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Introduction

In this module we will cover the basics to study complex systems with stochastic time evolution.
There are two different origins of stochasticity:

e Classical mechanics: stochasticity due to lack of information

In principle all components involved in the system follow a deterministic system of equa-
tions of motion. But in practice all microscopic details are not accessible and the unknown
influences on the dynamics are approximated as effective random noise with a certain pos-
tulated distribution. The actual origin of the noise may be related to chaotic motion, i.e.
deterministic time evolution with random initial data such as a dice or pendulum, or ne-
glected interactions in a large system such as gases or fluids leading to a stochastic time
evolution.

e Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a sys-
tem is therefore given by a complex probability density function (wave function), rather than
a single element in the set of all possible configurations.

Examples.

In this course we only cover classical stochastic systems. After a general introduction to sto-
chastic processes we will study some examples of particle systems with thermal interactions. The
first and most classical example of this phenomendBrasvnian motion(see Gardiner, Section
1.2). In 1827 Robert Brown observed the irregular motion of small pollen grains suspended in wa-
ter. A first satisfactory theoretical description of this phenomenon was given by Einstein in 1905.

A mathematically idealized version of this is called the Wiener process and can be described by
the theory of stochastic calculus which was developed in the 19508 bRite to the continuous

state space of the system this theory is rather involved, and will be discussed towards the end of the
module. Simpler to analyse are models with a discrete state space such as birth-death processes,
which appear for example in predator-prey models in biology (see Gardiner, Section 1.3). In the
first part of the course we concentrate Markov chaing(following [GS] Chapter 6), which are

certain stochastic processes with discrete state space. We conclude the introductory section by two
general definitions.



Definition 0.1 A stochastic proces = (X; : t € T) is a family of random variableX; : } —
S with state spaces and time index set’ C R.

A stochastic procesX : T x 2 — S is a function of two variables, timeandw € Q. For
fixed w, the functiont — X;(w) is called asample pathThe probability spac is arbitrary, but
has to be big enough to encode all possible time evolutions. A canonical choice is the set of all
possible sample patl{ = {f : T — S}, or often one requires some regularity of the functions
f, such as continuity.

Definition 0.2 A stochastic process isMarkov proces#f forall t; <t < ... <t, € T,n € N,
forall s1,...,s,-1 € S and all (measurablej C S,

P(Xy, € An| Xt =s1,..., Xt = sn1) = P(Xy, € Ap| Xty = Sn1) - (0.1)
A Markov process is calledomogeneoui for all (measurabled, B C Sandt >t € T

P(X; € A| Xy € B) =P(X,_y € A| Xp € B) . (0.2)
A homogeneous Markov process is calledlarkov chainif S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate on
the choicedl' = N, Z for discrete time anl' = [0, c0), R for continuous time processes. Typical
choices for state spaces afe= Z (e.g. random walk, birth-death processé$)e.g. counting
processesR? (e.g. Brownian motion).

Examples.




1 Markov chains

1.1 General properties

Definition 1.1 For a Markov chain we define thensition probabilities
pij(t) =P(Xy =j|Xo=1) €[0,1] foralli,jesS, (1.1)
and thetransition 'matrices’(which might be infinite)

P(t) := (pi(t) = i,5 € S) € [0,1]15I51,

(1.2)
A homogeneous Markov chain starting at tithe= 0 is uniquely determined by an initial

distributionr(0) with 7;(0) = P(Xo = ¢), ¢ € S and the transition probabilities, because every
joint probability can be written as
P(Xy, € Ay,..., Xy, € Ay) =

= > Tio (0)Pigir (F1)Piyia (B2 — 1) -+ iy (b — tn—1) (1.3)
7;06577;161417--7in614n
forall0<t; <...<t, € TandA,

., A, C S. In particular, the distribution at timeis
mi(t) =P(Xy =j) = Zm(o)pl-j(t) , S0 m(t) =m(0)P(t). (1.4)
i€S

Example.

Proposition 1.1 P(0) = Id and the family(P(t) : ¢ > 0) satisfies theChapman-Kolmogorov
equations

Pit+t)=Pit)P{) forallt,t';t+t eT.

(L5)
Proof. p;;(0) = d;; by definition, and for alt, #',t + ¢ € T
ng(t + t/) - ]P)(Xt—‘rt/ = ]|X0 = Z) —

= ZP(Xt+t’ =jlXo =1, Xy = k) P(X; = k|Xo = i) = Zpik(t)ij(t ), (1.6)
kes

kes
using the total probability sum rule, the Markov property and homogeneity.
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For discrete time witlT = N this leads to

|P(n+1)=P(1) P(n) = P(n) P(1) = P(n)=P",

(1.7)

where we denoté = P(1). Therefore a discrite time Markov chain is uniquely determined by
the initial distributionsr(0) and the transition matri¥ and in particular

m(n) = w(0) P". (1.8)

Example.

For continuous time witfT' = [0, co) we require some regularity of the function— P(t) at

t = 0. We only study processes where it is continuous and differentiable, i.e.
P(t) — Id
lim P(t) = P(0) =1d and G :=lim Pt) —Id

N0 t\0 t

sothat P(t) = Id+tG+o(t) forsmallt. Together with the Chapman-Kolmogorov equations
this implies that

P(t+At)—P(t)  PAt)—Id . P(At)—1Id
X = P)=PO——x— (1.10)

and thus taking\t¢ ~\, 0, P(t) is differentiable for alk > 0 and fulfills

exists, (1.9)

4
dt

Pt)=GP{t)=Pt)G = P(t)=exp(tG). (1.11)

For finite state spacesS| < oo the formal solution to this equation is given by a matrix exponential
which is discussed in Section 1.3 in more detail. The distribution attim¢éhen given by

7(t) = m(0) exp(tG) . (1.12)
Definition 1.2 A probability distributionz™ is calledstationaryif =* P(t) = «* for all t > 0.

This will play an important role in the long-time behaviour of Markov chains, since 'often’
7(t) — 7*. How and when this is true will be seen later.
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Theorem 1.2 (Existence)A Markov chain with finite state spac¢ehas at least one stationary
distribution.

Proof. Depends on discrete or continuous time, see later.

In Section 1.5 we will see a generalisation of this for inifinite state spaces. The question of
uniqueness of stationary distributions is connected to the following definition.

Definition 1.3 State: € S communicates witbtatej € S if p;;(t) > 0 for somet € T, and we
write i — j. Stateg andj areconnectedf : — j andj — ¢, and we writei < j.

The Markov chain is calle@reducibleif i <» j forall ¢,j € S.

A statei is calledabsorbing if i /4 j for all j # i.

Remark. The state space of a Markov chain can be decomposedamonunicating classes;
which are disjoint subsets of connected states such&hat U, S;. The chain is irreducible if
there is only one such clasg = S.

Theorem 1.3 (Uniqueness)An irreducible Markov chain has at most one stationary distribution.

Proof. Depends on discrete or continuous time, see later.

Examples.




1.2 Discrete time

SinceP(n) = P™ a discrete time Markov chain is uniquely determined by the transition matrix
P = P(1) and its initial distribution. So with Definitiod.2, 7* is a stationary distribution if and
only if m*P = =*, i.e. w* is a left eigenvector with eigenvalue= 1.

By definition, P is astochastic matrixi.e.

pii €[0,1 and Y pij=1, (1.13)
jes
since the chain starting inhas to jump somewhere 5. SoP1 = 1 and)\ = 1 is an eigenvalue
of P with right eigenvectod = (...,1,1,...)T. Therefore ifS is finite, there exists at least one

left eigenvectotr™®, whose entries can be shown to be non-negative. If the chain is irreducible this
eigenvector is unique under the conditipiy_ o 77 = 1.

Theorem 1.4 A discrete time, finite state irreducible Markov chain has a unique stationary dis-
tribution =*, where

m; =1/pu; with p; :=E(T;|Xo=14) and T;:=min{t >1: X, =i}, (1.14)
so thatrr* is determined by the inverse of ttrean recurrence timeg; (in particular all 77 > 0).
Furthermore,

7*=1(Id—P+U)"", where u;; =1foralli,jecSs. (1.15)
Proof. see [GS] pp 229 - 230 for recurrence times.
for uniqueness see proof of Theoréni.

=P & 7w*(Id-P)=0 <& w(Id+P)+1=1

& 7w (Id-P+U)=1 (1.16)
By unigueness ofr* we know that this linear system of equations has a unique solution, which is
equivalent to/d — P + U) being invertible. O

Example.

Proposition 1.5 Let X = (X, : n € {0,..., N}) be afinite state irreducible Markov chain with
transition matrix PX. Suppose further thaX is stationary, i.e.X,, ~ «* for all n. Then the
reversed chair” = (Yn :n € A{0,... ,N}) withY,, = Xnx_, is a Markov chain with

Tr -
transition matrix ~ p}; = —Lp5; foralli,jeS. (1.17)
i



Proof. Using stationarity and the Markov property &fwe get
P(Yoi1 = ins1| Yo =in,..., Yo =1dg) =
P(Yk:ik,0§k§n+1) P(XN_k:ik,0§k§n+1)

P(Yy =i, 0 < k < n) P(Xn_k =1k, 0 <k <n)
Tr;(n+1pin+1in o 'pilio W;(n+1pin+1in
== = _ (1.18)
T Pinin—1 """ Pirio T
as required. O

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this only
holds for stationary chaing.* is then also stationary for the reversed chgin

Definition 1.4 Let 7 be a probability distribution oi$. A discrete time Markov chaitX’ with
transition matrixP is calledreversible (w.r.t.zr), if it fulfilles the detailed balanceonditions

mpij = mip;; foralli,jeS. (1.19)

Proposition 1.6 Suppose a discrete time Markov chakhis reversible w.r.t. . Thenw is a
stationary distribution ofX'.

Proof. From (1.19 we deduce (ﬂ'P)j = ZieS TDij = ZieS TiPji = Tj |

Note that Propositiod.5 together with £.19 implies that a reversible Markov chain and its
time-reversal are indistinguishable, i.e. they have the same transition probabilities, since

y_ T o x_ T x_ x
Pij = ;Pﬁ = ;:kpij =D - (1.20)

A A
The detailed balance relationk {9 can be a useful tool to find stationary distributions of certain
Markov chains 'without loops'.

Example.

Definition 1.5 A discrete time Markov chain is calleaperiodicif for all : € S, p;;(n) is eventu-
ally positive, i.e.

there existdV; € N such thap;;(n) > Oforalln > N; . (1.21)

Remark. Note that for irreducible Markov chains, aperiodicity implies that foi glle S, p;;(n)
is eventually positive.



Example.

Theorem 1.7 An irreducible, aperiodic Markov chain with finite state spacengodig i.e.

pij(n) =P(X, =j|Xo=14) —»m; ast— oo, forallijes. (1.22)
Proof. The statement follows from theerron-Frobenius Theorem

If P is the transition matrix of a finite state, aperiodic, irreducible Markov chain then

(i) A1 = lis asingle eigenvalue d@?

(i) and the remaining (complex) eigenvaluks . . ., A 5 satisfy| ;| < 1.

Note that (i) includes unigueness of the stationary distribution claimed in Thehdem
Suppose further that all the eigenvalues are distinct, thean be diagonalized, i.e.

A oo 0
BPB 1l =A=| : -. (1.23)

where the rows of3 are the left and the columns &f~! are the right eigenvectors &f, normal-
ized such thaB B~! = Id. Thus

N0 1...0
pP'=B'AB)"=B"'| :+ .. ¢ [B->B'|[:- :|B (1.24)
0 ... Ny 0...0

asn — oo, sinceA; = 1 and|)\;| < 1 for all i > 1. Since the first column oB~! is 1 (right
eigenvector to\; = 1), the right-hand side is equal to the matrix

10...0 T T
Do | B= : which implies the statement. (1.25)
10...0 7Ti"...7r|*sl

The proof can be extended to more general cases. O

Remark. Theoreml.7implies that for every initial distributiomr (0),

w(n) =m(0) P" - w* asn — co. (1.26)



Example.

Further remarks on periodicity (non-examinable)
Theperiodd(i) of a statei € S is defined as

d(i) :== ged{t > 1 : p;(t) > 0}, (1.27)

the greatest common divisor of the epochs at which return is possible.

For an irreducible Markov chain all states have the same period (for a proof see p.224 in [GS]). If
the chain is aperiodic we hav&:) = 1 for all i € S. Note, however, that the requiremeht 1

is weaker than Defl.5and is often used as an alternative definition of aperiodicity.

Ergodicity follows again from a more general version of Beron-Frobenius Theorem

If P is the transition matrix of a finite state irreducible Markov chain with pericithen

(i) the d complex roots of unity are eigenvaluesraf

0 1 d—1

M=w =1, =w,...,.\g=w where w:e%i/d, (1.28)

(i) and the remaining eigenvalues; 1, . .., Ag| satisfy|\;| < 1.

1.3 Continuous time

As derived in (.11) the time evolution of a continuous time MC is governed by
q
dt

which are calledbackwardandforward equationrespectively. Subject to the boundary conditions

P(0) = Id, they often have a unique solution

P(t)=GP(t) = P(t)G, (1.29)

P(t) = exp(tG) = 3 ﬁG’f. (1.30)

k!
k=0

For example this is the case|#| < oo, and subject to certain technical conditions also for inifite
state spacé. Therefore a continuous-time Markov chain is uniquely determined by the initial
distribution and the matri%/ which is called theyeneratorof the process.

How does look and what is the relation to the time evolutionof
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Assume thafX; = i. For small timesAt¢ we have from {.30
pij(At) = g;; At + o(At) foralli#jeS. (1.31)

So during a time intervalt, t + At) the chain jumps from stateto j with probability g;; At, and
gi; > 0 can be interpreted as a jump rate. On the diagonal we have

pii(At) =14 g At 4+ o(At) forallie S, (1.32)

which gives the probability that nothing happens in the time inteitvak- At). By normalization
we have

1=) pi(At)=1+At> g = > g;=0 forallies. (1.33)
jES jES JjeSs

Therefore the diagonal entries Gfare

gi=—Y g; <0 forallIes, (1.34)
J#

and|g;;| > 0 can be interpreted as the total rate to leave state
What does really 'happen’ in a continuous time Markov chain?

Assume thaiX; = i and define théolding time
W =inf {t' >0 : Xypp #i}, (1.35)

i.e. the (random) time until a jump occurs. This is actually independenbgfhomogeneity. If
is absorbingg;; = 0 forall j € S andW; = oc.

Proposition 1.8 The random variabléV; is exponentially distributed with parametgy;| and if
lgis| > 0, the probability that the chain jumps jo# ¢ after timeW; is g;; /| giil-

Proof. W; has 'loss of memory’ property, i.e. for allu > 0
P(W; > s+ulW; >s) = P(W; > s+ u|Xpys =1) =
= P(WZ‘ > U‘Xt = Z) = P(Wi > u) , (136)
where we have used the Markov property and homogeneity. Therefore

P(W; >s+u) = P(W; >s+u,W; >s)=P(W; >s+u|W; >s)P(W; >s)
= P(W; > w)P(W; > s) . (1.37)

Analogous to the Chapman-Kolmogorov equatioh®)(this can be used to derive a differential
equation forF(s) = P(W; > s) which has an exponential solution

F(s) =P(W; > s) = where \= F'(0). (1.38)
Together with 1.32 we get

_ P(W; > At) — 1 (A1) + o(A) — 1
F(0) = tim TWiz A) 2Ly palAD F o(AY
AL\ At AEN\0 At

= Gi; S 0 s (139)

11



and therefore P(W; > s) = e~ 1%l and W; ~ Exp(|gi|).
Now the probability that the chain jumps o conditioned on the event that it actually jumps
somewhere in the time intervél, ¢t + At], is given by

P(Xepar = jlXe =)

P(Xipar = 1% =, Wi < AD) = Bap0 — 5

pij(At) Gij

~ — asAt \, 0. (1.40)
1—pi(At)  —gi
So conditioned on jumping at tinteve get the required result. a
Picture.
n—1

The chain jumps at thgmp time .J, = > Wy, tostate Y, = X, .
=0
Y = (Y, : n € N) is called thgump chain and it is a discrete time Markov chain with transition
Matrix P given by

pz;:{gijﬂgii i FE] it gii >0, and pj =3y ifgi=0. (1.41)

So a continuous-time Markov chain can also be characterized by its jumpXhaid a sequence
of independent exponentially distributed holding tinf&sy;, : n € N).

12



Examples.

For thePoisson procesthere exists also another characterization.

Proposition 1.9 X = (X, : t > 0) is a Poisson process with rateif and only if it has stationary,
independent increments, i.e.
X1y — Xy is distributed likeX; — X, and independent of X, : s < t'), (1.42)

and for eacht, X; has Poisson distribution with parametgt, i.e. P(X; =k) = (A,f!)k e M,

Proof.

Using the forward equatiori (29 we can also get an evolution equation for the distribution,

d d
Zm(t) = m(0) 2 P(t) = m(0) P(t) G = m(H) . (1.43)

13



This is called theMaster equatiorand using {.34) the coordinate form is given by

%m(t) =y (Wj(t) gji — mi(t) gij> : (1.44)

JFi

If m = «* is a stationary distribution, then both sides of the equation vanish.

Proposition 1.10 Let G be the generator of a continuous time Markov chahtt) = exp(tG)
and PY the transition matrix of the jump chain. Then

m*Pt)=7* & wnG=0 & aPY¥=mx, (1.45)
where 7; =n}|g;| forallie S.
Proof. Assume finite state spaceand that all g;;| > 0.

G =(0,...,0) < 7wGF=(0,...,0) forallk>1
tk

o

& Zﬁ”*Gk =(0,...,0) forallt>0
=1
* k _ __x . 0 __
N ZHG —* forallt > 0sinceG® = Id
=0
&  wP(t)==w" forallt>0. (1.46)

By (1.41) we can writeg;; in terms of the entries aPY, g;; = |gs|(p}; — di;) » and so

(RPY); =7 =D milpl; —0iy) = Y _migy = (7" G); , (1.47)
= icS
and both sides vanish equivalently. O

Theorem 1.11 A continuous time irreducible Markov chain with finite state space has a unique
stationary distributiorm™, where

1 .
T = ] with  p; = E(T;| X0 =4) and T;:=inf{t > J; : Xy =i} . (1.48)
Hi|Gii

This follows immediately from Theorerh.4 for discrete time by the tie-up with stationary mea-
sures of the jump chain (Propositidnl(. Note thatT; is still the recurrence time for the jump
chainY. This forces a slightly different definition in terms &f, and7; is often called dirst
passage timeThenr is determined by the average fraction of time the chain spends in:state
.1 EW)
T
Thedetailed balanceonditions for a continuous-time Markov chain are

with the expected holding timB(1W;) = 1/]g.] - (1.49)

TiGij = ;955 foralli,j € S. (1.50)

If they are fulfilled for a distributionr, thens is stationary since every term in the right-hand side
of (1.44) vanishes individually.

14



Examples.

Theorem 1.12 An irreducible Markov chain with finite state space is ergodic, i.e.

pij(t) — m; ast—oo, foralli,jes. (1.51)
Again, this follows directly by ergodicity of the jump chain (Theoréri), and it implies

w(t) ==w(0) P(t) - «* ast — oo, (1.52)

for every initial distribution (0).
Note that for continuous time there is no issue of periodicity, since

ifi —j then p;;(t) >0 forallt>0. (1.53)
This is becausé — j is equivalent to
GiiyGivio * " Gin_1j >0 for someil, .. in_1 S S, neN s (1.54)

which |mpI|es that pij(t) > Diiy (t/n) .o -pin71j<t/n) > 0.

15



1.4 Remarks on countably infinite state spaces

For infinite state spac#, the Markov chain can 'get lost at infinity’, and therefore not have a
stationary probability distribution.

Let Xy, = i andT; be the time of first return to statelefined in (.48 for continuous and inl(.14)

for discrete time.

Definition 1.6 A state; € S is called

transient if P(T; =o0) >0,
null recurrent if P(T; < o) =1 and E(T;) = o0,
positiv recurrent if P(T; <oo)=1 and E(T;) < co. (1.55)

Theorem 1.13 Let X be an irreducible Markov chain. Then all states are either transient, null
recurrent or positive recurrentX has a unique stationary distribution if and only if it is positive
recurrent. In this caseX is also ergodic (subject to aperiodicity in case of discrete time).

Proof. see Section 6.2 in [GS]

Examples.
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1.5 The ergodic theorem

Theorem 1.14 Let X = (X;,t € T) be an ergodic Markov chain with unique stationary distrib-
utionz*. Then for everyf : S — R (observable)

¢ N
1/Of(Xs)ds or ]b;)f(xn) —  E.(f) ast,N — oco. (1.56)

Proof. see e.g.GS, chapter 9.5

So stationary expectations can be approximated by time averages over long periods. This is
the basis for Markov chain Monte Carlo (MCMC) which is used to sample from the stationary
distribution of a chain. In particular, using indicator functighs- 1; the right-hand side ofl(56)
is equal tor. To improve the speed of convergence in practice, the chain is run for a while before
starting to sample (equilibration).

17



2 Processes with continuous state space

2.1 Brownian motion and the Central limit theorem

Let Y1, Ys, ... € R be iidrvs with mearE(Y;) = 0 and variancear(Y;) = o > 0. Then define
the discrete-time process

n
X, = ZY with Xy =0. (2.1)
=1

For example ify; ~ U({—l, 1}) thenX is a simple symmetric random walk. Then by entral
Limit Theorem (CLT) asn — oo

Xn

N ¢~ N(0,0°)  (Gaussian rv with meamand variance?) , (2.2)
n
or, equivalently, for ally € R
X Y 1 2 /(9,2
of (e —2%/(20%) dy with Gaussian pdf : 2.3
(\/ﬁ < y) — /_OO s e T Wi aussian pdf fx(z) (2.3)
Ix(z)

We can use the CLT to look at the process in rescaled timeé = nAt. According to 2.2),
Xi/a/+/1/At should converge to &dependent random variable A¢ — 0, and we define

N
im VAt Xj;/aq = lim > Y=Vt ~ N(0,t0?) . (2.4)

1 i
At—0 At—0 , /t/At P

Here thet; ~ N (0, 1) are different for each, but they are certainly not independent. Note that by
the CLT the time rescaling induces a space rescaling

Bt =

‘t=Atn, b=(A)z with a=1/2

: (2.5)

and on all other spatial scales, the limiting process does either not exist or is degenerate,

B,=0 fora>1/2, Byisnotwelldefinedforx < 1/2. (2.6)

18



Properties of the proceds = (B; : t > 0):
By = 0, B;~ N(0,t6%) and analogously ta(4)

[t/ At
B, — B, = 11130 t > Yi~N(O,(t-s)o?) (2.7)
i=[s/At]

forallt > s > 0. SoB hasstationary increments.e. B,— B; ~ B;_;— By, and by independence
of theY;, B hasindependent incrementse.

B, — Bs isindependentof {B, :u <s} forallt>s>0. (2.8)

So far B is only the result of an informal derivation, an important question is wether it actually
exists as a mathematical object.

Theorem 2.1 Existence of Brownian motion (Wiener)
There exists a proceds$ = (B; : t > 0) with stationary independent increments, such Bat= 0
andB; ~ N(0,t). B is called astandard Brownian motion (BM)or Wiener process

Proof. see e.g. Rogers and Williams, Section 1.6

It suffices to look astandardBMs B with 0> = 1 and By = 0, then\/oB + zq is a BM
with variances? starting inzo. All distributional properties of BM are characterized by the finite
dimensional distributions.

Proposition 2.2 Let B be a standard BM. For alty, . .., ¢,, n € N the vector
(Bt,s...,Bt,) ~N(0,T') with ~;; = min{t;,¢;}, (2.9)
has multivariate Gaussian distribution with zero means and covariance niateix;;); ;.
Proof. B, ~ N(0,t) and it suffices to show thabv(B;, B;) = min{s, t}. Takes < ¢, then
E(BsBy) = E(BZ + By(B; — B,)) =E(B2) + 0, (2.10)

sinceB has independent increments dbd3;) = 0. Thus cov(Bs, By) = var(Bs) = s . 0

Reminder. The pdf of the multivariat Gaussid®,, , . . ., By, ) is given by

1

W exp ( - %Xffl XT) with x = (z1,...,2,) . (2.11)

ft17~-,tn (X) =

What are the regularity properties of a Brownian sample path?
From @2.4) we expect for Brownian motion

Biyin — B = Vhé ~N(0,ho?) — 0a.s. ash —0. (2.12)

Therefore Brownian sample paths are continuous (and more precisdljertontinuous with
index1/2). But they are nowhere differentiable, since

Bt+h — Bt o .
—————=—¢ h limit . 2.1
" \/Eg as no limitash — 0 (2.13)
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These properties do not follow fron2.(7) and @.8), which can be fulfilled also by discontinuous
processes. But under the restriction thet B.(w) is a continous function offor allw € Q2, BM

is unigue. So we restrict ourselves to {beth spaceO([O, oo),R) of continuous functions, and
the process can then be described by a probability measure on that space.

Theorem 2.3 Uniqueness of Brownian motion (Wiener)

There exists a unique probability measieon the path spacé€’([0, ), R) (called theWiener
measure, such that the process with sample paths distributed according’ts a Brownian
motion as defined in Theore?nl

Proof. see e.g. Rogers and Williams, Section 1.6

Examples of sample paths.

0.0 0z 04 065 0.3 1.0

Note that if the increments; in (2.2) are not identically distributed or independent, the CLT
still holds under more general conditions (see e.g. Gardiner, Section 2.8.2). So Brownian motion
is the natural scaling limit for a very general class of models.

Definition 2.1 A d-dimensional standard Brownian moti@ = (B, : ¢ > 0) is a collection ofd
independent one-dimensional BN , . . ., B? as defined in Theore.1, i.e.

B; = (B},...,BY) forallt>0. (2.14)
. n _ o —d/2 L.
So the pdf of the incremenB; — B is  f;_s(x) = (27(t — 3)) exp 50—y ) -

Analogous to the random walk, one can study recurrence and transience for BM depending on
the space dimension.
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Theorem 2.4 LetTy = inf{t > 0 : B; € A} be the first passage time for the sétC RY,
analogous to the times, for pointsz € R<.

() If d =1BMispoint-recurrent i.e. forallz € R
P({T, <oo|By=1x)=1. (2.15)
(i) If d = 2, BMisneighbourhood-recurrenti.e. for every > 0, z € R?
P(Tp(ze <oo|Bg=xz) =1 where B(z,e) ={ye¢ R ||y|| < €} . (2.16)
However, points argolar, i.e. for allz € R?
P(T, = o) =1, independent of the starting point (2.17)

(i) If d > 3, BMis transient, i.e|B;| — oo ast — oo with probability one.

Proof. see e.g. Rogers and Williams, Section 1.18

Proposition 2.5 For dimensiord > 2, the image{B; : t > 0} C R? of the sample path of a BM
B hasHausdorff (or fractal) dimension2.

'Proof’.
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2.2 General facts

In this section we discuss processes with continuous state Spad or R? and continuous time
T = [0,00). This is mathematically more complicated than Markov chains, and we will discuss
some of the technical issues below. On the other hand, the sample paths are now real valued
functions, our state space has an analytic structure and we will be able to use concepts from usual
calculus.

For example we will often integrate over setse R of possible values with respect to the
distribution functionF'(z) = P(X < z) of a random variablé&, e.g.

IP’(XEA):/

dF(z) = / f(x)dx wheref = F’is the pdf (if it exists). (2.18)
A A

Technical side remark (non-examinable): This cannot be done for allds&isR but only for
A e A, whereA C P(R) is a so-calledr-algebra This is a set oimeasurable setahere the
measurelF'(x) can be consistently defined on.

As for Markov chains, the distributional properties of a general stochastic process are deter-
mined by fixing allfinite-dimensional distributions (fdds)

Fe(x) =P(Xy, <21,..., X, <), (2.19)

forallt = (ti,...,tn) € [0,00)", t; # tj, x = (x1,...,2,) € R" andn € N. We focus here
on the state spacg = R where the fdds are given by joint distribution functiafisas above. In
principle this can be extended to more general state spaces.

Theorem 2.6 If a collection{ F;} of fdds fulfills theKolmogorov consistency relations

Fitpor (X, 2p41) — Fi(x) as xp41 — oo, and
Fr(IIx) = Fy(x) forall permutationdI of (1,...,n), (2.20)

then there exists a stochastic proceés= (X, : t > 0) (on some probability spac®) that has
fdds{Fi}.

Proof. Is related to the Skorohod representation theorem. Basically one tatebe the path
space of the process. Some hints are given in [GS] Section 8.6

Example.

The transition probabilities of a Markov chain can also be generalized.
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Definition 2.2 Let X be a stochastic process Bn The conditional distribution function
F(t,xls,y) = P(X¢ < 2| Xs =y) (2.21)
is called thetransition kernebf X. If it has a density we call this theansition density
flt,z|s,y) = g—i(t,ﬂs,y) . (2.22)
Note that for a homogeneous process, the kernel is actually only a function af

Proposition 2.7 The fdds of a Markov process are uniquely determined by the transition kernels
and the initial distribution.

Proof. Sample calculation fob < ¢; < ¢, with densities using the Markov property,

) €1 o]
P(Xy, < 21, Xy, < @) = / / / F(0,2) F(tr, 9]0, ) f(ta, 2[t1, y) dx dy dz

Example.

In contrast to Markov chains, for continuous state space the fdds do not determine the process
uniquely. Two processes with the same fdds are calezdionsof each other, and their sample
paths can have very different properties. This fact cannot be ignored, since it is very important
when studying properties such as first-passage times (first random time to enter a given set).

In the previous section we saw that the sample paths of BM are continuous. Many interesting
phenomena cannot be modeled with continuous processes alone, but one usually concentrates on
the following class of processes.

Definition 2.3 A real-valued, continuous-time proce&sis calledcadlag if its sample paths are
right continuous (continua droite) and have left limits (limita gauche), i.e.

liir%Xs(w) = Xy(w) and li%Xs(w) exists, foralw € 2, t € [0,00) . (2.23)

For example continuous-time Markov chains (e.g. the Poisson process) are defiadé@s c
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2.3 Brownian motion and the heat equation

We are looking for an evolution equation for the transition densities, analogous to the forward
equation (or master equation) for Markov chains. First we will derive it for Brownian motion as
scaling limit from the simple random walk.

Let (X,, : n € N) be a simple random walk. Then the distribution at timés given by
w(n+ 1) = w(n) P, which can be written in the following incremental form

w(n+1) —mw(n) ==n(n)(P—Id), (2.24)
whereP — Id is proportional to the discrete Laplacian

.. .. .. 1 ... ... ... 1
P—Id= : -1 3 == 1 -2 1 =_-A. (2.25)
2 o 2

In the previous section we saw that under the sca{lingt Atn, x = (At)*k witha = 1/2 ‘ :
(At)* X /aq — B: converges to Brownian motion a@st — 0. Therefore the mass function
7 (n) should converge to the pdf(¢, z) of By, i.e.
. 1 —1/2 2
dim W%/(At)a@/m) = f(t,z) = (2mt) "2 exp (— 22/(2t)) . (2.26)

wherel/(At)“ is the volume element to turn the probability(n) into a density.

Plugging the scaling into the discrete-time Master equa&a?d, we can derive a differential
equation forf. We assume that for large & (i.e. smallAt), 7, (n) is approximately given by

Ti(n)/(AL)* ~ f(nAt, k(AD)*) = f(t,z) . (2.27)

Then we get by Taylor expansion

o A 2c 82
m /(A0 = f(t2) = (B0 2 f(ea) + BT 0 4 o((an)
mr(n+1)/(A)* ~ f(t,z) + At%f(t, z) + O((At)?) . (2.28)
Thus ifa = 1/2 (otherwise the limit is again degenrate),
—f(t,z) = lim me(n £ 1) = m(n) _ im ;(w (n) — 2m(n) + Tt (n)) =
ot! T T A0 T (A3 T a0 2(At)3R g A=
At)?@ 92 1 9
- Jim (zgt o H )+ O((A0* ) = L f(t) (2.29)
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So since standard BM starts in the origin, its pdf fulfills

%f(t, x) = ;;;f(t,x) with initial condition f(0,z) = do(z) . (2.30)

This PDE is the so-calleldeat equationvhich has been well studied and inde2d@) is its unique
solution.

Note that with the implicit initial conditiory (¢, x) = f(¢,z|0,0) in terms of transition densi-
ties. An analogous derivation conditioned Bpn = y gives the same equation f@(t, x|s, y) with
the more general initial conditiofi(s, z|s, y) = d,(x).

Indeed, as we have seen befdte~ N(0,t—s) fort > s, and therefore the transition density
is given by
2

f(t,x|s,y) is also called théeat kernelsince it is the fundamental solution to that POE3Q.
That means that for every intial distributigif0, y) we have

) . (2.31)

f(tx) = /R F(t,210,9) £(0,y) dy . (2.32)

We can also derive2(30) from the forward equatio%P(t) = P(t) G or the master equation
(1.44) of a continuous-time Markov chain, by rescaling only space asck with e — 0. In these
derivations the exact structure of the generdtoor P — Id is not important and this equation
holds for a whole class of processes, including e.g. symmetric jumps with finite range.

2.4 Diffusion processes and Fokker-Planck equations

Definition 2.4 A Markov processX is called adiffusion processf it has continuous sample paths
and

E(Xpon — X | Xe =2) = a(t,z)h+o(h),
E((Xepn — Xo)? | Xo =) = b(t,z) h+o(h), (2.33)

for some functions (¢, =) (drift coefficieny andb(¢, ) (diffusion coefficient

The distributional properties are uniquely characterized by the drift and the diffusion coefficient.
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Theorem 2.8 Let X be a diffusion process with drifi(¢, «) and diffusion coefficierit(¢, ). Then

the transition density’ = f(t, x|s,y) exists and satisfies tH@rward) Fokker-Planck equation
(or forward equatior)

of 0 1 92
o = 5, (0(t:2) ) + 555 (0(t,2) f) (2.34)

J}2
forall0 < s <t,x,y €R.
Proof. by Taylor expansion similar to Section 2.3

Examples.

Stationary pdfsf*(z) of a time-homogeneous diffusion process with constant dfif) and
diffusion b(x) are given by stationary solutions t2.84), i.e.

) . 1 02 .
0= —%(a(m)f (x)) + 5@(()(%) f (:c)) ) (2.35)
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Examples.

In general, integrating2(35 and denoting the derivative Bywe get under mild regularity
assumptions on(x) andb(z) (e.g. boundedness)

0= —/x (ay) f*(y))'der;/x (b(y) f*(y))"dy =

1
= —a(z) f*(z) + i(b(x) f*(a:)), (4const.) (2.36)
This is a first order linear differential equation and differentiating with the product rule we get
*/ _ 20’(:17) — b/(l‘) *
Je) = = @) (2.37)
So the solution is
; ; “2a(y) — V' (y)
x) = f*(0)e — 2 2.38
£ = royes ([ 200 ay) (2.38)

wheref*(0) is fixed by normalizationf, f*(x) dx = 1.

Diffusion processes can be generalized to higher dimensi#nim R? is called a diffusion
process if in addition to the continuity property analogous to Definizign

E(Xitn — X¢ | Xy =x) = a(t,x)h+o(h),
E((Xpsn — Xo) (Xpgn — X)) | Xy =x) = b(t,x)h+o(h), (2.39)
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with drift vectora(t, z) € R? and diffusion matris6 € R?*?, where

bij = B((X{yp — XD(X], — X)) | X =x) . (2.40)

This is the covariance matrix of the increments of the process. The Fokker-Planck equation for
f = f(t,x) is now given by

of 0 1 9
= =" z; 5 @it:x) ) + 5 ]Zl M(blj(t,x) f)=cLrf. (2.41)
where the right-hand side defines a linear operétoon the set of functiong : R — R. £* is
called the(adjoint) generatorof the procesX and is the analogous quantity of the generator of a
continuous-time Markov chain.

Defining theprobability currentJ( f) with i-th component

d
1 0
Ji(x, f) = ai(x) f = 5 > ?(sz(x) f), (2.42)
=1 7t
the Fokker-Planck equatio2.41) can be written as eontinuity equation
of gi %) V- I(x, £(t.%)) = 0. (2.43)

Integrating this equation over a domainC R? and using integration by parts like above we get

;/Af(t,x)dd:g:—/AVX.J(x,f(t,X)) ddx:_/afo(X’f(t’X)) dS . (2.44)

The second identity follows frorStokes’ theorer(also calledsauss’ integration theorem

If A = R? or the system islosedin A thenJ(x, f(t,x)) = 0 for all x € A. So the
right-hand side o0fZ.44) vanishes and the total probability is conserved, i.e.

P(X; € A) = /A ft,x)dz=1. (2.45)
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An important class of diffusion processes with direct connections to statistical mechanics are
noise-perturbed gradient flows.

Definition 2.5 Let X be a diffusion process with time-independent diifk) and diffusionb(x).
V : R? — R is called apotentialfor X, if a(x) = —VV(x). If b;;(x) = bd;; we callX a
(noise-perturbedyradient flow

The Fokker-Planck equation of a gradient flow is given by

of(t,x)
ot

Examples.

= V- ((VV(x) f(t,x)) + gAf(t,x) . (2.46)

Proposition 2.9 Assume that’ : R? — R is smooth and that
Z = / e Vb iy < (2.47)
Ra

Then the diffusion proces§ with generator 9?) is ergodic. The unique stationary distribution is
the Gibbs distributionwith density

f*(x) — %efQV(x)/b 7 (248)

and the normalization factaf is calledpartition function.
Proof. We have from2.49 V f* = —2(VV) f* and thus

gAf* = gv (V) ==V ((VV) ). (2.49)

Substituting this in2.46) the right-hand side vanishés /* = 0, and f/* is stationary.

Unigueness and ergodicity follow from the fact gradient flows fulfill general conditions such that
the Fokker-Planck equatio2.46 has a unigue (time-dependent) solution. O

29



Examples.

Further remarks (non-examinable)

e f = f(t,z|s,y) is also the solution to the so-calledckward Fokker-Planck equation

of of 1 O*f

which can be derived from the backward equation of a continuous time MC.

e Letg: R? — R be an observable, such @&X;) = || X,||2. Then the expected value

30) = B(o(X0) = [ o) S(t.3) ' (251)

obeys the following evolution equation,

d 01(t) o _ : .
G0 = [ a60 P dta = [ g £ )t ' -
= [ (£ 7(t.x) s = Tylt) = B((£0) (X)) 252)

This follows by partial integration, since foreatk-1,...,d

0 0
/Rd g(x) o7, (ai(t,x) f(t,x))ddx =— /Rd (8xig(x)>ai(t,x) f(t,x)d% , (2.53)
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becausegf (¢, x) — 0 as|x| — oo so there are no boundary terms. For the diffusion part this
can be done twice and leads to

d 0 1< 0?

=1 4,7=1

This operator is called thgeneratorof the processX and describes the expected time
evolution of observables. Note that this also determines the right-hand side of the backward
Fokker-Planck equatior2(50. It is technically more convenient thafi* and therefore
diffusion processes are often characterized by defining their generator.

For time-independent driti(x) and diffusionb(x) existence and uniqueness of théial
value problem

of(t,x)
ot

= (L)L, x), [(0,x) = fo(x), (2.55)
is well understood under the assumptioruafform ellipticity, i.e.
d
Eb(x) €7 = bi(x)& & > aléls for somea > 0and alls € R (2.56)
i,j=1

Theorem 2.10 Under the assumptior2(56 and the growth conditions

folo0) < CeolIE. ‘%( <O (1+|xI3), |

)

0%bi; (x)
a:EiaZCj

| < o1+ IxIEp57)

for some constant§’, Cy, Cy > 0, the initial value problem2.55 has a uniqueclassical
C12((0,00),R?) solution.
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3 Some stochastic calculus

3.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equatiodsbeet diffusion
process irR with drift (¢, z) and diffusion coefficienb(t, x) = o2(t, x) given by

E(Xyh — Xe| Xe =) = a(t,z)h+o(h),
E(Xepn — X0)? | Xe =) = o*(t,2) h+o(h) . (3.1)

In general for a random variablé with meanu and variance? we can write

Y =p+ o0& where §:X_/”L. (3.2)

Also the increments of the process at timet are random variables with mean and variance
depending onX; and given by

E(Xe4n — Xi | Xy) = a(t,Xi) h+o(h),
var(Xepn — Xo | X)) = 0?(t, Xy) h— alt, Xy)? h? + o(h) = 0*(t, X;) h + o(h) . (3.3)
Therefore withé, 1, = (Xesn — Xi — alt, X)) /\/02(t, Xi) h we get
Xopn — Xp = a(t, Xo) b+ o(t, X)) VhEypn + o(h) . (3.4)
Then
E(Vhén) =0 and var(Vh&gn) =h, (3.5)

which looks an awful lot like the increment of a Brownian motion. Indeed, if the pro&ebas
independent increments also the,;, are independent and

n
e t+h = Z e (k—1)/nt+k/n (3.6)
k=1
can be written as a sum of arbitrarily many independent random variables withoraaedvariance
1. Therefore\/ﬁgt,Hh ~ N (0, h) are Gaussian and can thus be interpreted as increments of a
Brownian motion. Now we can write

Xt+h — Xy = CL(t, Xt) h+ O'(t, Xt)(Bt—l-h — Bt) + O(h) foraBM B . (37)
Deviding byh we get in the limith — 0

X, dB,

W = (Z(t, Xt) + O'(t, Xt) ﬁ . (38)

This is a differential equation for each pathXf i.e. for fixedw € 2. But paths of a BM are not
differentiable and therefor&(8) is often written as

dX; = a(t, Xt> dt + U(t, Xt) dB; . (39)
Definition 3.1 (3.9) is called astochastic differential equation (SDRjth drift a(¢, ) anddiffu-
siono(t, ). Alternatively, physicists often write

ax,

dt
and call this d.angevin equatiorwheren, = dB,/dt is calledwhite noise

= a’(t>Xt) +J(t’Xt)"7t ) (310)
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The (non-existing) derivative; = dB;/dt can be understood as a normalized random force
term on X uncorrelated in time. Formally it is given by a Gaussian process with raeamd
covariancej(t — s) Id, which makes sense if integrated over time.

As for ordinary differential equations, it is often better to look at the integrated version of
(3.9, since it requires less regularity assumptions.

Definition 3.2 A continuous procesX = (X; : ¢t > 0) is asolutionof the SDE 8.9) with initial
conditionXy = xy if

t t
Xt:a:0+/ a(s,XS)ds—l—/ (s, X,) dB, (3.11)
0 0

holds with probabilityl for all ¢ > 0 (or ¢t € [0,7]). The solution is calledinique if any two
solutionsX! and X? satisfy

P(X} = X} forallt>0) =1 (ort e [0,T] resp) . (3.12)

So in order to solve SDEs we have to make sense of thetaahastic integraln (3.11).
Let X = (X;:t > 0)andY = (Y; : ¢t > 0) be two continuous processes.

We partition the time intervgD, ¢] such that
O=th<ti<...<tp,=t with t; —t,_; —O0foralk=1,...,n, asn — o0 (3.13)

Then we would like to approximate the stochastic integral (I; : t > 0) by

n t
I = an—l(th - Xy ) = L= / YsdXs asn — co. (3.14)

k=1 0
This is a (particular) Riemann sum approximation of the integral8ifhlj, the simple choice
X; = t yields the first, andX; = B; the second. The general question we investigate in the
following is, for which processeX andY the approximations converge and in what sense they
converge. Answers turn out to be quite different for the two integrals. But it turns out that the
choice of the time partition is not crucial, so we can arbitrarily chagse k/n to fix ideas.
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3.2 Stochastic integration and 16 calculus

Proposition 3.1 For the integratorX; = ¢ and continuous integrani” the limit in (3.14) exists
pointwise and we can define

t 1 n
Ii(w) —/ Yy(w)ds := lim I"(w) = lim EZlftk_l(w). (3.15)

n—oo

Proof. Usual convergence for the Riemann sum approximations holds for each.fiseate he
total variation ofX; = t is finite, i.e.

n

D X (w) = Xy ()| =t <oo forallt>0. (3.16)
k=1

Examples.

Theorem 3.2 1t 6 integral
LetY be a continuous process adl = B a standard BM. If

t 2 S> o0
E(/OYd < (3.17)

for somet > 0, then

n—oo

t n
Iy :/0 YsdBs := lim I]' = ILI&];Ek_l(Btk — By, ) (3.18)

exists in thel.>-sense, i.e. for aly < ¢, E((I}—I1)%) — 0.

S

If (3.17) holds for allt > 0, then = (I; : ¢ > 0) is a continuous process witi(/;) = 0 and is
called the(stochastic) 16 integralof Y w.r.t. B.

Proof. see e.g. Rogers and Williams
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How do we calculate 16 integrals? Let’s start with a simple example.

We see that for thedtintegral witha = 0 we get

t
1

/ B,dB, = 5((Bt2 —B)— (t—to)) . (3.19)

to

Another common choice are centred intermediate pointsavith1/2. Here we get
t
1

S | BsdBs = 5(Bt2 ~- B, (3.20)

to

and this integral is called th®tratonovich integral The advantage of this choice is that it obeys
the usual rules of calculus and arises naturally in approximations of Brownian motion by smooth
processes (see later). But now dependence.pfind the incremenk;, — X;, , is more com-
plicated, leading to several technical difficulties compareddo Tiherefore the preferred choice
is usually the 1o integral, and from this one can recover the Stratonovich version by a simple
transformation. The unexpected tefm— ¢y) in (3.19 has to be there, since the result should
be a martingale. These additional terms can be easily understood by the riiéscalculus
introduced below.

It is often convenient to use the following intuitive differential notation,

t
It:1t0+/ Y,dX, < dI,=Y,dX;. (3.21)

to

For example for the integraB(19 this gives B;dB; = %(dB,? —dt), leading to the rule

d(B?) = 2B, dB; + dt|. (3.22)
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This is basically a modifiedhain rulefor 1td calculus. The meaning of the teifhbecomes clear
if we compute an increment by hand:

Comparing with the chain rule3(22 we get

(dBy)? = dt or more generally (0dB;)? = o2dt . (3.23)

In usual calculus higher order terms are of negligible ordét), but for BM they have to be taken
into account.

Non-examinable remarks:
With considerable technical effort, thélintegral can be generalized to non-continuous processes.
But there is a particularly important class of integrators for which this can be done quite easily.

Def. Let N = (N; : t > 0) ~ PP()) andZy, Zs, ... a sequence of iidrv's withE (| Z,|) < oo
and distribution functiorf’. Then

Ny
Q=(Q:t>0) with Q=) 2% (3.24)
k=1
is called acompound Poisson process jump process Fora,oc € R and B a standard BM a
process of the form
Xy =Xo+at+oB + @ with stationary, independent increments (3.25)
is called aLévy processX is completely determined by theevy triple(a, o2, AF).
Lévy processes are the simplest generalization of Brownian motion to non-continuous processes
with jumps. By definitiont — Q;(w) is piecewise constant for each so the integral can be

computed directly. The condition of stationary, independent increments implieg' ttetnot be
arbitrary, but has to be dnfinitely divisible law Examples are Gaussianswistable laws.
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3.3 Diffusion processes and fi’s formula

Let X be a solution of the SDE
dXt = (I(t, Xt) dt + O'(t, Xt) dBt . (326)

The following very useful result summarizes our findings in Section 3.2 and gives an explicit
formula for time evolution of an observabj¢X;).

Theorem 3.3 1t&’s formula
Let X be a solution of3.26 andg € C?(R, R). Then

dg(X) = /(X0 dX + 39" (X) 0% (327)
or in the (extended) integrated version
9X) = 9(X0)+ [ (X o(s. X )i,
+ /Ot (g’(Xs) a(s, Xs) + 39" (Xs) UQ(S,XS))ds . (3.28)
Proof. Taylor expansion with terms up to ordéf, using 8.23 and the 16 chain rule 8.22.

Examples.

In detail Ito’s formula says in incremental form
1
dg(Xi) = ¢'(X¢)dX; + 3 9" (Xe) (dX,)* =

= /(X)) (alt. Xo) dt + o(t, X0)dBy) + %g"(Xt)JQ(t, X,)dt . (3.29)
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Let f(t,z) be the pdf of the procesk introduced in Section 2. Taking the expectation on both
sides, we get by partial integration

GEC0) = [ g0 g s(t.a)do =

5, 102
— /Rg(m) < — %(a(t,x) f(t,x)) + 5@(02(75, x) f(t,:v)))d:v , (3.30)

since boundary terms and the expected value of thategral vanishes (it is a martingale). This
holds for arbitrary functiong, and therefore we must have

2

) ) 10 .
af(t,x) = —%(a(t,a}) f(t,x)) + 5@(02(15,30) ft, x)) =L f(t,x) . (3.31)

Thus f (¢, z) fulfilles the Fokker-Planck equation with adjoint generafdrintroduced in 2.41)
and X is a diffusion process with drift.(¢, z) and diffusiono?(¢, z). In Section 3.1 we have
derived the opposite statement, so let us summarize both of them.

Proposition 3.4 X is a diffusion process as defined in D2#if and only if it is a solution of the
SDE .26 with 0%(¢, ) = b(t, ).
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Non-examinable remarks.
Remember that the generatdintroduced in 2.54) is given by

o 1 ok
£ = a(t,m)% + 50’2(@.%')@ s (332)

and describes the time evolution of expected values of observad3. (Using £ we can rewrite
Itd's formula

9(X2) = g(Xo) + /O (Lg)(s, Xs)ds + /0 o(s, X,) dB, . (3.33)

So we see that the time evolutiongfX; ) is given by the generator part plus fluctuations in terms

of an I integral, which is a martingale with vanishing expected value.

Another interesting question is, how many solutions to the SBE§ there are. For time-
independent drift and diffusion there is a general theorem about existence and uniqueness for
SDEs.

Theorem 3.5 Suppose that : R — R ando : R — R are Lipschitz-continuous, i.e.

la(z) — a(y)| < K|z —y| forsomeK >0andallz,y € R. (3.34)
Then (for each probability space and BM B) there exists a unique solution to the SDE

dX; = a(Xi) dt + o(Xy) dBy (3.35)
for any initial conditionXy = z¢ € R.

Proof. analogous to ordinary differential equations using the contraction mapping theorem and
Gronwall's Lemma.

There are more elaborate notions of 'solutions’ to SDEs in a weak and strong sense, which
we did not discuss. A proper understanding of these involves a substantial amount of measure
theory. 1B's formula and the existence and uniqueness theorem can be extended to higher space
dimensions. There is also a Stratonovich interpretation of SDEs which is directly connected to the
Itd version given here. Both can be found in Gardiner, Section 4.3.
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