations

Definition 2.6 A Markov processX is called adiffusion process, if

P
(
|Xt+h −Xt| > ε

∣∣ Xt = x
)

= o(h) for all ε > 0, x ∈ R ,

E
(
Xt+h −Xt

∣∣ Xt = x
)

= a(t, x) h + o(h) ,

E
(
(Xt+h −Xt)2

∣∣ Xt = x
)

= b(t, x) h + o(h) , (2.37)

for some functionsa(t, x) (drift coefficient) andb(t, x) (diffusion coefficient).
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By the first property diffusion processes have continuous sample paths. Their distributional
properties are uniquely characterized by the drift and the diffusion coefficient.

Theorem 2.8 Let X be a diffusion process with drifta(t, x) and diffusion coefficientb(t, x).
Then the transition densityf = f(t, x|s, y) exists and satisfies the(forward) Fokker-Planck
equation(or forward equation)

∂f

∂t
= − ∂

∂x

(
a(t, x) f

)
+

1
2

∂2

∂x2

(
b(t, x) f

)
(2.38)

for all 0 ≤ s ≤ t, x, y ∈ R.

Proof. by Taylor expansion similar to Section 2.3

Examples.

f = f(t, x|s, y) is also the solution to the so-calledbackward Fokker-Planck equation

∂f

∂s
= −a(s, y)

∂f

∂y
− 1

2
b(s, y)

∂2f

∂y2
(2.39)

which can be derived from the backward equation of a continuous time MC.
Stationary pdfsf∗(x) of a time-homogeneous diffusion process with constant drifta(x)

and diffusionb(x) are given by stationary solutions to (2.38), i.e.

0 = − ∂

∂x

(
a(x) f∗(x)

)
+

1
2

∂2

∂x2

(
b(x) f∗(x)

)
. (2.40)
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Examples.

In general, integrating (2.40) and denoting the derivative by′ we get

0 = −
∫ x

−∞

(
a(y) f∗(y)

)′
dy +

1
2

∫ x

−∞

(
b(y) f∗(y)

)′′
dy =

= −a(x) f∗(x) +
1
2
(
b(x) f∗(x)

)′ (+const.) (2.41)

This is a first order linear differential equation and differentiating with the product rule we get

f∗′(x) =
2a(x)− b′(x)

b(x)
f∗(x) . (2.42)

So the solution is

f∗(x) = f∗(0) exp
( ∫ x

0

2a(y)− b′(y)
b(y)

dy
)

(2.43)

wheref∗(0) is fixed by normalization
∫

R f∗(x) dx = 1.

Diffusion processes can be generalized to higher dimensions.X in Rd is called a diffusion
process if in addition to the continuity property analogous to Definition2.6

E
(
Xt+h −Xt

∣∣Xt = x
)

= a(t,x) h + o(h) ,

E
(
(Xt+h −Xt)⊗ (Xt+h −Xt)

∣∣Xt = x
)

= b(t,x) h + o(h) , (2.44)

with drift vectora(t, x) ∈ Rd and diffusion matrixb ∈ Rd×d, where

bij = E
(
(Xi

t+h −Xi
t)(X

j
t+h −Xj

t )
∣∣Xt = x

)
. (2.45)
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This is the covariance matrix of the increments of the process. The Fokker-Planck equation for
f = f(t,x) is now given by

∂f

∂t
= −

d∑
i=1

∂

∂xi

(
ai(t,x) f

)
+

1
2

d∑
i,j=1

∂2

∂xi∂xj

(
bij(t,x) f

)
= L∗f . (2.46)

where the right-hand side defines a linear operatorL∗ on the set of functionsf : Rd → R. L∗
is called theadjoint generatorof the processX and is the analogous quantity of the generator
of a continuous-time Markov chain.

Let g : Rd → R be an observable, such asg(Xt) = ‖Xt‖22. Then the expected value

ḡ(t) := E
(
g(Xt)

)
=

∫
Rd

g(x) f(t,x) ddx (2.47)

obeys the following evolution equation,

d

dt
ḡ(t) =

∫
Rd

g(x)
∂f(t,x)

∂t
ddx =

∫
Rd

g(x) (L∗f)(t,x) ddx =

=
∫

Rd

(Lg)(x) f(t,x) ddx = Lg(t) = E
(
(Lg)(Xt)

)
. (2.48)

This follows by partial integration, since for eachi = 1, . . . , d∫
Rd

g(x)
∂

∂xi

(
ai(t,x) f(t,x)

)
ddx = −

∫
Rd

( ∂

∂xi
g(x)

)
ai(t,x) f(t,x)ddx , (2.49)

becausef(t,x) → 0 as|x| → ∞ so there are no boundary terms. For the diffusion part this
can be done twice and leads to

L =
d∑

i=1

ai(t,x)
∂

∂xi
+

1
2

d∑
i,j=1

bij(t,x)
∂2

∂xi∂xj
. (2.50)

This operator is called thegeneratorof the processX and describes the expected time evo-
lution of observables. Note that this also determines the right-hand side of the backward
Fokker-Planck equation (2.39). It is technically more convenient thanL∗ and therefore dif-
fusion processes are often characterized by defining their generator.

For time-independent drifta(x) and diffusionb(x) existence and uniqueness of theinitial
value problem

∂f(t,x)
∂t

= (L∗f)(t,x) , f(0,x) = f0(x) , (2.51)

is well understood. Under the assumption ofuniform ellipticity, i.e.

ξ b(x) ξT =
d∑

i,j=1

bij(x) ξi ξj ≥ α‖ξ‖22 for someα > 0 and allξ ∈ Rd . (2.52)

Theorem 2.9 Under the assumption (2.52) and the growth conditions

f0(x) ≤ Ceα‖x‖22 ,
∣∣∣∂ai(x)

∂xi

∣∣∣ ≤ C1

(
1 + ‖x‖22

)
,

∣∣∣∂2bij(x)
∂xi∂xj

∣∣∣ ≤ C2

(
1 + ‖x‖22

)
(2.53)

for some constantsC,C1, C2 > 0, the initial value problem (2.51) has a unique classical
C1,2

(
(0,∞), Rd

)
solution.
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Defining theprobability currentJ(f) with i-th component

Ji(x, f) := ai(x) f − 1
2

d∑
j=1

∂

∂xj

(
bij(x) f

)
, (2.54)

the Fokker-Planck equation (2.46) can be written as acontinuity equation

∂f(t,x)
∂t

+∇x · J
(
x, f(t,x)

)
= 0. (2.55)

Integrating this equation over a domainA ⊆ Rd and using integration by parts like above we
get

∂

∂t

∫
A

f(t,x) ddx = −
∫

A
∇x · J

(
x, f(t,x)

)
ddx = −

∫
∂A

J
(
x, f(t,x)

)
· dS . (2.56)

The second identity follows fromStokes’ theorem(also calledGauss’ integration theorem).

If A = Rd or the system isclosedin A thenJ
(
x, f(t,x)

)
= 0 for all x ∈ ∂A. So the

right-hand side of (2.56) vanishes and the total probability is conserved, i.e.

P(Xt ∈ A) =
∫

A
f(t,x) ddx = 1 . (2.57)

An important class of diffusion processes with direct connections to statistical mechanics
are noise-perturbed gradient flows.
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Definition 2.7 Let X be a diffusion process with time-independent drifta(x) and diffusion
b(x). V : Rd → R is called apotentialfor X, if a(x) = −∇V (x). If bij(x) = b δij we callX
a (noise-perturbed)gradient flow.

The Fokker-Planck equation of a gradient flow is given by

∂f(t,x)
∂t

= ∇ ·
(
(∇V (x)) f(t,x)

)
+

b

2
∆f(t,x) (2.58)

and the generator is

L = −
(
∇V (x)

)
· ∇+

b

2
∆ . (2.59)

Examples.

Proposition 2.10 Assume thatV : Rd → R is smooth and that

Z :=
∫

Rd

e−2V (x)/b ddx < ∞ . (2.60)

Then the diffusion processX with generator (2.59) is ergodic. The unique stationary distribu-
tion is theGibbs distributionwith density

f∗(x) =
1
Z

e−2V (x)/b , (2.61)

and the normalization factorZ is calledpartition function.
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Proof. We have∇f∗ = −2
b (∇V ) f∗ and thus

b

2
∆f∗ =

b

2
∇ · (∇f∗) = −∇ ·

(
(∇V ) f∗

)
. (2.62)

Substituting this in (2.58) the right-hand side vanishes andf∗ is stationary.
Uniqueness and ergodicity follow from the fact gradient flows fulfill the conditions such that
the Fokker-Planck equation (2.58) has a unique (time-dependent) solution. 2
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3 Martingales

Martingales are an important class of processes in the study of stochastic differential equations.
They can be discrete or continuous both in time and space.

3.1 Filtrations and adapted processes

Definition 3.1 Let Y = {Yn : n ∈ N} andX = {Xn : n ∈ N} be sequences of real-valued
random variables.Y is amartingalewith respect toX if for all n ∈ N

E
(
|Yn|

)
< ∞ and E

(
Yn+1

∣∣X0, . . . , Xn

)
= Yn . (3.1)

Examples.

Alternatively, the conditional expectation can be defined with respect to theσ-algebra gen-
erated byX. This approach can be extended to continuous time.
A σ-algebraF on the probability spaceΩ is a set ofmeasurablesets, that fulfills the following
consistency conditions: For allA,A1, A2, ... ∈ F

∅ ∈ F , Ac = Ω \A ∈ F ,
⋃
n∈N

An ∈ F . (3.2)
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Examples.

A filtration is a collection(Ft, t ∈ T) of sub-σ-algebras ofF which is increasing, i.e.
s ≤ t ⇒ Fs ⊆ Ft . A processX = (Xt : t ∈ T) is adaptedto the filtration(Ft : t ∈ T) if
Xt isFt-measurable for everyt.

Example.

Interpretation: Ft is the total information available up to timet.

As in the above example, this can be generated by a processX = (Xt : t ∈ T). Thenatural
filtration for the processX is given by

FX
t = σ

(
{Xs : s ≤ t, s ∈ T}

)
for all t ∈ T , (3.3)
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i.e. the information generated by the processX. This is the smallest filtrationX is adapted to.
Then we can write for a random variableZ

E(Z|X0, . . . , Xt) = E(Z|FX
t ) . (3.4)

In general we have the following monotone behaviour with respect to the available information.

Proposition 3.1 Tower property
LetF1 ⊆ F2 beσ-algebras. Then for every random variableZ with E

(
|Z|

)
< ∞,

E
(
E(Z|F2)

∣∣F1

)
= E

(
E(Z|F1)

∣∣F2

)
= E(Z|F1) . (3.5)

With this notation continuous-time and discrete-time martingales can be treated together,
in the first caseT = [0,∞), in the secondT = N.

Definition 3.2 A real-valued processX = (Xt : t ∈ T) is called amartingalewith respect to
the filtration(Ft : t ∈ T), if it is adapted to(Ft : t ∈ T) and for allt ∈ T

E
(
|Xt|

)
< ∞ and E(Xt|Fs) = Xs for all s ≤ t, s ∈ T . (3.6)

X is just called a martingale if it is a martingale w.r.t. its natural filtration(FX
t : t ∈ T).

In particular this implies thatE(Xt) = X0 for all t ∈ T.

Example.
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Proposition 3.2 Lévy’s characterization of Brownian motion
A continuous-time processB is a standard Brownian motion if and only ifB and(B2

t − t : t ≥
0) are martingales with continuous sample paths andB0 = 0.

3.2 Properties of martingales

As mentioned before, for general continuous-time processes we concentrate on càdl̀ag processes,
i.e. processes with right-continuous sample paths that have left limits.

Theorem 3.3 Martingale convergence theorem
Let X = (Xt : t ∈ T) be a (c̀adlàg) martingale. IfE

(
|Xt|

)
≤ M for someM > 0 and all

t ∈ T, then X∞ = limt→∞Xt existsa.s. and E
(
X∞

)
< ∞ .

This is basically the same as saying thatX converges to a stationary distribution andX∞ is a
random variable with that distribution. In particular this impliesXt = E(X∞|Ft).

Examples.

Definition 3.3 A random variableT ∈ T ∪ {∞} is called astopping time(with respect to the
filtration (Ft : t ∈ T)), if {T ≤ t} ∈ Ft for all t ∈ T.
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Examples.

Interpretation: If T is a stopping time then at each timet ∈ T there is always enough
information (inFt) to decide wetherT = t or not.

Proposition 3.4 Let X = (Xt : t ∈ T) be a (c̀adlàg) martingale andT ∈ T a stopping time,
both w.r.t.(Ft : t ∈ T). Then thestopped process

XT :=
{

Xt , t < T
XT , t ≥ T

is a martingale w.r.t.(Ft : t ∈ T) . (3.7)

Proof. We focus on discrete timeT = N. We can write

XT
n =

n−1∑
i=0

Xi 1T=i + Xn 1T≥n (3.8)

soXT
n is adapted toFn andE

(
|XT

n |
)
≤

∑n
i=0 E

(
|Xi|

)
< ∞ .

Also XT
n+1 −XT

n = (Xn+1 −Xn)1T>n, so we have

E(XT
n+1|Fn)−XT

n = E(XT
n+1 −XT

n |Fn) = E
(
(Xn+1 −Xn)1T>n

∣∣Fn

)
=

=
(
E(Xn+1|Fn)−Xn

)
1T>n = 0 , (3.9)

andXT is a martingale w.r.t.(Fn : n ∈ N). 2
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Example.

Theorem 3.5 Optional stopping theorem
Let X = (Xt : t ∈ T) be a (c̀adlàg) martingale withE

(
|Xt|

)
≤ M for someM > 0 and all

t ∈ T. Then for all stopping timesS ≤ T with P(S < ∞) = 1 we have

E(XT |FS) = XS a.s. . (3.10)

Proof. By the convergence theorem3.3 Xt → X∞ a.s. and we haveXT = XT
∞ even if

T = ∞. Then again for discrete timeT = N we have

E(XT |FS) =
∑
s∈N

E(XT
∞|Fs)1S=s =

∑
s∈N

XT
s 1S=s = XT

S = XS (3.11)

using Proposition3.4and thatS ≤ T . 2

In particular withS = 0 this implies thatE(XT ) = X0 for all stopping timesT .

Example.
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4 Stochastic calculus

4.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equations. LetX be a
diffusion process inR with drift a(t, x) and diffusion coefficientb(t, x) = σ2(t, x) given by

E
(
Xt+h −Xt

∣∣ Xt = x
)

= a(t, x) h + o(h) ,

E
(
(Xt+h −Xt)2

∣∣ Xt = x
)

= σ2(t, x) h + o(h) . (4.1)

In general for a random variableY with meanµ and varianceσ2 we can write

Y = µ + σξ where ξ =
X − µ

σ
. (4.2)

Also the increments of the processX at timet are random variables with mean and variance
depending onXt and given by

E
(
Xt+h −Xt

∣∣ Xt

)
= a(t, Xt) h + o(h) ,

var
(
Xt+h −Xt

∣∣ Xt

)
= σ2(t, Xt) h− a(t, Xt)2 h2 + o(h) = σ2(t, Xt) h + o(h) .(4.3)

Therefore withξt,t+h =
(
Xt+h −Xt − a(t, Xt)

)
/
√

σ2(t, Xt) h we get

Xt+h −Xt = a(t, Xt) h + σ(t, Xt)
√

h ξt,t+h + o(h) . (4.4)

Then

E(
√

h ξt,t+h) = 0 and var(
√

h ξt,t+h) = h , (4.5)

which looks an awful lot like the increment of a Brownian motion. Indeed, if the processX
has independent increments also theξt,t+h are independent and

ξt,t+h =
n∑

k=1

ξt+(k−1)/n,t+k/n (4.6)

can be written as a sum of arbitrarily many independent random variables with mean0 and vari-
ance1. Therefore

√
h ξt,t+h ∼ N(0, h) are Gaussian and can thus be interpreted as increments

of a Brownian motion. Now we can write

Xt+h −Xt = a(t, Xt) h + σ(t, Xt)(Bt+h −Bt) + o(h) for a BM B . (4.7)

Deviding byh we get in the limith → 0

dXt

dt
= a(t, Xt) + σ(t, Xt)

dBt

dt
. (4.8)

This is a differential equation for each path ofX, i.e. for fixedω ∈ Ω. But paths of a BM are
not differentiable and therefore (4.8) is often written as

dXt = a(t, Xt) dt + σ(t, Xt) dBt . (4.9)

This is called astochastic differential equation (SDE).
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The (non-existing) derivativeηt = dBt/dt is calledwhite noise, and can be understood as
a normalized random force term onX uncorrelated in time. Formally it is given by a Gaussian
process with covarianceδt,s. Physicists often write

dXt

dt
= a(t, Xt) + σ(t, Xt) ηt , (4.10)

instead of (4.9) and call this aLangevin equation.
As for ordinary differential equations, it is often better to look at the integrated version of

(4.9), since it requires less regularity assumptions,

Xt −X0 =
∫ t

0
a(s,Xs) ds +

∫ t

0
σ(s,Xs) dBs . (4.11)

In general, asolutionof the SDE with initial conditionX0 = x0 consists of

• a probability space and a filtration
(
Ω,F , (Ft : t ≥ 0), P

)
,

• a BM B = (Bt : t ≥ 0) adapted to(Ft : t ≥ 0) ,

• a continuous processX = (Xt : t ≥ 0) adapted to(Ft : t ≥ 0)
that fulfilles (4.11) with X0 = x0 . (4.12)

As usual, the probability space is often not mentioned explicitly,X is just given as some func-
tion of B and(Ft : t ≥ 0) is the natural filtration forB. But in any case, we have to make
sense of the twostochastic integralsin (4.11).

From now on let us fix some probability space
(
Ω,F , (Ft : t ≥ 0), P

)
. Let X = (Xt : t ≥

0) andY = (Yt : t ≥ 0) be two c̀adl̀ag adapted processes.

We partition the time interval[0, t] such that

0 = t0 < t1 < . . . < tn = t with tk − tk−1 → 0 for all k = 1, . . . , n, asn →∞ .(4.13)

Then we would like to define the stochastic integralI = (It : t ≥ 0) by

It =
∫ t

0
Ys dXs = lim

n→∞

n∑
k=1

Yτk
(Xtk −Xtk−1

) . (4.14)

The question is, for whichX andY is this limit well defined, does it depend on the choice of
τk ∈ [tk−1, tk] and in what sense does the limit hold?
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Integrands: The most general integrandsY we will consider are continuous adapted
processes. This includes all diffusion processes but could be further generalized to socalled
previsible processes.

Integrators: The most general integratorsX for which (4.14) can be defined are socalled
semimartingales, which we introduce in the following.

4.2 Semimartingales

Definition 4.1 Let X be a c̀adl̀ag adapted process. For eachω ∈ Ω define

Vt(ω) := lim
n→∞

n∑
k=1

∣∣Xtk(ω)−Xtk−1
(ω)

∣∣ ∈ [0,∞] , (4.15)

which is non-decreasing int. V = (Vt : t ≥ 0) is called thetotal variation processof X and
X is of finite variationif Vt < ∞ for all t ≥ 0.

Vt(ω) corresponds to the length of the path
(
Xs(ω) : 0 ≤ s ≤ t

)
.

Examples.

Proposition 4.1 Let X be a continuous martingale. Then there exists a unique adapted in-
creasing process[X] =

(
[X]t : t ≥ 0

)
with [X]0 = 0, such that

X2 − [X] =
(
X2

t − [X]t : t ≥ 0
)

is a continuous martingale. (4.16)

[X] is called thequadratic variationof X and for

[X]nt :=
n∑

k=1

(Xtk −Xtk−1
)2 we have [X]nt → [X]t asn →∞ , (4.17)
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in the sense that for allε > 0 andt ≥ 0, P
(

sup
s≤t

∣∣[X]ns − [X]s
∣∣ > ε

)
→ 0 .

Note that if we define the quadratic variation pathwise like the total variation, it does not
have the nice properties stated above.

Examples.

Proposition 4.2 LetX be a continuous process of finite variation. Then[X] ≡ 0.
In particular, if X is a continuous martingale of finite variation, thenX ≡ X0.

Proof. By the definitions (4.17) and4.1we have

[X]nt =
n∑

k=1

(Xtk −Xtk−1
)2 ≤ sup

k=1,..,n

∣∣Xtk −Xtk−1

∣∣︸ ︷︷ ︸
→0 as n→∞

n∑
k=1

∣∣Xtk −Xtk−1

∣∣
︸ ︷︷ ︸

≤Vt

. (4.18)

by continuity by finite variation

Therefore [X]t = lim
n→∞

[X]nt = 0 for all t ≥ 0 .

If X is a continuous martingale with sayX0 = 0 we have

E(XtkXtk−1
) = E

(
E(XtkXtk−1

|Ftk−1
)
)

= E
(
Xtk−1

E(Xtk |Ftk−1
)
)

= E(X2
tk−1

) .(4.19)

Therefore we have for a time partition of arbitrary sizen,

E(X2
t ) = E

( n∑
k=1

(
X2

tk
−X2

tk−1

))
= E

( n∑
k=1

(
Xtk −Xtk−1

)2
)
→ 0 (4.20)

asn →∞ by the first statement. ThusXt = 0 for all t ≥ 0. 2

Definition 4.2 A semimartingaleX is a c̀adl̀ag adapted process which may be written as

X = X0 + M + A with M0 = A0 = 0 , (4.21)

whereM is a martingale andA is a process of finite variation.
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Examples.

Corollary 4.3 For continuous semimartingalesX the decomposition (4.21) is unique and it is
also called theDoob-Meyer decompositionof X.

Proof.

Definition 4.3 Let N = (Nt : t ≥ 0) ∼ PP (λ) andZ1, Z2, . . . a sequence of iidrv’s with
E

(
|Zk|

)
< ∞ and distribution functionF . Then

Y = (Yt : t ≥ 0) with Yt =
Nt∑

k=1

Zk (4.22)

is called acompound Poisson processor jump process. Fora, σ ∈ R andB a standard BM a
process of the form

Xt = X0 + a t + σBt + Yt with stationary, independent increments (4.23)

is called aLévy process. X is completely determined by theLévy triple(a, σ2, λF ).
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Proposition 4.4 A Lévy processX is a c̀adlàg semimartingale.

Proof.

It can also be shown that every càdl̀ag semimartingale with stationary independent incre-
ments has to be a Lévy process, so they are quite general.
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4.3 Stochastic integration and It̂o calculus

Theorem 4.5 It ô integral
Let X be a continuous semimartingale with Doob-Meyer decompositionX = X0 + M + A
(4.21) andY be a continuous adapted process. If

sup
0≤s≤t

E(X2
s ) < ∞ and E

( ∫ t

0
Y 2

s d[X]s

)
< ∞ (4.24)

for somet ≥ 0, then

It =
∫ t

0
Ys dXs := lim

n→∞

n∑
k=1

Ytk−1
(Xtk −Xtk−1

) (4.25)

exists in the sense of (4.17). If (4.24) holds for allt ≥ 0, thenI = (It : t ≥ 0) is a continuous
semimartingale with decomposition

It = 0 +
∫ t

0
Ys dMs +

∫ t

0
Ys dAs (4.26)

and is called the (stochastic) Itô integral ofY w.r.t. X.

Examples.

With considerable technical effort, the Itô integral can be generalized to non-continuous processes.
(4.26) implies that

if X is a martingale, then
∫ t
0 Ys dXs is a martingale. (4.27)

So for example It̂o integrals w.r.t. BM withX = B are martingales. Surprisingly, also a
converse statement holds.
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Proposition 4.6 LetX be a martingale. Then there exists an adapted processY such that

Xt = X0 +
∫ t

0
Ys dBs for all t ≥ 0 , whereB is a standard BM. (4.28)

Moreover, ifX is a continuous martingale withX0 = 0 and[X]t →∞ ast →∞, we have

Xt = B[X]t for all t ≥ 0 , whereB is a standard BM. (4.29)

Proof.

So every martingaleX is an integral w.r.t. standard BM, and if it is continuous, it is ac-
tually a (time-changed) standard BM on the time scale[X]t rather thant. Note that of course
consistently[B]t = t.

How do we calculate It̂o integrals? Let’s start with a simple example.
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We see that for the Itô integral withα = 0 we get∫ t

t0

Bs dBs =
1
2
(
(B2

t −B2
t0)− (t− t0)

)
. (4.30)

Another common choice are centred intermediate points withα = 1/2. Here we get

S

∫ t

t0

Bs dBs =
1
2
(B2

t −B2
t0) , (4.31)

and this integral is called theStratonovich integral. The advantage of this choice is that it obeys
the usual rules of calculus. But now dependence ofYτk

and the incrementXtk −Xtk−1
is more

complicated, leading to several disadvantages compared to Itô:

• S
∫

Ys dXs can only be defined if alsoY is a semimartingale .

• Even ifX is a martingale,S
∫

Ys dXs is in general NOT a martingale .

Therefore the preferred choice is usually the Itô integral, and from this one can recover the
Stratonovich version by a simple transformation. The unexpected term(t − t0) in (4.30) has
to be there, since the result should be a martingale. These additional terms can be easily
understood by the rules ofItô calculus, introduced below.

It is often convenient to use the following intuitive differential notation,

It = It0 +
∫ t

t0

Ys dXs ⇔ dIt = Yt dXt . (4.32)

For a continuous martingaleM we get analogous to our above computation∫ t

t0

Ms dMs =
1
2

(
(M2

t −M2
t0)−

(
[M ]t − [M ]t0

))
. (4.33)

This is equivalent to

Mt dMt =
1
2
(
d(M2

t )− d[M ]t
)

or d(M2
t ) = 2Mt dMt + d[M ]t . (4.34)

This is basically an application of the chain rule for Itô calculus. The meaning of the quadratic
variation term becomes clear if we compute an increment by hand,

M2
t+h −M2

t = (Mt+h −Mt)(Mt+h + Mt) = (Mt+h −Mt)(Mt+h −Mt + 2Mt) =
= (Mt+h −Mt)2 + 2Mt(Mt+h −Mt) . (4.35)

Takingh → 0 we get d(M2
t ) = 2Mt dMt + (dMt)2 , and comparing with (4.34),

d[M ]t = (dMt)2 = O(dt) . (4.36)

In usual calculus these terms are of negligible ordero(dt), but for martingales they have to be
taken into account, for example for BMd[B]t = (dBt)2 = dt .
If X = X0 + M + A is a semimartingale, by Proposition4.2, [A] ≡ 0. Thus[X] = [M ] and
the general version of (4.34) is

d(X2
t ) = 2Xt dXt + d[X]t

(
= 2(Mt + At) d(Mt + At) + d[M ]t

)
. (4.37)
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Using (4.36) we can easily see that the quadratic variation of the Itô integral

It =
∫ t

t0

Ys dXs is given by [I]t =
∫ t

t0

Y 2
s d[X]s for all t ≥ t0 . (4.38)

This follows directly from

d[I]t = (dIt)2 = (Yt dXt)2 = Y 2
t (dXt)2 = Y 2

t d[X]t . (4.39)

This should clarify condition (4.24) which insures that the integral has a finite quadratic varia-
tion. These findings are summarized in the following very usefull result.

Theorem 4.7 It ô’s formula
LetX be a continuous semimartingale andg ∈ C2(R, R). Then

dg(Xt) = g′(Xt) dXt +
1
2
g′′(Xt) d[X]t , (4.40)

or in the integrated version

g(Xt) = g(X0) +
∫ t

0
g′(Xt) dXt +

1
2

∫ t

0
g′′(Xt) d[X]t . (4.41)

Proof. Taylor expansion with terms up to orderdt.

In particular, we see thatf(Xt) is again a semimartingale with decomposition

g(Xt) = g(X0) +
∫ t

0
g′(Xt) dMt︸ ︷︷ ︸

cont. martingale

+
∫ t

0
g′(Xt) dAt +

1
2

∫ t

0
g′′(Xt) d[X]t︸ ︷︷ ︸

finite variation

. (4.42)

Examples.
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4.4 Solutions to SDEs

Let X be a solution of the SDE

dXt = a(t, Xt) dt + σ(t, Xt) dBt . (4.43)

For the quadratic variation ofX we get

d[X]t = (dXt)2 = σ2(t, Xt) dt + o(dt) , (4.44)

and using It̂o’s formula, the SDE for an observableg(Xt) with g ∈ C2(R, R) is

dg(Xt) = g′(Xt) dXt +
1
2

g′′(Xt) (dXt)2 =

= g′(Xt)
(
a(t, Xt) dt + σ(t, Xt) dBt

)
+

1
2

g′′(Xt)σ2(t, Xt) dt . (4.45)

Taking the expectation on both sides, we get with PDFf(t, x) by partial integration

d

dt
E

(
g(Xt)

)
=

∫
R

g(x)
∂

∂t
f(t, x) dx =

=
∫

R

(
g′(x) a(t, x) +

1
2
g′′(x)σ2(t, x)

)
f(t, x) dx =

=
∫

R
g(x)

(
∂

∂x

(
a(t, x) f(t, x)

)
+

1
2

∂2

∂x2

(
σ2(t, x) f(t, x)

))
dx , (4.46)

since the expected value of the martingale part vanishes. This holds for arbitrary functionsg,
and therefore we must have

∂

∂t
f(t, x) =

∂

∂x

(
a(t, x) f(t, x)

)
+

1
2

∂2

∂x2

(
σ2(t, x) f(t, x)

)
. (4.47)

Thusf(t, x) fulfilles the Fokker-Planck equation andX is a diffusion process with drifta(t, x)
and diffusionσ2(t, x).

How many solutions to the SDE (4.43) are there?

Definition 4.4 We say that a SDE has aweak solutionif there exists a solution for all initial
valuesX0 = x0 ∈ R. The solution isunique in law, if all solutions started fromx0 have the
same distribution. The solution ispathwise unique, if for a fixed probability space

(
Ω,F , (Ft :

t ≥ 0), P
)

and a fixed BMB, any two solutionsX andX ′ fulfill

X0 = X ′
0 a.s. ⇒ P(Xt = X ′

t for all t ≥ 0) = 1 . (4.48)

If a solutionX is adapted to the natural filtration ofB it is called astrong solution.

For time-independent drift and diffusion there is a general theorem about existence and
uniqueness for SDEs.
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Theorem 4.8 Suppose thata : R → R andσ : R → R are Lipschitz-continuous, i.e.∣∣a(x)− a(y)
∣∣ ≤ K|x− y| for someK > 0 and allx, y ∈ R . (4.49)

Then for each
(
Ω,F , (Ft : t ≥ 0), P

)
and each BMB adapted to(Ft : t ≥ 0) solutions to

dXt = a(Xt) dt + σ(Xt) dBt (4.50)

are pathwise unique and there exists a strong solution for any starting pointx0 ∈ R.

Proof. analogous to ordinary differential equations using the contraction mapping theorem and
Gronwall’s Lemma.

Itô’s formula and the existence and uniqueness theorem can be extended to higher space
dimensions. There is also a Stratonovich interpretation of SDEs which is directly connected to
the Itô version given here. Both can be found in Gardiner, Section 4.3.
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