CO905 13.01.2009

Stochastic Processes

Problem sheet 1

1.1 Let $A, B, C_1, \ldots, C_n \subseteq \Omega$ be events in a probability space Ω such that $C_i \cap C_j = \emptyset$ for all $i \neq j$ and $\bigcup_{i=1}^n C_i = \Omega$. Using the law of total probability, show that

$$\mathbb{P}(A|B) = \sum_{i=1}^{n} \mathbb{P}(A|B \cap C_i) \mathbb{P}(C_i|B) .$$
[2]

- **1.2** A dice is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the state space and the transition matrix.
 - (a) The largest number X_n shown up to the *n*th roll.
 - (b) The number N_n of sixes in n rolls.
 - (c) At time n, the time B_n since the most recent six. [3]
 - (d)* At time n, the time C_n until the next six.
- **1.3** Let $Z = (Z_n : n \in \mathbb{N})$ be a branching process, defined recursively by

$$Z_0 = 1$$
, $Z_{n+1} = X_1^n + \ldots + X_{Z_n}^n$ for all $n \ge 0$,

where the $X_i^n \in \mathbb{N}$ are iddrv's denoting the offspring of individuum *i* in generation *n*.

(a) Consider a geometric offspring distribution $X_i^n \sim Geo(p)$, i.e.

$$p_k = \mathbb{P}(X_i^n = k) = (1 - p) p^k$$
, $p \in (0, 1)$.

Compute the probability generating function $G(s) = \sum_k p_k s^k$ as well as $\mathbb{E}(X_i^n)$ and $Var(X_i^n)$.

Sketch G(s) for (at least) three (wisely chosen) values of p and compute the probability of extinction as a function of p.

(b) Consider a Poisson offspring distribution $X_i^n \sim Poi(\lambda)$, i.e.

$$p_k = \mathbb{P}(X_i^n = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \lambda > 0$$

Repeat the same analysis as in (a).

(c)* For geometric offspring with p = 1/2, show that $G_n(s) = \frac{n-(n-1)s}{n+1-ns}$ and compute $\mathbb{P}(Z_n = 0)$. If T is the (random) time of extinction, what is its distribution and its expected value?

[5]