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Introduction

In this module we will cover the basics to study complex systems with stochastic time
evolution. There are two different origins of stochasticity:

¢ Classical mechanics: stochasticity due to lack of information

In principle all components involved in the system follow a deterministic system of equa-
tions of motion. But in practice all microscopic details are not accessible and the un-
known influences on the dynamics are approximated as effective random noise with a
certain postulated distribution. The actual origin of the noise may be related to chaotic
motion, i.e. deterministic time evolution with random initial data such as a dice or pen-
dulum, or neglected interactions in a large system such as gases or fluids leading to a
stochastic time evolution.

e Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a
system is therefore given by a complex probability density function (wave function),
rather than a single element in the set of all possible configurations.

Examples.

In this course we only cover classical stochastic systems. After a general introduction
to stochastic processes we will study some examples of particle systems with thermal inter-
actions. The first and most classical example of this phenomenBroignian motion(see
Gardiner, Section 1.2). In 1827 Robert Brown observed the irregular motion of small pollen
grains suspended in water. A first satisfactory theoretical description of this phenomenon was
given by Einstein in 1905. A mathematically idealized version of this is called the Wiener
process and can be described by the theory of stochastic calculus which was developed in the
1950s by 1d. Due to the continuous state space of the system this theory is rather involved, and
will be discussed towards the end of the module. Simpler to analyse are models with a discrete
state space such as birth-death processes, which appear for example in predator-prey models
in biology (see Gardiner, Section 1.3). In the first part of the course we concentrisiiarkov
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chains(following Grimmett and Stirzaker, Chapter 6), which are certain stochastic processes
with discrete state space. We conclude the introductory section by two general definitions.

Definition 0.1 A stochastic procesX = (X; : t € T) is a family of random variableX’; :
Q — S with state spacé& and time index seT C R.

A stochastic proces¥ : T x (2 — S'is a function of two variables, timeandw € Q2. For
fixed w, the functiont — X, (w) is called asample pathThe probability space is arbitrary,
but has to be big enough to encode all possible time evolutions. A canonical choice is the set
of all sample path§) = {f : T — S}, or often one requires some regularity of the functions
f, such as continuity.

Definition 0.2 A stochastic process isMarkov processf forall t1 < to < ... < t, € T,
n €N, forall s1,...,s,-1 € Sandall (measurabled C S,

P(Xy, € An| Xy, = s1,..., X, = sn-1) =P(Xy, € Ap| Xy, =sp1) . (0.1)
A Markov process is calledomogeneouss for all (measurabley, B C Sandt >t € T

P(X; € A| Xy € B)=P(X,_y € A| X € B). (0.2)
A homogeneous Markov process is callellarkov chain if S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate
on the choice§ = N, Z for discrete time and’ = [0, o0), R for continuous time processes.
Typical choices for state spaces &e= 7Z (e.g. random walk, birth-death processé$)e.g.
counting processesR? (e.g. Brownian motion).

Examples.




1 Markov chains

1.1 General properties

Definition 1.1 For a Markov chain we define thensition probabilities
pij(t) = IP(X,: = ]|X0 = Z) S [O, 1]

foralli,j € S,
and thetransition 'matrices’

(1.1)
P(t) := (pi(t) = i,5 € S) € [0,1]15I51.

(1.2)
A homogeneous Markov chain starting at time- 0 is uniquely determined by an initial

distribution 7 (0) with 7;(0) = P(Xy = i), ¢ € S and the transition probabilities, because
every joint probability can be written as
P(Xy, € Ay,..., Xy, € Ay) =

= Z Tio (0)Digiy (£1)Piyiy (t2 — t1) =+ - Dipy_1iy (b — tn1)
iOES7i16A17"7i'VL€A’VL

(1.3)
forall0<t; <...<t, € TandA,

., A, C S. In particular, the distribution at timeis
mi(t) =P(X; =j) =Y m(0)p;, so w(t)=m(0)P(t). (1.4)
ies

Example.

Proposition 1.1 P(0) = Id and the family( P(¢) : ¢ > 0) satisfies th€hapman-Kolmogorov
equations

Pt+t)=Pit)P{) forallt,t’;t+t €T.

(1.5)
Proof. p;;(0) = d;; by definition, and for alt, #',t +¢' € T
pij(t+1) = P(Xpqp = j|Xo = 1) =

=S P(Xpwr = j1Xo = i, X, = F)P(X, = k| Xo = i) = > pir(t) pi (1) (1.6)
keS

kes
using the total probability sum rule, the Markov property and homogeneity.
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For discrete time witlT = N this leads to

|P(n+1)=P(1)P(n) = P(n) P(1) = P(n)=P",

(2.7)

where we denoté” = P(1). Therefore a discrite time Markov chain since is uniquely deter-
mined by the initial distributionr(0) and the transition matri¥.

Example.

For continuous time witil' = [0, co) we require some regularity of the function- P(t)
att = 0. We only study processes where it is continuous and differentiable, i.e.

P(t) I
lim P(t) = P(0) = Id and G = lim L) =1¢
N0 t\.0

Together with the Chapman-Kolmogorov equations this implies that

P(t+At) - P(t) _ P(At)—1Id P(t) = P(t)P(At) —Id

exists. (1.8)

At At At ’ (1.9)
and thus taking\t \, 0, P(¢) is differentiable for alk > 0 and fulfills
%P(t) _GP() = P)G = P(t) = exp(tG). (1.10)

For finite state spaces| < oo the formal solution to this equation is given by a matrix
exponential which is discussed in Section 2.3 in more detail.

Definition 1.2 A probability distributionst* is calledstationaryif 7w*P(t) = =* for all ¢t > 0.

This will play an important role in the long-time behaviour of Markov chains, since 'often’
7w(t) — =*. How and when this is true will be seen later.

Theorem 1.2 (Existence)A Markov chain with finite state spacehas at least one stationary
distribution.

Proof. Depends on discrete or continuous time, see later.

In Section 1.5 we will see a generalisation of this for inifinite state spaces. The question of
unigueness of stationary distributions is connected to the following definition.
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Definition 1.3 Statei € S communicates witktatej € S if p;;(¢) > 0 for somet € T, and
we write; — j. Stateg andj areconnectedf i — j andj — 4, and we writei < j.

The Markov chain is calledreducibleif i < j forall i, j € S.

A statei is calledabsorbingif i 4 j for all j # 4.

Examples.

Theorem 1.3 (Unigueness)An irreducible Markov chain has at most one stationary distribu-
tion.

Proof. Depends on discrete or continuous time, see later.

1.2 Discrete time

SinceP(n) = P™ adiscrete time Markov chain is uniquely determined by the transition matrix
P = P(1) and its initial distribution. So with Definitiod.2, 7w* is a stationary distribution if
and only ift*P = =*, i.e. * is a left eigenvector with eigenvalue= 1.

By definition, P is astochastic matrixi.e.p;; € [0,1] andzjes pi; = 1, since the chain
starting ini has to jump somewhere . So\ = 1 is an eigenvalue aP with right eigenvector
1=(..,1,1,...)T. Therefore ifS is finite, there exists at least one left eigenveatbywhose
entries can be shown to be non-negative. If the chain is irreducible this eigenvector is unique
under the condition) ", ¢ 7 = 1.

Theorem 1.4 A discrete time, finite state irreducible Markov chain has a unique stationary
distribution#*, where

i =1/p; with p;:=E(T;|Xo=4) and T;:=min{t>1:X;, =i}, (1.11)



so thatw* is determined by the inverse of thean recurrence timeg,;.
Furthermore,

7 =1(Id—-P+U)"', where u;=1foralli,jecS. (1.12)

Proof. see Grimmett and Stirzaker pp 229 - 230 for recurrence times.
for uniqueness see proof of Theordng.

=n"P & w*(Id-P)=0 & 7w (Id+P)+1=1

& 7w (Id-P+U)=1 (1.13)
By uniqueness of* we know that this linear system of equations has a unique solution, which
is equivalenttd/d — P + U) being invertible. O
Example.

Proposition 1.5 Let X = (X,, : n € {0,..., N}) be a finite state irreducible Markov chain
with transition matrixP~. Suppose further thaX is stationary, i.e.X,, ~ 7* for all n. Then
the reversed chainY withY,, = X _,, is a Markov chain with transition matrix

*

Tr -
Py = W—‘ip% foralli,jesS. (1.14)

Proof. Using stationarity and the Markov property &fwe get

P(Yn+1:in+1‘y :ZTha)/OZZO) =
P(Yy=1i,0<k<n+1) PXy_p=1i,0<k<n+1)

P(Yy =iy, 0 < k <n) N P(Xn_k =1, 0 <k <n)
ﬂ-’zknJrlpianlin o 'piliO Tr;‘n+1pin+1in
= = = (1.15)
T Pinin—1 """ Pirio T
as required. O

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this
only holds for stationary chaing.* is then also stationary for the reversed chgin

Definition 1.4 Let« be a probability distribution 0. A discrete time Markov chaiX” with
transition matrixP is calledreversible (w.r.t.r), if it fulfilles the detailed balanceonditions

TiPij = T;jDji for all i,j €S5. (1.16)



Proposition 1.6 Suppose a discrete time Markov chaihis reversible w.r.t.wr. Thenw is a
stationary distribution ofX.

Proof. From (1.16 we deduce  (mP); = > ,cq TiDij = D _icg TjPji = Tj - O

Note that Propositiod.5together with 1.16 implies that a reversible Markov chain and
its time-reversal are indistinguishable, i.e. they have the same transition probabilities, since

y T ox T x X
bij; = < Pji = %pz’j =Dij - (1.17)
T T

The detailed balance relatiors.16 can be a useful tool to find stationary distributions of cer-
tain Markov chains 'without loops’.

Example.

Definition 1.5 Theperiodd(i) of a state; € S is defined as
d(i) := ged{t > 1 : p(t) > 0}, (1.18)
the greatest common divisor of the epochs at which return is possible.

Theorem 1.7 For an irreducible Markov chain all states have the same period, and we call
the chain aperiodic ifi(:) = 1 forall i € S.

Proof. see p.224 in Grimmett and Stirzaker



Example.

Theorem 1.8 An irreducible, aperiodic Markov chain with finite state spacengodig i.e.

pij(n) — 7 ast—oo, foralli,jes. (1.19)

Proof. The statement follows from thHeerron-Frobenius Theorem
If P is the transition matrix of a finite state irreducible Markov chain with pericithen
(i) the d complex roots of unity are eigenvaluedf

=1 \where w = *™/? (1.20)

(i) and the remaining eigenvalues; 1, . .., Ag| satisfy|\;| < 1.
Note that this includes uniqueness of the stationary distribution claimed in Thdodem
Suppose further that the eigenvalues are all distinct, BiéhB~! = (\;6;;);; is a diagonal

M=uw=1 =w...  A=w

matrix with entries\y, .. ., A5, where the rows oB are the left eigenvectors @f. Thus
N0 1...0
pr=B7'| . : |B>B'|: :|B (1.21)
0 ... A 0...0
since\; = 1 and|\;| < 1 for all i > 1 if the chain is aperiodic.
The proof can be extended to countably infirite O

This implies that for every initial distribution
w(n) =mw0)P" — 7" = (1/p,...,1/pg) asn— oo. (1.22)
Example.




1.3 Continuous time

Subject to the boundary conditio#¥0) = Id, equations1.10 often have a unique solution

%P(t) =GP(t)=P(t)G = Pt)=exp(tG)= 3 ZG’“. (1.23)
k=0

For example this is the case|if| < oo, and subject to certain technical conditions also for
inifite state spacé&. Therefore a continuous-time Markov chain is uniquely determined by the
initial distribution and the matrixs which is called thegeneratorof the process.

How does look and what is the relation to the time evolutiono®

Assume thatX; = i. For small timesAt we have from 1.23
pij(At) = g;j At +o(At) foralli#je S. (1.24)

So during a time intervalt, t + At) the chain jumps from stateto j with probability g;; At,
andg;; > 0 can be interpreted as a jump rate. On the diagonal we have

pii(At) = 1+ gy At + o(At) forallie s, (1.25)

which gives the probability that nothing happens in the time intefal+ A¢). By normal-
ization we have

1= "pi(A) =1+ At gy = > gy=0 forallies. (1.26)
jES jES JES

Therefore the diagonal entries Gfare

gi=—>» gi; <0 forallles, (1.27)
J#
and|g;;| can be interpreted as the total rate to leave state
What does really 'happen’ in a continuous time Markov chain?
Assume thafX; = i and define théolding time
W; := inf {t’ >0 Xpyp # z} , (1.28)

i.e. the (random) time until a jump occurs. This is actually independenbgfhomogeneity
and if7 is absorbingg;; = 0 for all j € S andW; = oc.

Proposition 1.9 The random variabl&V; is exponentially distributed with parametgs;| and
if |gis] > 0, the probability that the chain jumps fo# i after timeW; is g;;/|gil.

Proof. W; has 'loss of memory’ property, i.e. for all « > 0

P(W; >s+ulW; >s) = P(W; > s+ u|Xips =1) =
= P(W;, >ulXy=1) =P(W; >u), (1.29)
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where we have used the Markov property and homogeneity. Therefore we have for the tail

F(s+u)=P(W; >s+u) =PW; >s+uW; >s), (1.30)

andthus  F(s+u) = F(s) F(u).
Analogous to the Chapman-Kolmogorov equatidh§)(this can be used to derive a differential
equation forF” which has an exponential solution

F(s) =P(W; > s) = where \= F'(0). (1.31)
Together with .25 we get
im p”‘(At) + O(At) -1

—, o P(Wi>At)*1_
F(0) = Al}r{lo At N Alzls\o At

=04 <0, (1.32)

and therefore P(W; > s) = e~ 19l and W; ~ Exp(|gi).
Now the probability that the chain jumps jo conditioned on the event that it actually jumps
somewhere in the time intervéd, s + At], is given by

pij(A) i

P(Xt—i-s—i-At = j‘Xt_A,_S =i, W; < At) ~ asAt \, 0. (133)

L—pi(At)  —gii
Picture. 0
n—1
The chain jumps at thgmp time J,, = > Wy, tostate Y, = X, .
=0

Y = (Y, : n € N) is called thejump chain and it is a discrete time Markov chain with
transition MatrixPY" given by

Y 0 ,i=7 . . '
i = . . if g, >0, and 1252 if g;; =0. 1.34
. {gij/lgm ity Y pi; =dij ifg (1.34)

So a continuous-time Markov chain can also be characterized by its jump Xhaiml a se-
quence of independent exponentially distributed holding tithEg, : n € N).

11



Examples.

For thePoisson procesthere exists also another characterization.

Proposition 1.10 X = (X; : ¢ > 0) is a Poisson process with rateif and only if it has
stationary, independent increments, i.e.
Xp — Xy is distributed likeX; — X, and independent of X, : s < t'), (1.35)

and for eacht, X; has Poisson distribution with parametgt, i.e. P(X; =k) = (Akf!)k e M,

Proof.

Using equation.23 we can also get an evolution equation for the distribution,

d d
Zm(t) = m(0) ZP() = m(0) P(t) G = m(H) G (1.36)

12



This is called theMaster equatiorand using {.27) the coordinate form is given by

()= 3 (mi(0) g3 — m(t) ) (137)

JFi

If m = «* is a stationary distribution, then both sides of the equation vanish.

Proposition 1.11 LetG be the generator of a continuous time Markov chdit) = exp(tG)
and PY the transition matrix of the jump chain. Then

mPt)=n" < 7#G=0 < aPY=m, (1.38)
where 7; = 7f|g;| forallie S.
Proof. Assume finite state spaceand that all g;;| > 0.

G =(0,...,0) < wG*=(0,...,0) forallk>1

& EW*GRZ(O,...,O) forallt >0
k=1""
—t* i - 0
s o ZHG —* forallt > 0sinceG® = Id
k=0
& wPt)==w" forallt>0. (1.39)

By (1.34 we can writeg;; in terms of the entries aP',  g;; = |gui|(p); — di) , and so

(7PY); =7 =Y mlpl —6y) = Y _migy = (7"G);, (1.40)
= i€S
and both sides vanish equivalently. O

Theorem 1.12 A continuous time irreducible Markov chain with finite state space has a unique
stationary distributiont™*, where

1 .
T = o with ;= E(T;|Xo =) and T;:=inf{t > J;: X; =1i}. (1.41)
Hi|Gii

This follows immediately from Theorerh.4 for discrete time by the tie-up with stationary
measures of the jump chain (Propositibid1). Note thatT; is still the recurrence time for the
jump chainY. This forces a slightly different definition in terms &f, andT; is often called a
first passage timeThen is determined by the average fraction of time the chain spends in
states,
1 E(W; ) o

= = (V) with the expected holding timB(WW;) = 1/|g.| - (1.42)

il giil 14
Thedetailed balanceonditions for a continuous-time Markov chain are

*
Uy

TiGij = T;Gji foralli,j € S. (1.43)

13



If they are fulfilled for a distributionr, thens is stationary since every term in the right-hand
side of (L.37) vanishes individually.

Examples.

Theorem 1.13 An irreducible Markov chain with finite state space is ergodic, i.e.
pij(t) — m; ast—oo, foralli,jes. (1.44)
Again, this follows directly by ergodicity of the jump chain (Theoré&r), and it implies
EWy) E(Ws|)
H1 Hs)

w(t) =7m(0)P(t) - n" = ( ) ast — oo, (1.45)

for every initial distribution (0).
Note that for continuous time there is no issue of periodicity, since
ifi —j then p;;(t) >0 forallt>0. (1.46)
This is becausé — j is equivalent to
GiirGivio "+ Gin_1j > 0 forsomeiq,...ip,—1 € S,neN, (1.47)

which implies that  p;;(t) > pi;, (t/n) - pi,_,i(t/n) > 0.

14



1.4 Countably infinite state spaces

For infinite state spac#, the Markov chain can 'get lost at infinity’, and therefore not have a
stationary probability distribution.

Examples.

Definition 1.6 A state: ¢ S is called

recurrent if P({t>0:X,=i}is unbounde¢|X0 =i)=1 and
transient if P({t > 0: X; =i} is unbounded X, = i) = 0. (1.48)

Proposition 1.14 Leti € S be a non-absorbing state. Then

e %)
P(Ty<o0) =1 < Y piln) or/ pii(t) =00 = irecurrent,
n=0 0

P(T,<o0) <1 & Y piln) or/ pii(t) < oo = itransient. (1.49)
n=0 0

Each state is either recurrent or transient. If the chain is irreducible then the states are either
all recurrent or all transient.

Proof. see Section 6.2 in Grimmett and Stirzaker
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Examples.

Apparently recurrence and transience of a Markov chain is not enough to characterize the
existence of a stationary distributioti* completely. If it exists, the entries; o 1/u; are
inversely proportional to the mean recurrence times= E(T;| X, = ). If the chain is
transient, then certainly; = oo for all ¢, #* does not exist and in faat;(t) — 0.

Definition 1.7 Arecurrent state € .S is calledpositive recurrentf n; < oo andnull recurrent
if p; = oo.

Theorem 1.15 Let X be an irreducible (non-explosiVeMarkov chain. TherX has a unique
stationary distribution if and only if it is positive recurrent.

So the positive recurrent (non-explosive) Markov chains behave exactly like chains with
finite state space concerning their stationary distributions. This also holds for dynamic proper-
ties and the convergence to equilibrium.

lexplained at the end of this section
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Examples.

Therefore X can be positive recurrent while the corresponding jump chagnull recur-
rent. However, we have the following connection.

Proposition 1.16 Let X be a (non-explosive) Markov chain with jump ch&nThen

i € SistransientforX <« idistransientforY ,
i € SisrecurrentforX <« iisrecurrentforY . (1.50)

Transient continuous time chains can get lost at infinity even in finite time. This phenom-
enon is calleegexplosion Define theexplosion time

Joo 1= lim J, =Y "W; € (0,00] . (1.51)

n—00 -
=1

This is a random variable that usually takes the valueand we say that the chain mon-
explosivef P(J., = oo) = 1. For example this is the case|H| < oo or sup;cg |gii| < oo.

17



Example.
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2 Processes with continuous state space

2.1 Brownian motion and the Central limit theorem

Let Y7,Ys,... € R be iidrvs with mearE(Y;) = 0 and variancerar(Y;) = ¢ > 0. Then
define the discrete-time process

n
X, = ZY with Xy =0. (2.1)
=1

For example ifY; ~ U({—l, 1}) then X is a simple symmetric random walk. Then by the
Central Limit Theorem (CLT) asn — oo

Xn

N £~ N(0,0%)  (Gaussian rv with meamand variance?) , (2.2)
n
or, equivalently, for ally € R
X Y 1 2 /(9,2
of (e ——— /(297 dp  with Gaussian pdf : 2.3
(\/ﬁ < y) _>/ s e T Wi aussian pdf fx(z) (2.3)
Ix(z)

We can use the CLT to look at the process in rescaled timg = nAt. According to
(2.2, X[i/an/+/1/At should converge to &dependent random variable A2 — 0, and we
define

[t/At]
L Vi 2
B, = Algo\/mx[t/m} = lim JiAT 2 Z = VtE& ~ N(0,t0?) . (2.4)

Here the; ~ N (0, 1) are different for each, but they are certainly not independent. Note that
by the CLT the time rescaling induces a space rescaling

‘t=Atn, b=(A)z with a=1/2|,

(2.5)

and on all other spatial scales, the limiting process does either not exist or is degenerate,

B, =0 fora>1/2, B;isnotwelldefinedforx <1/2. (2.6)

19



Properties of the proceds = (B; : t > 0):
By = 0, B;~N(0,t6%) and analogously ta(4)

[t/ At
B, — B, = vt > Yi~ N0, (t - s)o?) (2.7)

tﬂo ,/t/A i=[57Ad

forallt > s > 0. So B hasstationary incrementsi.e. B, — B; ~ B;_s — By, and by
independence of thg;, B hasindependent incrementse.

B, — Bs isindependentof {B, :u <s} forallt>s>0. (2.8)

So farB is only the result of an informal derivation, an important question is wether it actually
exists as a mathematical object.

Theorem 2.1 Existence of Brownian motion (Wiener)
There exists a proces8 = (B; : t > 0) with stationary independent increments, such that
By =0andB; ~ N(0,t). B is called astandard Brownian motion (BM)or Wiener process

Proof. see e.g. Rogers and Williams, Section 1.6

It suffices to look astandardBMs B with 02 = 1 and By = 0, then/c B + ¢ is a BM
with varianceo? starting inzo. All distributional properties of BM are characterized by the
finite dimensional distributions.

Proposition 2.2 Let B be a standard BM. For alty, ..., ¢,, n € N the vector
(Bt,s...,Bt,) ~N(0,T) with ~;; = min{t;,¢;}, (2.9)

has multivariate Gaussian distribution with zero means and covariance niateix;;); ;.

Proof. B, ~ N(0,t) and it suffices to show thabv(B;, B;) = min{s, t}. Takes < ¢, then
E(BsBy) = E(BZ + By(B; — B,)) =E(B2) + 0, (2.10)

sinceB has independent increments &) = 0. Thus cov(Bs, B;) = var(B,) =s. O

Reminder. The pdf of the multivariat Gaussid®,, , . . ., By, ) is given by

1

W exp ( — %XF*1 XT) with x = (;1;1’” . ,xn) ) (2.11)

fth--,tn (X) =

What are the regularity properties of a Brownian sample path?
From @.4) we expect for Brownian motion

Biih — B, = Vhé ~N(0,ho?) — 0a.s. ash —0. (2.12)

Therefore Brownian sample paths are continuous (and more precigddiettontinuous with
exponenk 1/2). But they are nowhere differentiable, since

Bt+h — Bt g L
—————=—¢ h limit . 2.1
" \/Eg as no limitash — 0 (2.13)
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These properties do not follow fron2.(7) and @.8), which can be fulfilled also by discontin-
uous processes. But under the restriction that B;(w) is a continous function of for all

w € 1, BM is unique. So we restrict ourselves to {reth spacej‘([o, oo),]R) of continuous
functions, and the process can then be described by a probability measure on that space.

Theorem 2.3 Uniqueness of Brownian motion (Wiener)

There exists a unique probability measurg on the path space.f]([o,oo),]R) (called the
Wiener measurg such that the process with sample paths distributed according’ tis a
Brownian motion as defined in Theor&n

Proof. see e.g. Rogers and Williams, Section 1.6

Examples of sample paths.

0.0 02 0.4 0.6 0.8 1.0

Note that if the increment¥; in (2.2) are not identically distributed or independent, the
CLT still holds under more general conditions (see e.g. Gardiner, Section 2.8.2). So Brownian
motion is the natural limiting process for a very general class of models.

Definition 2.1 A d-dimensional standard Brownian motid = (B; : ¢ > 0) is a collection
of d independent one-dimensional BN, . . ., B? as defined in Theore, i.e.

B; = (B},...,BY) forallt>0. (2.14)

So the pdf of the incremenB; — B, is  f;_,(x) = (2n(t — s)) %% exp ( — 2‘(‘;‘E)> .

Analogous to the random walk, one can study recurrence and transience for BM depending
on the space dimension.
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Theorem 2.4 (i) If d =1 BMispoint-recurrent i.e.
P({t > 0: B; = 0} is unboundefiBy = 0) = 1. (2.15)
(ii) If d =2, BMisneighbourhood-recurrenti.e. for everye > 0
P({t > 0: |By| < €} is unboundefiBy = 0) = 1. (2.16)
However, points argolar, i.e. for allz € R?
P(T,=c0)=1, where T, =inf{t>0:B;=uz}. (2.17)
(i) If d > 3, BMis transient, i.e|B;| — oo ast — oo with probability one.

Proof. see e.g. Rogers and Williams, Section 1.18

Proposition 2.5 For dimensiord > 2, the image{B, : t > 0} C R4 of the sample path of a
BM B hasHausdorff (or fractal) dimension2.

'Proof’. see class
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2.2 General facts

In this section we discuss processes with continuous state spack or R and continuous
timeT = [0, 00). This is mathematically more complicated than Markov chains, and we will
discuss some of the technical issues below. On the other hand, the sample paths are now real
valued functions, our state space has an analytic structure and we will be able to use concepts
from usual calculus.

For example we will often integrate over setsc R of possible values with respect to the
distribution functionf’ of a random variabl&, e.g.

IP’(XEA):/

dF(z) = / f(x)dr wheref = F’is the pdf (if it exists).  (2.18)
A A

This cannot be done for all setsC R but only for A € A, whereA C P(R) is a socalledr-
algebra This is a set ofmeasurable setshere the measuréF'(z) can be consistently defined
on.

Remember also that a random variable is actuallyeasurable functioX : 2 — R, i.e.
for each measurabld C R the preimageX ~'(A) = {w : X(w) € A} is measurable with
respect td® on 2. We always us the shorthand

P(X € A)=P{lweQ: X(w) € A}, (2.19)
and the probability spade is hidden from the discussion.
Definition 2.2 Let X, Y : Q — R be random variables andl C R measurable. Then we say

X € A almostsurely (a.s,) if P(X e A) =1 and
X =Y as, if P(X=Y)=P{w:X(w)=Y(w)})=1 and
X ~Y if Fx(z)=P(X <z)=Fy(z) forallzeR. (2.20)

Example.

Soingeneralwe haveX =Y as. = X~Y.

Similar concepts exist for convergence of random variables,

X, — X meangonvergence in distributign.e. Fx, (z) — Fx(z),
X, — X a.s. meansalmost sure convergencee. P(X,, — X)=1. (2.21)
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(Note that convergence in distribution is required only foraf R at which F' is continuous
due to technical reasons, see e.g. Grimmett and Stirzaker, Section 7.2.)
In general, 'almost sure’ is stronger then ’in distribution’ and we have

X=Yas = X~Y, X,—Xas. = X,—X. (2.22)

As for Markov chains, the distributional properties of a general stochastic process are de-
termined by fixing alfinite-dimensional distributions (fdds)

Fi(x) = P(th <z1,...,X, < xn) , (2.23)

forallt = (t1,...,t,) € [0,00)", t; # t;,x = (1,...,2,) € R" andn € N. For state space
S = R these are characterized by joint distribution functidis

Theorem 2.6 If a collection{ I} } of fdds fulfills theKolmogorov consistency relations

Fitpo (X, 2p41) — Fe(x) as xpy1 — oo, and
Fr(Ilx) = Fy(x) forall permutationdI of (1,...,n), (2.24)

then there exists a prob. spafeand a processt = (X; : ¢t > 0) on{2 that has fdd Fi }.

Proof. Is related to the Skorohod representation theorem. Basically oneftaielse the path
space of the process. Some hints are given in Grimmett and Stirzaker, Section 8.6

Example.

So Brownian motion is an example of3aussian process

Definition 2.3 A real-valued, continuous-time proceXsis called aGaussian proces$ each
finite-dimensional vecto(X,,..., X;,) ~ N(u(t),V(t)) is Gaussian with mean vectpr
and covariance matrik’, which may depend oh

Analogous to Propositio.2, all finite dimensional distributions of a Gaussian process are
uniquely specified by its mean and covariance matrix (which has to be positive definite). But
note that Gaussian processes are not necessarily Markov. Standard Brownian motion is a
Gaussian process with zero mean and covariafiog s, t }.

The transition probabilities of a Markov chain can also be generalized.
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Definition 2.4 Let X be a stochastic process. The conditional distribution function
is called thetransition kernebf X. If it has a density we call this theansition density
F
Fltls,) = 5 (1, v) (2.26
Note that for a homogeneous process, the kernel is actually only a function af

Proposition 2.7 The fdds of a Markov process are uniquely determined by the transition ker-
nels and the initial distribution.

Proof. Sample calculation fob < ¢; < ¢, with densities using the Markov property,

x9 1 [e'e)
P(Xy, < @1, Xiy < 22) = / / / F(0,) F(tr, 9]0, ) F(ta, 2[t1, y) d dy d=

0
Example.

In contrast to Markov chains, for continuous state space the fdds do not determine the
process uniquely. Two processes with the same fdds are ea@ltshnsof each other, and their
sample paths can have very different properties. This fact cannot be ignored, since it is very
important when studying properties such as first-passage times.

In the previous section we saw that the sample paths of BM are continuous. Many interest-
ing phenomena cannot be modeled with continuous processes alone, but one usually concen-
trates on the following class of processes.

Definition 2.5 A real-valued, continuous-time proce&sis calledcadlag if its sample paths
are right continuous (continugedroite) and have left limits (limita gauche), i.e.

li{r;Xs(w) = X;(w) and li;riXs(w) exists, foralw e Q, t€[0,00). (2.27)

For example continuous-time Markov chains (e.g. the Poisson process) are defiadé@s c
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2.3 Brownian motion and the heat equation

We are looking for an evolution equation for the transition densities, analogous to the forward
equation (or master equation) for Markov chains. First we will derive it for Brownian motion
as scaling limit from the simple random walk.

Let (X,, : n € N) be a simple random walk. Then the distribution at times given by
w(n+ 1) = w(n) P, which can be written in the following incremental form

w(n+1) —w(n) ==n(n)(P —Id), (2.28)

whereP — Id is proportional to the discrete Laplacian: R — RZ,

P—1Id= = 1 -2 1 :%A. (2.29)

N

pol=
"ol

In the previous section we saw that under the scz#l'mg Atn, = (At)*k witha =1/2],

(At)* X /ag — By converges to Brownian motion @ — 0. Therefore the mass function
7 (n) should converge to the pdf(t, ) of By, i.e.

Allitrilowx/(At)a(t/At) = f(t,z) = (27t) Y2 exp (—2%/(2t)) . (2.30)

Plugging the scaling into the discrete-time Master equa2o®d, we can derive a differ-
ential equation forf. We assume that for large & (i.e. smallAt), m(n) is approximately
given by

me(n) = f(k(AL)®, nAt) = f(t,z) . (2.31)
Then we get by Taylor expansion
20 2
mr+1(n) ~ f(t,z)+ (At)o‘%f(t, x) + (A? %f(t, x) + O((At)3°‘)
e+ 1) = f(ta) + A2 ft2) + O((AD?) . (2.32)

ot
Thus ifa = 1/2 (otherwise the limit is again degenrate),

0 o m(n 1) —me(n) 1 B B
gl (be) = i Al = dimy 5z (o1 () = 2m(n) + e (n) =
(A2 2 30—1y _ 1 07
= lim = 78:1:2f(t’$) + O((At) )= 5 aizf(t,x) : (2.33)
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So since standard BM starts in the origin, its pdf should fulfill

;f(t,x)zég;f(t,x) with initial condition £(0, ) = 5o (x) . (2.34)

This PDE is the socalletleat equatiorwhich has been well studied and inde@d3Q) is its
unique solution.

Note that with the implicit initial conditiorf (¢, z) = f(¢, |0, 0) in terms of transition den-
sities. An analogous derivation conditioned Bn= y gives the same equation f@tt, x|s, y)
with the more general initial conditiofi(s, z|s, y) = d,(x).

Indeed, as we have seen bef@e~ N(0,t — s) for ¢t > s, and therefore the transition
kernel F'(t, z|s, y) has density function

T — )2
flt,z|s,y) = %F(t,:ds,y) = (2m(t — s))_1/2 exp < - (2(t _yz) > . (2.35)

f(t,z|s,y) is also called théeat kernelsince it is the fundamental solution to that P2E34),
i.e. for every intial distributiory (0, y) we have

f(t.z) = /R £(t.210,) £(0, ) dy . (2.36)

We can also derive2(34) from the forward equatio%P(t) = P(t) G or the master equa-
tion (1.37) of a continuous-time Markov chain, by rescaling only space asek with ¢ — 0.
In these derivations the exact structure of the generator P — Id is not important and this
equation holds for a whole class of processes.

2.4 Diffusion processes and Fokker-Planck equations

Definition 2.6 A Markov processX is called adiffusion processf

P(|X4n — X¢| > €| Xy =2) = o(h) foralle>0,z€R,
E(XHh - X ‘ X = x) = a(t,z)h+o(h),
E((Xepn — Xo)* | Xe =) = b(t,z) h+o(h), (2.37)

for some functions (¢, =) (drift coefficieny andb(¢, ) (diffusion coefficient
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By the first property diffusion processes have continuous sample paths. Their distributional
properties are uniquely characterized by the drift and the diffusion coefficient.

Theorem 2.8 Let X be a diffusion process with drifi(¢, ) and diffusion coefficient(t, z).
Then the transition density = f(¢, x|s,y) exists and satisfies th{#orward) Fokker-Planck
equation(or forward equation

of 0 1 9?
Frin —%(a(t,x) f)+ 5—(6(15,1‘) f) (2.38)

forall 0 < s <t,x,y €R.

Proof. by Taylor expansion similar to Section 2.3

Examples.

f = f(t,x|s,y) is also the solution to the so-callbdckward Fokker-Planck equation

of of 1 O*f

s a(s,y) (‘Ty ib(&y) 373/2
which can be derived from the backward equation of a continuous time MC.

Stationary pdfsf*(x) of a time-homogeneous diffusion process with constant dfiff)
and diffusionb(x) are given by stationary solutions t2.88), i.e.

) . 1 02 .
0= —%(a(x)f (:c)) + 5@(6(@ f (:1;)) ) (2.40)

(2.39)
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Examples.

In general, integrating?(40 and denoting the derivative tbyve get
x 1 X
0=~ [ @ rw) iy [ 60 5rw) -

= —a(z) f*(x)—i—%(b(x) f* ()" (+const.) (2.41)

This is a first order linear differential equation and differentiating with the product rule we get
~ 2a(z) —V(x)

f*'(a:) Tf*(x) . (2.42)
So the solution is
fH(z) = f7(0) exp (/OI W dy) (2.43)

where f*(0) is fixed by normalizatiory,, f*(z) dx = 1.
Diffusion processes can be generalized to higher dimenskis R? is called a diffusion
process if in addition to the continuity property analogous to Defin@igén

E(Xitn — X¢ | Xe =x) = a(t,x)h+o(h),
E((Xiph — X¢) @ (Xegn — Xy) | Xy =x) = b(t,x) h+o(h) , (2.44)

with drift vectora(t, z) € R? and diffusion matrisb € R?*?, where

bij = B((X{yp — XD(X], — X)) | X =x) . (2.45)
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This is the covariance matrix of the increments of the process. The Fokker-Planck equation for
f = f(t,x) is now given by

0 d 0 52
87{ N Z o0x; (al(t X) Z ) (b%J (t,x) f) =L'f. (2.46)

;0%
7]_ J

where the right-hand side defines a linear oper4toon the set of functiong : R — R. £*
is called theadjoint generatomf the procesX and is the analogous quantity of the generator
of a continuous-time Markov chain.

Letg : RY — R be an observable, such @X;) = ||X||2. Then the expected value

) = E(o(X0) = [ o) 5(t.3) s (2.47)

obeys the following evolution equation,

i of(tx) 4 \ _
G0 = [ o6 2 ate = [ o) (£ p)(ex) e -
= [ (€0 £t.x0 % = Zg(0) = B((£g) (X)) (2.48)

This follows by partial integration, since for eack-1,...,d

/]Rd g(x)%(ai(t,x) f(t,x))dd:c = — /]Rd (aiig(x)>ai(t,x) f(t,x)ddac , (2.49)

1

becausef(t,x) — 0 as|x| — oo so there are no boundary terms. For the diffusion part this
can be done twice and leads to

L= Z a;(t
=1

This operator is called thgeneratorof the procesX and describes the expected time evo-
lution of observables. Note that this also determines the right-hand side of the backward
Fokker-Planck equatior2(39. It is technically more convenient thati* and therefore dif-
fusion processes are often characterized by defining their generator.

For time-independent driti(x) and diffusionb(x) existence and uniqueness of ihéial
value problem

OX) (o)t 10,5 = folx). @51)

is well understood. Under the assumptioruafform ellipticity, i.e.

2

7
i Gwzax 5

(2.50)
=1

d
Eb(x) &7 =D bi(x) & & > alélls for somea > 0and all§ € R? . (2.52)
i =1

Theorem 2.9 Under the assumptior2(52 and the growth conditions
‘8@2 0? bij(x
Ox;0x

for some constanté’, C1,Ce > 0, the initial value problem 1.51) has a unique classical
C12((0, 00),R?) solution.

fo(x) < CeOéIIXII%j

<o+ x13). )<021+qu)(253>
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Defining theprobability currentJ( f) with i-th component

1< 9
Jix, f) = -3 223 oz, : (2.54)
the Fokker-Planck equatio2.46 can be written as eontinuity equation
3fgt’ ) 4y, J(x, f(t, %)) = 0. (2.55)

Integrating this equation over a domainC R? and using integration by parts like above we
get

gt/Af(t’X)ddx:_/AVX'J(X’f(t’X))ddx:_/8AJ(X7f(t7X))'dS~ (2.56)

The second identity follows frorStokes’ theorertalso calledsauss’ integration theorem

If A = R or the system iglosedin A thenJ(x, f(¢,x)) = 0 for all x € 0A. So the
right-hand side 0fZ.56) vanishes and the total probability is conserved, i.e.

P(X; € A) = /Af(t,x) diz=1. (2.57)

An important class of diffusion processes with direct connections to statistical mechanics
are noise-perturbed gradient flows.
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Definition 2.7 Let X be a diffusion process with time-independent daifkk) and diffusion
b(x). V : R? — Ris called gpotentialfor X, if a(x) = —VV(x). If b;;(x) = b;; we callX
a (noise-perturbedjradient flow

The Fokker-Planck equation of a gradient flow is given by

WX g (wv ) 10.3) + 5 AS(E%) (259
and the generator is

L=—-(VV(x))-V+ gA : (2.59)
Examples.

Proposition 2.10 Assume that’” : R¢ — R is smooth and that
7 = / e VO gy < o (2.60)
Ra

Then the diffusion proces§ with generator 2.59 is ergodic. The unique stationary distribu-
tion is theGibbs distributionwith density

1
frx) = e 2V, (2.61)
Z
and the normalization factaf is calledpartition function.
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Proof. We haveV f* = —2(VV) f* and thus

gAf* = gv (V) ==V-((VV) [). (2.62)

Substituting this inZ.58 the right-hand side vanishes afitlis stationary.
Uniqueness and ergodicity follow from the fact gradient flows fulfill the conditions such that
the Fokker-Planck equatio.68 has a unique (time-dependent) solution. O
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3 Martingales

Martingales are an important class of processes in the study of stochastic differential equations.
They can be discrete or continuous both in time and space.

3.1 Filtrations and adapted processes

Definition 3.1 LetY = {Y,, : n € N} andX = {X,, : n € N} be sequences of real-valued
random variablesY is amartingalewith respect taX if forall n € N

E(|Ya]) <oo and E(Ypi1|Xo,...,Xn) =Y. (3.1)

Examples.

Alternatively, the conditional expectation can be defined with respect io-tigebra gen-
erated byX. This approach can be extended to continuous time.
A o-algebraF on the probability spac® is a set oimeasurablesets, that fulfills the following
consistency conditions: For all, A1, Ay, ... € F

DheF, A°=Q\AeF, |JAeF. (3.2)

neN
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Examples.

A filtration is a collection(F;,t € T) of sube-algebras ofF which is increasing, i.e.
s<t = Fs CF .AprocessX = (X;:t € T) is adaptedto the filtration(F; : ¢t € T) if
X, is Fz-measurable for every

Example.

Interpretation:  F; is the total information available up to tim\q

As in the above example, this can be generated by a process(X; : t € T). Thenatural
filtration for the processX is given by

F¥=0({Xs:s<t,s€T}) forallteT, (3.3)
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i.e. the information generated by the procéssThis is the smallest filtratioX is adapted to.
Then we can write for a random variabite

E(Z|Xo,...,X:) = E(Z|F¥) . (3.4)

In general we have the following monotone behaviour with respect to the available information.

Proposition 3.1 Tower property
Let /1 C F, beo-algebras. Then for every random variatifewith E(|Z|) < 00,

E(E(Z|F2)|F1) = E(E(Z|F)|F) = E(Z|F) . (3.5)

With this notation continuous-time and discrete-time martingales can be treated together,
in the first casél' = [0, o), in the second’ = N.

Definition 3.2 A real-valued procesX = (X, : t € T) is called amartingalewith respect to
the filtration(F; : ¢t € T), if itis adapted tq F; : ¢t € T) and for allt € T

E(|X:]) <oo and E(X;|F,) =X, foralls<t seT. (3.6)
X is just called a martingale if it is a martingale w.r.t. its natural filtratigi® : ¢ € T).

In particular this implies thak(X;) = X, forall ¢t € T.

Example.
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Proposition 3.2 Lévy’s characterization of Brownian motion
A continuous-time proceds is a standard Brownian motion if and onlyfif and (B? —¢ : t >
0) are martingales with continuous sample paths d@hd= 0.

3.2 Properties of martingales

As mentioned before, for general continuous-time processes we concentratdgprocesses,
i.e. processes with right-continuous sample paths that have left limits.

Theorem 3.3 Martingale convergence theorem
LetX = (X, : t € T) be a (&dlag) martingale. IfE(|X;|) < M for someM > 0 and all
te T, then X, =lim .o Xy existsa.s. and E(X.) < oo.

This is basically the same as saying tatonverges to a stationary distribution aid, is a
random variable with that distribution. In particular this implieX; = E(X|F).

Examples.

Definition 3.3 A random variablé’ € T U {oo} is called astopping timgwith respect to the
filtration (F; : t € T)),if {T <t} € F,forallt € T.

37



Examples.

Interpretation: If 7' is a stopping time then at each timec T there is always enoug
information (inF;) to decide wethef’ = ¢ or not.

Proposition 3.4 Let X = (X; : t € T) be a (&dlag) martingale and” € T a stopping time,
both w.r.t.(F; : t € T). Then thestopped process

X7 .— { ))((t ’ i i ; is a martingale w.r.t(F; : t € T) . (3.7)
T > -

Proof. We focus on discrete tim& = N. We can write

n—1

X! = Z Xilr—; + Xy 17>y (3-8)
=0
so X! is adapted toF;,, andE (| X1]) < 31 E(|X;]) < oo
Also XTI\, — XI' = (Xp41 — X;) 1750, SO We have
E(X};,'_ﬂfn) B XTI; = E(Xg—&-l - Xr?’fn) = E((XnJrl - Xn) 1T>n’-7:n) =
= (E(Xn+1|Fn) - Xn) I7>n =0, (3.9

andX7 is a martingale w.r.t(%,, : n € N). O
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Example.

Theorem 3.5 Optional stopping theorem

LetX = (X, : t € T) be a (&dlag) martingale withE (| X;|) < M for some)M > 0 and all
t € T. Then for all stopping timeS < T with P(S < c0) = 1 we have

E(X7|Fs) = Xg a.s. . (3.10)

Proof. By the convergence theoreti3 X; — X a.s. and we haveX, = Xg’o even if
T = oo. Then again for discrete tinilé = N we have

E(X7|Fs)=> B(XL|F)ls—s = X[ lg—y=XE =Xs (3.11)
seN seN
using Propositior8.4and thatS < T. O

In particular withS = 0 this implies thaf£(X,) = X, for all stopping timed".

Example.
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4 Stochastic calculus

4.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equationX heta
diffusion process iR with drift a(¢, z) and diffusion coefficient(t, z) = (¢, ) given by

E(Xppn — X | Xe =2) = a(t,z)h+o(h) ,
E((Xpsn — Xi)? | Xy =x) = o?(t,x) h+o(h) . (4.1)

In general for a random variablé with meany, and variances> we can write

X —
Y =p+0& where &= ay (4.2)
g

Also the increments of the proce&sat timet are random variables with mean and variance
depending onX; and given by

E(Xi4n — Xt | X¢) = alt,Xy) h+ o(h),
var (X, — Xo | Xe) = o?(t, Xy) h— a(t, Xi)* h* + o(h) = o*(t, X;) h + o(h) (4.3)
Therefore withé, 1, = (Xysn — X¢ — alt, Xy)) /\/02(t, Xi) h we get
Xopn — X = a(t, X)) b+ o(t, X)) Vh &g + o(h) . (4.4)
Then
E(Vhén) =0 and var(Vh&gn) =h, (4.5)

which looks an awful lot like the increment of a Brownian motion. Indeed, if the pro&ess
has independent increments also¢hg,,, are independent and

Etth = D &t (ho1)/nt-th/n (4.6)
k=1

can be written as a sum of arbitrarily many independent random variables withoraedrvari-
ancel. Therefore\/ﬁgt,Hh ~ N (0, h) are Gaussian and can thus be interpreted as increments
of a Brownian motion. Now we can write

Xpyn — Xe =a(t, Xy) h+ o(t, X3)(Biyn — Bt) +0o(h) foraBMB. 4.7)
Deviding byh we get in the limith — 0

dXt dBt
t. X X .
g a(t,Xy) +o(t, X¢) —— a

This is a differential equation for each pathXf i.e. for fixedw € Q. But paths of a BM are
not differentiable and thereford.g) is often written as

(4.8)

dX; = a(t,Xt) dt + O'(t,Xt) dB; . (49)

This is called astochastic differential equation (SDE)
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The (non-existing) derivative, = dB,/dt is calledwhite noiseand can be understood as
a normalized random force term dhuncorrelated in time. Formally it is given by a Gaussian
process with covarianag ;. Physicists often write

ax,
dt
instead of 4.9) and call this d.angevin equation

As for ordinary differential equations, it is often better to look at the integrated version of
(4.9, since it requires less regularity assumptions,

= a(t’Xt) +J(t’Xt) m (410)

t t
X —Xo= / a(s, Xs) ds +/ o(s,Xs)dBs . (4.11)
0 0
In general, asolutionof the SDE with initial conditionXy = xg consists of

e aprobability space and a filtrati(2, 7, (F; : ¢ > 0),P) ,
e aBMB=(B;:t>0)adaptedtdF; :t >0),
e acontinuous process = (X, : t > 0) adapted tqF; : t > 0)
that fulfilles @.11) with X = zg . (4.12)
As usual, the probability space is often not mentioned explicklys just given as some func-

tion of B and(F; : t > 0) is the natural filtration forB. But in any case, we have to make
sense of the twatochastic integralin (4.17).

From now on let us fix some probability spa@@, 7, (F; : t > 0),P). LetX = (X;: ¢ >
0) andY = (Y; : t > 0) be two @dlag adapted processes.

We partition the time intervdD, t] such that
O=th<tr1i <...<tp,=t with ty—t,_1 —0foralk=1,...,n, asn — ¢4.13)

Then we would like to define the stochastic integrat (I; : t > 0) by

+ n
I = / YedXe = lim > Y (Xy — X)) - (4.14)
0 k=1

The question is, for whiclX” andY” is this limit well defined, does it depend on the choice of
Tk € [tk—1,tx] and in what sense does the limit hold?
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Integrands: The most general integrand$s we will consider are continuous adapted
processes. This includes all diffusion processes but could be further generalized to socalled
previsible processes

Integrators: The most general integrato?s for which (4.14) can be defined are socalled
semimartingaleswhich we introduce in the following.

4.2 Semimartingales

Definition 4.1 Let X be a @&dlag adapted process. For eackr 2 define
Vi(w) = lim Y | Xe, () = X, ()] € [0,00] , (4.15)
k=1

which is non-decreasing ih V' = (V4 : t > 0) is called thetotal variation proces®f X and
X is of finite variationif V; < oo forall ¢ > 0.

Vi(w) corresponds to the length of the p4thi;(w) : 0 < s < ¢).

Examples.

Proposition 4.1 Let X be a continuous martingale. Then there exists a unique adapted in-
creasing procesEX|] = ([X]; : t > 0) with [X]o = 0, such that

X? - [X]= (X} - [X]::t>0) isacontinuous martingale (4.16)

[X] is called thequadratic variationof X and for

[X]7 = (Xy, — Xy ,)* wehave [X]P — [X], asn — oo, (4.17)
k=1
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in the sense that for al > 0 andt > 0, P(sup X7 = [X]s] > e) —0.
s<t

Note that if we define the quadratic variation pathwise like the total variation, it does not
have the nice properties stated above.

Examples.

Proposition 4.2 Let X be a continuous process of finite variation. THa&r = 0.
In particular, if X is a continuous martingale of finite variation, théh= X,,.

Proof. By the definitions 4.17) and4.1we have

= (Xy, — Xy, )" < sup | X, — X, | Z|th Xu | - (4.18)
k=1 1" k=1

—0asn—oo <V

by continuity by finite variation

Therefore [X]; = lim [X]} =0 forallt>0.
n—oo
If X is a continuous martingale with sa& = 0 we have

]E(ththfl) = E(E(ththq |ftk71)) = E<th71 E(th|ftk71)) = E(thk,l)(-él-lg)
Therefore we have for a time partition of arbitrary size

E(X2) = E(Zn: (X2 - kal)> = E(i (X, — th_l)Q) —0 (4.20)

k=1 k=1

asn — oo by the first statement. Thus; = 0 for all ¢ > 0. O

Definition 4.2 A semimartingaleX is a adlag adapted process which may be written as

whereM is a martingale andl is a process of finite variation.
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Examples.

Corollary 4.3 For continuous semimartingales the decompositiord(21]) is unique and it is
also called thedoob-Meyer decompositioof X .

Proof.

Definition 4.3 Let N = (N; : t > 0) ~ PP()\) andZ;, Z», ... a sequence of iidrv's with
E(|Zk|) < oo and distribution functiorf". Then

Ny
Y=(:t>0) with ;=) 2 (4.22)
k=1

is called acompound Poisson processjump processFora,o € R and B a standard BM a
process of the form
Xy =Xo+at+oB;+Y; with stationary, independent increments (4.23)

is called alévy processX is completely determined by thevy triple(a, o2, AF).
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Proposition 4.4 A Lévy processX is a cdlag semimartingale.

Proof.

It can also be shown that evergdiag semimartingale with stationary independent incre-
ments has to be aélvy process, so they are quite general.
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4.3 Stochastic integration and 16 calculus

Theorem 4.5 1t 6 integral
Let X be a continuous semimartingale with Doob-Meyer decomposKios X, + M + A
(4.21) andY be a continuous adapted process. If

t
sup E(X?) < oo and IE</ de[X]s> < 00 (4.24)
0<s<t 0

for somet > 0, then

n—oo

t n
I = / YodX, = lim > Y, (Xy — Xy, ) (4.25)
0 k=1

exists in the sense of.(L7). If (4.24 holds for allt > 0, thenI = (I; : t > 0) is a continuous
semimartingale with decomposition

t t
It:0+/ YSdM3+/ Y, dAs (4.26)
0 0
and is called the (stochastic@integral ofY” w.r.t. X.

Examples.

With considerable technical effort, thélintegral can be generalized to non-continuous processes.
(4.26) implies that

if X is a martingale, them(f Y, dX; is a martingale. (4.27)

So for example b integrals w.r.t. BM withX = B are martingales. Surprisingly, also a
converse statement holds.
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Proposition 4.6 Let X be a martingale. Then there exists an adapted protesach that
t
X = Xo +/ Y,dBs; forallt>0, whereB isa standard BM (4.28)
0

Moreover, ifX is a continuous martingale withy = 0 and[X]; — oo ast — oo, we have

Xt = Bjx), forallt>0, whereBisastandard BM (4.29)

Proof.

So every martingal& is an integral w.r.t. standard BM, and if it is continuous, it is ac-
tually a (time-changed) standard BM on the time s¢alg rather thart. Note that of course
consistentlyB]; = t.

How do we calculate & integrals? Let’s start with a simple example.

a7



We see that for thedtintegral witha = 0 we get

t
/ B, dB, — é((Bf CB2) - (t—ty)). (4.30)

to
Another common choice are centred intermediate pointsavith1/2. Here we get

t
1
S t B dB; = 5(Bf —-Bi), (4.31)
0
and this integral is called tHgtratonovich integral The advantage of this choice is that it obeys
the usual rules of calculus. But now dependencgpfand the incremenk;, — X;, , is more
complicated, leading to several disadvantages comparegkto It

e S [Y,dX, can only be defined if alsb is a semimartingale .
e Evenif X is a martingaleS [ Y, dX; is in general NOT a martingale .

Therefore the preferred choice is usually th& ititegral, and from this one can recover the
Stratonovich version by a simple transformation. The unexpected(ternty) in (4.30 has
to be there, since the result should be a martingale. These additional terms can be easily
understood by the rules &P calculus introduced below.
It is often convenient to use the following intuitive differential notation,
t
It = ItO + Yg dXs = dIt = }/t dXt . (432)

to
For a continuous martingaled we get analogous to our above computation

ModM, = 5 (M7 = M) — (M), — [M],,)) (4.33)

to
This is equivalent to

M, dM; = %(d(Mf) —d[M];) or d(M?)=2M,;dM; + d[M]; . (4.34)

This is basically an application of the chain rule fdr &alculus. The meaning of the quadratic
variation term becomes clear if we compute an increment by hand,

MPy, — M7 = (Myop — My)(Mygp + My) = (Mypp — My)(Mysp, — My + 2M;) =
= (Mypn — My)® + 2My (Myyp, — M) - (4.35)

Takingh — 0 we get d(M?) = 2M, dM, + (dM;)?>, and comparing with4.34),

d[M]; = (dM;)* = O(dt) |. (4.36)

In usual calculus these terms are of negligible ordér), but for martingales they have to be
taken into account, for example for BMd[B]; = (dB;)? = dt .

If X = X+ M + Ais a semimartingale, by Propositid2, [A] = 0. Thus[X] = [M] and
the general version o#(34) is

d(X?) = 2X, dX; +d[X];| (= 2(M; + A) d(M; + A;) + d[M];) . (4.37)
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Using @.36) we can easily see that the quadratic variation of théntegral

t t
I = / Y,dX, isgivenby [I];= [ Y2d[X]s forallt>tg. (4.38)

to to

This follows directly from
dlI]; = (dI;)? = (Y dXy)? = Y72 (dX;)? = Y2 d[X]; . (4.39)

This should clarify condition4.24) which insures that the integral has a finite quadratic varia-
tion. These findings are summarized in the following very usefull result.

Theorem 4.7 It &’s formula
Let X be a continuous semimartingale apcE C?(R, R). Then

dg(X0) = o (X0) dX; + 3 (X0) d[X]: (4.40)

or in the integrated version
t 1 t
96) =g(X0) + [ ¢ (X)Xt [ " (X i) (4.42)
0 0
Proof. Taylor expansion with terms up to orde.

In particular, we see that(X,) is again a semimartingale with decomposition

t t 1 t
o(0) =gX0) + [ gt [ gxyans [ Odxy . @42
0 0 0
cont. martingale finite variation
Examples.
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4.4 Solutions to SDEs
Let X be a solution of the SDE

dX; =a(t,X¢)dt + o(t, X;) dBy . (4.43)
For the quadratic variation of we get

d[X]; = (dX3)? = 0(t, X;) dt + o(dt) , (4.44)

and using d’s formula, the SDE for an observabjéX;) with g € C?(R,R) is
1
dg(Xi) = ¢'(Xe)dXi+ 5 g"(X0) (dX,)* =
= ¢(X)alt, X0 dt +o(t, X0 dB) + 1 o (X)o™(t, X)) di . (4.45)

Taking the expectation on both sides, we get with PDF x) by partial integration

GEC0) = [ g0 5 s(t.a)do =

= /R <g’(m) a(t,z) + %g”(m)a%t,x)) f(t,z)de =

0 10?2, ,
= /RQ(CU) <8x(a(t,$) ft,z)) + 5@(0’ (t,r) f(t»ﬂf))>d$ , (4.46)
since the expected value of the martingale part vanishes. This holds for arbitrary fungtions
and therefore we must have

0 0 102

o t.2) = 5 (0lt,2) F(t,2)) + 3 5

Thusf (¢, z) fulfilles the Fokker-Planck equation addis a diffusion process with drift(¢, x)
and diffusiono?(t, ).

(02(15, x) f(t,:c)) . (4.47)

How many solutions to the SDHE @43 are there?

Definition 4.4 We say that a SDE hasweeak solutionf there exists a solution for all initial
valuesXy = z¢ € R. The solution isunique in law if all solutions started from:y have the
same distribution. The solution mthwise uniqugf for a fixed probability spacéﬂ, F,(Fi:
t> 0),IP’) and a fixed BMB, any two solutionsX and X" fulfill

Xo=X)as. = PX;=X/forallt>0)=1. (4.48)
If a solution X is adapted to the natural filtration &f it is called astrong solution

For time-independent drift and diffusion there is a general theorem about existence and
unigueness for SDEs.
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Theorem 4.8 Suppose thai : R — R ando : R — R are Lipschitz-continuous, i.e.
la(z) — a(y)| < K|z —y| forsomeK >0andallz,y € R. (4.49)
Then for each(Q, F, (F; : t > 0),P) and each BMB adapted to F; : ¢ > 0) solutions to
dX; = a(Xy) dt + o(Xy) dBy (4.50)
are pathwise unique and there exists a strong solution for any starting pgiatR.

Proof. analogous to ordinary differential equations using the contraction mapping theorem and
Gronwall's Lemma.

Itd’s formula and the existence and uniqueness theorem can be extended to higher space

dimensions. There is also a Stratonovich interpretation of SDEs which is directly connected to
the ItH version given here. Both can be found in Gardiner, Section 4.3.
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