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Introduction

In this module we will cover the basics to study complex systems with stochastic time evolution.
There are two different origins of stochasticity:

• Classical mechanics: stochasticity due to lack of information
In principle all components involved in the system follow a deterministic system of equa-
tions of motion. But in practice all microscopic details are not accessible and the unknown
influences on the dynamics are approximated as effective random noise with a certain pos-
tulated distribution. The actual origin of the noise may be related to chaotic motion, i.e.
deterministic time evolution with random initial data such as a dice or pendulum, or ne-
glected interactions in a large system such as gases or fluids leading to a stochastic time
evolution.

• Quantum mechanics: inherent stochasticity
Even simple systems can only be described stochastically and the full microscopic details
are inherently inaccessible (uncertainty principle). Mathematically, the state of such a sys-
tem is therefore given by a complex probability density function (wave function), rather than
a single element in the set of all possible configurations.

Examples.

In this course we only cover classical stochastic systems. After a general introduction to sto-
chastic processes we will study some examples of particle systems with thermal interactions. The
first and most classical example of this phenomenon isBrownian motion(see Gardiner, Section
1.2). In 1827 Robert Brown observed the irregular motion of small pollen grains suspended in wa-
ter. A first satisfactory theoretical description of this phenomenon was given by Einstein in 1905.
A mathematically idealized version of this is called the Wiener process and can be described by
the theory of stochastic calculus which was developed in the 1950s by Itô. Due to the continuous
state space of the system this theory is rather involved, and will be discussed towards the end of the
module. Simpler to analyse are models with a discrete state space such as birth-death processes,
which appear for example in predator-prey models in biology (see Gardiner, Section 1.3). In the
first part of the course we concentrate onMarkov chains(following [GS] Chapter 6), which are
certain stochastic processes with discrete state space. We conclude the introductory section by two
general definitions.
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Definition 0.1 A stochastic processX = (Xt : t ∈ T) is a family of random variablesXt : Ω →
S with state spaceS and time index setT ⊆ R.

A stochastic processX : T × Ω → S is a function of two variables, timet andω ∈ Ω. For
fixedω, the functiont 7→ Xt(ω) is called asample path. The probability spaceΩ is arbitrary, but
has to be big enough to encode all possible time evolutions. A canonical choice is the set of all
possible sample pathsΩ = {f : T → S}, or often one requires some regularity of the functions
f , such as continuity.

Definition 0.2 A stochastic process is aMarkov processif for all t1 < t2 < . . . < tn ∈ T, n ∈ N,
for all s1, . . . , sn−1 ∈ S and all (measurable)A ⊆ S,

P
(
Xtn ∈ An

∣∣Xt1 = s1, . . . , Xtn−1 = sn−1

)
= P

(
Xtn ∈ An

∣∣Xtn−1 = sn−1

)
. (0.1)

A Markov process is calledhomogeneousif for all (measurable)A,B ⊆ S andt > t′ ∈ T

P
(
Xt ∈ A

∣∣ Xt′ ∈ B
)

= P
(
Xt−t′ ∈ A

∣∣ X0 ∈ B
)

. (0.2)

A homogeneous Markov process is called aMarkov chain, if S is discrete.

In this course we will only deal with homogeneous Markov processes. We will concentrate on
the choicesT = N, Z for discrete time andT = [0,∞), R for continuous time processes. Typical
choices for state spaces areS = Z (e.g. random walk, birth-death processes),N (e.g. counting
processes),Rd (e.g. Brownian motion).

Examples.
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1 Markov chains

1.1 General properties

Definition 1.1 For a Markov chain we define thetransition probabilities

pij(t) := P(Xt = j|X0 = i) ∈ [0, 1] for all i, j ∈ S , (1.1)

and thetransition ’matrices’(which might be infinite)

P (t) :=
(
pij(t) : i, j ∈ S

)
∈ [0, 1]|S|×|S| . (1.2)

A homogeneous Markov chain starting at timet = 0 is uniquely determined by an initial
distributionπ(0) with πi(0) = P(X0 = i), i ∈ S and the transition probabilities, because every
joint probability can be written as

P
(
Xt1 ∈ A1, . . . , Xtn ∈ An

)
=

=
∑

i0∈S,i1∈A1,..,in∈An

πi0(0)pi0i1(t1)pi1i2(t2 − t1) · · · pin−1in(tn − tn−1) (1.3)

for all 0 < t1 < . . . < tn ∈ T andA1, . . . , An ⊆ S. In particular, the distribution at timet is

πj(t) = P(Xt = j) =
∑
i∈S

πi(0) pij(t) , so π(t) = π(0)P (t) . (1.4)

Example.

Proposition 1.1 P (0) = Id and the family
(
P (t) : t ≥ 0

)
satisfies theChapman-Kolmogorov

equations,

P (t + t′) = P (t) P (t′) for all t, t′, t + t′ ∈ T . (1.5)

Proof. pij(0) = δij by definition, and for allt, t′, t + t′ ∈ T

pij(t + t′) = P(Xt+t′ = j|X0 = i) =

=
∑
k∈S

P(Xt+t′ = j|X0 = i, Xt = k) P(Xt = k|X0 = i) =
∑
k∈S

pik(t) pkj(t′) , (1.6)

using the total probability sum rule, the Markov property and homogeneity. 2
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For discrete time withT = N this leads to

P (n + 1) = P (1)P (n) = P (n) P (1) ⇒ P (n) = Pn , (1.7)

where we denoteP = P (1). Therefore a discrite time Markov chain is uniquely determined by
the initial distributionπ(0) and the transition matrixP and in particular

π(n) = π(0)Pn . (1.8)

Example.

For continuous time withT = [0,∞) we require some regularity of the functiont 7→ P (t) at
t = 0. We only study processes where it is continuous and differentiable, i.e.

lim
t↘0

P (t) = P (0) = Id and G := lim
t↘0

P (t)− Id

t
exists, (1.9)

so that P (t) = Id+ t G+o(t) for smallt. Together with the Chapman-Kolmogorov equations
this implies that

P (t + ∆t)− P (t)
∆t

=
P (∆t)− Id

∆t
P (t) = P (t)

P (∆t)− Id

∆t
, (1.10)

and thus taking∆t ↘ 0, P (t) is differentiable for allt ≥ 0 and fulfills

d

dt
P (t) = G P (t) = P (t) G ⇒ P (t) = exp(t G) . (1.11)

For finite state spaces|S| < ∞ the formal solution to this equation is given by a matrix exponential
which is discussed in Section 1.3 in more detail. The distribution at timet is then given by

π(t) = π(0) exp(t G) . (1.12)

Definition 1.2 A probability distributionπ∗ is calledstationaryif π∗P (t) = π∗ for all t ≥ 0.

This will play an important role in the long-time behaviour of Markov chains, since ’often’
π(t) → π∗. How and when this is true will be seen later.
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Theorem 1.2 (Existence)A Markov chain with finite state spaceS has at least one stationary
distribution.

Proof. Depends on discrete or continuous time, see later.

In Section 1.5 we will see a generalisation of this for inifinite state spaces. The question of
uniqueness of stationary distributions is connected to the following definition.

Definition 1.3 Statei ∈ S communicates withstatej ∈ S if pij(t) > 0 for somet ∈ T, and we
write i → j. Statesi andj areconnectedif i → j andj → i, and we writei ↔ j.
The Markov chain is calledirreducible if i ↔ j for all i, j ∈ S.
A statei is calledabsorbing, if i 6→ j for all j 6= i.

Remark. The state space of a Markov chain can be decomposed intocommunicating classesSk

which are disjoint subsets of connected states such thatS = ∪kSk. The chain is irreducible if
there is only one such classS1 = S.

Theorem 1.3 (Uniqueness)An irreducible Markov chain has at most one stationary distribution.

Proof. Depends on discrete or continuous time, see later.

Examples.
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1.2 Discrete time

SinceP (n) = Pn a discrete time Markov chain is uniquely determined by the transition matrix
P = P (1) and its initial distribution. So with Definition1.2, π∗ is a stationary distribution if and
only if π∗P = π∗, i.e. π∗ is a left eigenvector with eigenvalueλ = 1.

By definition,P is astochastic matrix, i.e.

pij ∈ [0, 1] and
∑
j∈S

pij = 1 , (1.13)

since the chain starting ini has to jump somewhere inS. SoP 1 = 1 andλ = 1 is an eigenvalue
of P with right eigenvector1 = (. . . , 1, 1, . . .)T . Therefore ifS is finite, there exists at least one
left eigenvectorπ∗, whose entries can be shown to be non-negative. If the chain is irreducible this
eigenvector is unique under the condition

∑
i∈S π∗i = 1.

Theorem 1.4 A discrete time, finite state irreducible Markov chain has a unique stationary dis-
tribution π∗, where

π∗i = 1/µi with µi := E(Ti|X0 = i) and Ti := min{t ≥ 1 : Xt = i} , (1.14)

so thatπ∗ is determined by the inverse of themean recurrence timesµi (in particular all π∗i > 0).
Furthermore,

π∗ = 1 (Id− P + U)−1 , where uij = 1 for all i, j ∈ S . (1.15)

Proof. see [GS] pp 229 - 230 for recurrence times.
for uniqueness see proof of Theorem1.7.

π∗ = π∗P ⇔ π∗(Id− P ) = 0 ⇔ π∗(Id + P ) + 1 = 1

⇔ π∗(Id− P + U) = 1 (1.16)

By uniqueness ofπ∗ we know that this linear system of equations has a unique solution, which is
equivalent to(Id− P + U) being invertible. 2

Example.

Proposition 1.5 LetX =
(
Xn : n ∈ {0, . . . , N}

)
be a finite state irreducible Markov chain with

transition matrixPX . Suppose further thatX is stationary, i.e.Xn ∼ π∗ for all n. Then the
reversed chainY =

(
Yn : n ∈ {0, . . . , N}

)
with Yn = XN−n is a Markov chain with

transition matrix pY
ij =

π∗j
π∗i

pX
ji for all i, j ∈ S . (1.17)
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Proof. Using stationarity and the Markov property ofX we get

P
(
Yn+1 = in+1

∣∣ Yn = in, . . . , Y0 = i0
)

=

=
P(Yk = ik, 0 ≤ k ≤ n + 1)

P(Yk = ik, 0 ≤ k ≤ n)
=

P(XN−k = ik, 0 ≤ k ≤ n + 1)
P(XN−k = ik, 0 ≤ k ≤ n)

=

=
π∗in+1

pin+1in · · · pi1i0

π∗inpinin−1 · · · pi1i0

=
π∗in+1

pin+1in

π∗in
(1.18)

as required. 2

Note that in general a time-reversed Markov chain is not necessarily a Markov chain, this only
holds for stationary chains.π∗ is then also stationary for the reversed chainY .

Definition 1.4 Let π be a probability distribution onS. A discrete time Markov chainX with
transition matrixP is calledreversible (w.r.t.π), if it fulfilles the detailed balanceconditions

πipij = πjpji for all i, j ∈ S . (1.19)

Proposition 1.6 Suppose a discrete time Markov chainX is reversible w.r.t. π. Thenπ is a
stationary distribution ofX.

Proof. From (1.19) we deduce (πP )j =
∑

i∈S πipij =
∑

i∈S πjpji = πj . 2

Note that Proposition1.5 together with (1.19) implies that a reversible Markov chain and its
time-reversal are indistinguishable, i.e. they have the same transition probabilities, since

pY
ij =

π∗j
π∗i

pX
ji =

π∗i
π∗i

pX
ij = pX

ij . (1.20)

The detailed balance relations (1.19) can be a useful tool to find stationary distributions of certain
Markov chains ’without loops’.

Example.

Definition 1.5 A discrete time Markov chain is calledaperiodicif for all i ∈ S, pii(n) is eventu-
ally positive, i.e.

there existsNi ∈ N such thatpii(n) > 0 for all n ≥ Ni . (1.21)

Remark. Note that for irreducible Markov chains, aperiodicity implies that for alli, j ∈ S, pij(n)
is eventually positive.
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Example.

Theorem 1.7 An irreducible, aperiodic Markov chain with finite state space isergodic, i.e.

pij(n) = P(Xn = j |X0 = i) → π∗j ast →∞ , for all i, j ∈ S . (1.22)

Proof. The statement follows from thePerron-Frobenius Theorem:
If P is the transition matrix of a finite state, aperiodic, irreducible Markov chain then
(i) λ1 = 1 is a single eigenvalue ofP
(ii) and the remaining (complex) eigenvaluesλ2, . . . , λ|S| satisfy|λj | < 1.
Note that (i) includes uniqueness of the stationary distribution claimed in Theorem1.4.
Suppose further that all the eigenvalues are distinct, thenP can be diagonalized, i.e.

B P B−1 = Λ =

 λ1 . . . 0
...

...
...

0 . . . λ|S|

 (1.23)

where the rows ofB are the left and the columns ofB−1 are the right eigenvectors ofP , normal-
ized such thatB B−1 = Id. Thus

Pn =
(
B−1ΛB

)n = B−1

 λn
1 . . . 0
...

...
...

0 . . . λn
|S|

 B → B−1

 1 . . . 0
...

...
...

0 . . . 0

 B (1.24)

asn → ∞, sinceλ1 = 1 and |λi| < 1 for all i > 1. Since the first column ofB−1 is 1 (right
eigenvector toλ1 = 1), the right-hand side is equal to the matrix 1 0 . . . 0

...
...

...
...

1 0 . . . 0

 B =

 π∗1 . . . π∗|S|
...

π∗1 . . . π∗|S|

 which implies the statement. (1.25)

The proof can be extended to more general cases. 2

Remark. Theorem1.7 implies that for every initial distributionπ(0),

π(n) = π(0)Pn → π∗ asn →∞ . (1.26)
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Example.

Further remarks on periodicity (non-examinable)
Theperiodd(i) of a statei ∈ S is defined as

d(i) := gcd
{
t ≥ 1 : pii(t) > 0

}
, (1.27)

the greatest common divisor of the epochs at which return is possible.
For an irreducible Markov chain all states have the same period (for a proof see p.224 in [GS]). If
the chain is aperiodic we haved(i) = 1 for all i ∈ S. Note, however, that the requirementd = 1
is weaker than Def.1.5and is often used as an alternative definition of aperiodicity.
Ergodicity follows again from a more general version of thePerron-Frobenius Theorem:
If P is the transition matrix of a finite state irreducible Markov chain with periodd then
(i) thed complex roots of unity are eigenvalues ofP ,

λ1 = w0 = 1, λ2 = w1, . . . , λd = wd−1 where w = e2πi/d , (1.28)

(ii) and the remaining eigenvaluesλd+1, . . . , λ|S| satisfy|λj | < 1.

1.3 Continuous time

As derived in (1.11) the time evolution of a continuous time MC is governed by

d

dt
P (t) = G P (t) = P (t) G , (1.29)

which are calledbackwardandforward equation, respectively. Subject to the boundary conditions
P (0) = Id, they often have a unique solution

P (t) = exp(t G) =
∞∑

k=0

tk

k!
Gk . (1.30)

For example this is the case if|S| < ∞, and subject to certain technical conditions also for inifite
state spaceS. Therefore a continuous-time Markov chain is uniquely determined by the initial
distribution and the matrixG which is called thegeneratorof the process.

How doesG look and what is the relation to the time evolution ofX?
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Assume thatXt = i. For small times∆t we have from (1.30)

pij(∆t) = gij∆t + o(∆t) for all i 6= j ∈ S . (1.31)

So during a time interval(t, t + ∆t) the chain jumps from statei to j with probabilitygij∆t, and
gij ≥ 0 can be interpreted as a jump rate. On the diagonal we have

pii(∆t) = 1 + gii∆t + o(∆t) for all i ∈ S , (1.32)

which gives the probability that nothing happens in the time interval(t, t+∆t). By normalization
we have

1 =
∑
j∈S

pij(∆t) = 1 + ∆t
∑
j∈S

gij ⇒
∑
j∈S

gij = 0 for all i ∈ S . (1.33)

Therefore the diagonal entries ofG are

gii = −
∑
j 6=i

gij ≤ 0 for all I ∈ S , (1.34)

and|gii| ≥ 0 can be interpreted as the total rate to leave statei.

What does really ’happen’ in a continuous time Markov chain?

Assume thatXt = i and define theholding time

Wi := inf
{
t′ ≥ 0 : Xt+t′ 6= i

}
, (1.35)

i.e. the (random) time until a jump occurs. This is actually independent oft by homogeneity. Ifi
is absorbing,gij = 0 for all j ∈ S andWi = ∞.

Proposition 1.8 The random variableWi is exponentially distributed with parameter|gii| and if
|gii| > 0, the probability that the chain jumps toj 6= i after timeWi is gij/|gii|.

Proof. Wi has ’loss of memory’ property, i.e. for alls, u > 0

P(Wi > s + u|Wi > s) = P(Wi > s + u|Xt+s = i) =
= P(Wi > u|Xt = i) = P(Wi > u) , (1.36)

where we have used the Markov property and homogeneity. Therefore

P(Wi > s + u) = P(Wi > s + u, Wi > s) = P(Wi > s + u |Wi > s) P(Wi > s)
= P(Wi > u) P(Wi > s) . (1.37)

Analogous to the Chapman-Kolmogorov equations (1.5) this can be used to derive a differential
equation forF̄ (s) = P(Wi > s) which has an exponential solution

F̄ (s) = P(Wi > s) = eλs where λ = F̄ ′(0) . (1.38)

Together with (1.32) we get

F̄ ′(0) = lim
∆t↘0

P(Wi > ∆t)− 1
∆t

= lim
∆t↘0

pii(∆t) + o(∆t)− 1
∆t

= gii ≤ 0 , (1.39)
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and therefore P(Wi > s) = e−|gii|s and Wi ∼ Exp(|gii|).
Now the probability that the chain jumps toj, conditioned on the event that it actually jumps
somewhere in the time interval(t, t + ∆t], is given by

P(Xt+∆t = j|Xt = i, Wi < ∆t) =
P(Xt+∆t = j|Xt = i)
P(Wi < ∆t|Xt = i)

'

' pij(∆t)
1− pii(∆t)

→ gij

−gii
as∆t ↘ 0 . (1.40)

So conditioned on jumping at timet we get the required result. 2

Picture.

The chain jumps at thejump time Jn =
n−1∑
i=0

WYi to state Yn = XJn .

Y = (Yn : n ∈ N) is called thejump chain, and it is a discrete time Markov chain with transition
Matrix P Y given by

pY
ij =

{
0 , i = j

gij/|gii| , i 6= j
if gii > 0 , and pY

ij = δij if gii = 0 . (1.41)

So a continuous-time Markov chain can also be characterized by its jump chainY and a sequence
of independent exponentially distributed holding times(WYn : n ∈ N).
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Examples.

For thePoisson processthere exists also another characterization.

Proposition 1.9 X = (Xt : t ≥ 0) is a Poisson process with rateλ if and only if it has stationary,
independent increments, i.e.

Xt+t′ −Xt′ is distributed likeXt −X0 and independent of(Xs : s ≤ t′) , (1.42)

and for eacht, Xt has Poisson distribution with parameterλt, i.e. P(Xt = k) = (λt)k

k! e−λt.

Proof.

Using the forward equation (1.29) we can also get an evolution equation for the distribution,

d

dt
π(t) = π(0)

d

dt
P (t) = π(0)P (t) G = π(t) G . (1.43)
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This is called theMaster equationand using (1.34) the coordinate form is given by

d

dt
πi(t) =

∑
j 6=i

(
πj(t) gji − πi(t) gij

)
. (1.44)

If π = π∗ is a stationary distribution, then both sides of the equation vanish.

Proposition 1.10 Let G be the generator of a continuous time Markov chain,P (t) = exp(tG)
andP Y the transition matrix of the jump chain. Then

π∗P (t) = π∗ ⇔ π∗G = 0 ⇔ π̄P Y = π̄ , (1.45)

where π̄i = π∗i |gii| for all i ∈ S.

Proof. Assume finite state spaceS and that all|gii| > 0.

π∗G = (0, . . . , 0) ⇔ π∗Gk = (0, . . . , 0) for all k ≥ 1

⇔
∞∑

k=1

tk

k!
π∗Gk = (0, . . . , 0) for all t ≥ 0

⇔ π∗
∞∑

k=0

tk

k!
Gk = π∗ for all t ≥ 0 sinceG0 = Id

⇔ π∗P (t) = π∗ for all t ≥ 0 . (1.46)

By (1.41) we can writegij in terms of the entries ofP Y , gij = |gii|(pY
ij − δij) , and so

(π̄P Y )j − π̄j =
∑
i∈S

π̄i(pY
ij − δij) =

∑
i∈S

π∗i gij = (π∗G)j , (1.47)

and both sides vanish equivalently. 2

Theorem 1.11 A continuous time irreducible Markov chain with finite state space has a unique
stationary distributionπ∗, where

π∗i =
1

µi|gii|
with µi := E(Ti|X0 = i) and Ti := inf{t ≥ J1 : Xt = i} . (1.48)

This follows immediately from Theorem1.4 for discrete time by the tie-up with stationary mea-
sures of the jump chain (Proposition1.10). Note thatTi is still the recurrence time for the jump
chainY . This forces a slightly different definition in terms ofX, andTi is often called afirst
passage time. Thenπ∗i is determined by the average fraction of time the chain spends in statei,

π∗i =
1

µi|gii|
=

E(Wi)
µi

with the expected holding timeE(Wi) = 1/|gii| . (1.49)

Thedetailed balanceconditions for a continuous-time Markov chain are

πigij = πjgji for all i, j ∈ S . (1.50)

If they are fulfilled for a distributionπ, thenπ is stationary since every term in the right-hand side
of (1.44) vanishes individually.
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Examples.

Theorem 1.12 An irreducible Markov chain with finite state space is ergodic, i.e.

pij(t) → π∗j ast →∞ , for all i, j ∈ S . (1.51)

Again, this follows directly by ergodicity of the jump chain (Theorem1.7), and it implies

π(t) = π(0)P (t) → π∗ ast →∞ , (1.52)

for every initial distributionπ(0).
Note that for continuous time there is no issue of periodicity, since

if i → j then pij(t) > 0 for all t > 0 . (1.53)

This is becausei → j is equivalent to

gii1gi1i2 · · · gin−1j > 0 for somei1, . . . in−1 ∈ S, n ∈ N , (1.54)

which implies that pij(t) ≥ pii1(t/n) · · · pin−1j(t/n) > 0 .
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1.4 Remarks on countably infinite state spaces

For infinite state spaceS, the Markov chain can ’get lost at infinity’, and therefore not have a
stationary probability distribution.
Let X0 = i andTi be the time of first return to statei defined in (1.48) for continuous and in (1.14)
for discrete time.

Definition 1.6 A statei ∈ S is called

transient, if P(Ti = ∞) > 0 ,

null recurrent, if P(Ti < ∞) = 1 and E(Ti) = ∞ ,

positiv recurrent, if P(Ti < ∞) = 1 and E(Ti) < ∞ . (1.55)

Theorem 1.13 Let X be an irreducible Markov chain. Then all states are either transient, null
recurrent or positive recurrent.X has a unique stationary distribution if and only if it is positive
recurrent. In this caseX is also ergodic (subject to aperiodicity in case of discrete time).

Proof. see Section 6.2 in [GS]

Examples.
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1.5 The ergodic theorem

Theorem 1.14 LetX = (Xt, t ∈ T) be an ergodic Markov chain with unique stationary distrib-
utionπ∗. Then for everyf : S → R (observable)

1
t

∫ t

0
f(Xs) ds or

1
N

N∑
n=0

f(Xn) −→ Eπ∗(f) ast, N →∞ . (1.56)

Proof. see e.g. [GS], chapter 9.5

So stationary expectations can be approximated by time averages over long periods. This is
the basis for Markov chain Monte Carlo (MCMC) which is used to sample from the stationary
distribution of a chain. In particular, using indicator functionsf = 1i the right-hand side of (1.56)
is equal toπ∗i . To improve the speed of convergence in practice, the chain is run for a while before
starting to sample (equilibration).
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2 Processes with continuous state space

2.1 Brownian motion and the Central limit theorem

Let Y1, Y2, . . . ∈ R be iidrvs with meanE(Yi) = 0 and variancevar(Yi) = σ2 > 0. Then define
the discrete-time process

Xn :=
n∑

i=1

Yi with X0 = 0 . (2.1)

For example ifYi ∼ U
(
{−1, 1}

)
thenX is a simple symmetric random walk. Then by theCentral

Limit Theorem (CLT) asn →∞

Xn√
n
→ ξ ∼ N(0, σ2) (Gaussian rv with mean0 and varianceσ2) , (2.2)

or, equivalently, for ally ∈ R

P
(Xn√

n
≤ y

)
→

∫ y

−∞

1√
2πσ2

e−x2/(2σ2)︸ ︷︷ ︸
fX(x)

dx with Gaussian pdf fX(x) . (2.3)

We can use the CLT to look at the processXn in rescaled timet = n∆t. According to (2.2),
X[t/∆t]/

√
1/∆t should converge to at-dependent random variable as∆t → 0, and we define

Bt := lim
∆t→0

√
∆t X[t/∆t] = lim

∆t→0

√
t√

t/∆t

[t/∆t]∑
i=1

Yi =
√

t ξt ∼ N(0, tσ2) . (2.4)

Here theξt ∼ N(0, 1) are different for eacht, but they are certainly not independent. Note that by
the CLT the time rescaling induces a space rescaling

t = ∆t n , b = (∆t)αx with α = 1/2 , (2.5)

and on all other spatial scales, the limiting process does either not exist or is degenerate,

Bt = 0 for α > 1/2 , Bt is not well defined forα < 1/2 . (2.6)
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Properties of the processB = (Bt : t ≥ 0):

B0 = 0 , Bt ∼ N(0, tσ2) and analogously to (2.4)

Bt −Bs = lim
∆t→0

√
∆t

[t/∆t]∑
i=[s/∆t]

Yi ∼ N(0, (t− s)σ2) (2.7)

for all t ≥ s ≥ 0. SoB hasstationary increments, i.e. Bt−Bs ∼ Bt−s−B0, and by independence
of theYi, B hasindependent increments, i.e.

Bt −Bs is independent of {Bu : u ≤ s} for all t ≥ s ≥ 0 . (2.8)

So farB is only the result of an informal derivation, an important question is wether it actually
exists as a mathematical object.

Theorem 2.1 Existence of Brownian motion (Wiener)
There exists a processB = (Bt : t ≥ 0) with stationary independent increments, such thatB0 = 0
andBt ∼ N(0, t). B is called astandard Brownian motion (BM)or Wiener process.

Proof. see e.g. Rogers and Williams, Section I.6

It suffices to look atstandardBMs B with σ2 = 1 andB0 = 0, then
√

σB + x0 is a BM
with varianceσ2 starting inx0. All distributional properties of BM are characterized by the finite
dimensional distributions.

Proposition 2.2 LetB be a standard BM. For allt1, . . . , tn, n ∈ N the vector

(Bt1 , . . . , Btn) ∼ N(0,Γ) with γij = min{ti, tj} , (2.9)

has multivariate Gaussian distribution with zero means and covariance matrixΓ = (γij)i,j .

Proof. Bt ∼ N(0, t) and it suffices to show thatcov(Bs, Bt) = min{s, t}. Takes < t, then

E(BsBt) = E
(
B2

s + Bs(Bt −Bs)
)

= E(B2
s ) + 0 , (2.10)

sinceB has independent increments andE(Bs) = 0. Thus cov(Bs, Bt) = var(Bs) = s . 2

Reminder. The pdf of the multivariat Gaussian(Bt1 , . . . , Btn) is given by

ft1,..,tn(x) =
1

(2π det Γ)n/2
exp

(
− 1

2 xΓ−1 xT
)

with x = (x1, . . . , xn) . (2.11)

What are the regularity properties of a Brownian sample path?

From (2.4) we expect for Brownian motion

Bt+h −Bt =
√

h ξ ∼ N(0, hσ2) → 0 a.s. ash → 0 . (2.12)

Therefore Brownian sample paths are continuous (and more precisely, Hölder continuous with
index1/2). But they are nowhere differentiable, since

Bt+h −Bt

h
=

σ√
h

ξ has no limit ash → 0 . (2.13)
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These properties do not follow from (2.7) and (2.8), which can be fulfilled also by discontinuous
processes. But under the restriction thatt 7→ Bt(ω) is a continous function oft for all ω ∈ Ω, BM
is unique. So we restrict ourselves to thepath spaceC

(
[0,∞), R

)
of continuous functions, and

the process can then be described by a probability measure on that space.

Theorem 2.3 Uniqueness of Brownian motion (Wiener)
There exists a unique probability measureW on the path spaceC

(
[0,∞), R

)
(called theWiener

measure), such that the process with sample paths distributed according toW is a Brownian
motion as defined in Theorem2.1

Proof. see e.g. Rogers and Williams, Section I.6

Examples of sample paths.

Note that if the incrementsYi in (2.2) are not identically distributed or independent, the CLT
still holds under more general conditions (see e.g. Gardiner, Section 2.8.2). So Brownian motion
is the natural scaling limit for a very general class of models.

Definition 2.1 A d-dimensional standard Brownian motionB = (Bt : t ≥ 0) is a collection ofd
independent one-dimensional BMsB1, . . . , Bd as defined in Theorem2.1, i.e.

Bt = (B1
t , . . . , Bd

t ) for all t ≥ 0 . (2.14)

So the pdf of the incrementsBt −Bs is ft−s(x) = (2π(t− s))−d/2 exp
(
− ‖x‖22

2(t−s)

)
.

Analogous to the random walk, one can study recurrence and transience for BM depending on
the space dimension.
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Theorem 2.4 Let TA = inf{t > 0 : Bt ∈ A} be the first passage time for the setA ⊆ Rd,
analogous to the timesTx for pointsx ∈ Rd.

(i) If d = 1 BM ispoint-recurrent, i.e. for all x ∈ R

P
(
{Tx < ∞

∣∣ B0 = x
)

= 1 . (2.15)

(ii) If d = 2, BM isneighbourhood-recurrent, i.e. for everyε > 0, x ∈ R2

P
(
TB(x,ε) < ∞

∣∣B0 = x
)

= 1 where B(x, ε) = {y ∈ Rd : ‖y‖ < ε} . (2.16)

However, points arepolar, i.e. for all x ∈ R2

P(Tx = ∞) = 1 , independent of the starting point. (2.17)

(iii) If d ≥ 3, BM is transient, i.e.|Bt| → ∞ ast →∞ with probability one.

Proof. see e.g. Rogers and Williams, Section I.18

Proposition 2.5 For dimensiond ≥ 2, the image{Bt : t ≥ 0} ⊆ Rd of the sample path of a BM
B hasHausdorff (or fractal) dimension2.

’Proof’.
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2.2 General facts

In this section we discuss processes with continuous state spaceS = R or Rd and continuous time
T = [0,∞). This is mathematically more complicated than Markov chains, and we will discuss
some of the technical issues below. On the other hand, the sample paths are now real valued
functions, our state space has an analytic structure and we will be able to use concepts from usual
calculus.

For example we will often integrate over setsA ∈ R of possible values with respect to the
distribution functionF (x) = P(X ≤ x) of a random variableX, e.g.

P(X ∈ A) =
∫

A
dF (x) =

∫
A

f(x) dx wheref = F ′ is the pdf (if it exists). (2.18)

Technical side remark (non-examinable): This cannot be done for all setsA ⊆ R but only for
A ∈ A, whereA ( P(R) is a so-calledσ-algebra. This is a set ofmeasurable setswhere the
measuredF (x) can be consistently defined on.

As for Markov chains, the distributional properties of a general stochastic process are deter-
mined by fixing allfinite-dimensional distributions (fdds)

Ft(x) = P
(
Xt1 ≤ x1, . . . , Xtn ≤ xn

)
, (2.19)

for all t = (t1, . . . , tn) ∈ [0,∞)n, ti 6= tj , x = (x1, . . . , xn) ∈ Rn andn ∈ N. We focus here
on the state spaceS = R where the fdds are given by joint distribution functionsFt as above. In
principle this can be extended to more general state spaces.

Theorem 2.6 If a collection{Ft} of fdds fulfills theKolmogorov consistency relations

Ft,tn+1(x, xn+1) → Ft(x) as xn+1 →∞ , and

FΠt(Πx) = Ft(x) for all permutationsΠ of (1, . . . , n) , (2.20)

then there exists a stochastic processX = (Xt : t ≥ 0) (on some probability spaceΩ) that has
fdds{Ft}.

Proof. Is related to the Skorohod representation theorem. Basically one takesΩ to be the path
space of the process. Some hints are given in [GS] Section 8.6

Example.

The transition probabilities of a Markov chain can also be generalized.
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Definition 2.2 Let X be a stochastic process onR. The conditional distribution function

F (t, x|s, y) = P(Xt ≤ x|Xs = y) , (2.21)

is called thetransition kernelof X. If it has a density we call this thetransition density,

f(t, x|s, y) =
∂F

∂x
(t, x|s, y) . (2.22)

Note that for a homogeneous process, the kernel is actually only a function oft− s.

Proposition 2.7 The fdds of a Markov process are uniquely determined by the transition kernels
and the initial distribution.

Proof. Sample calculation for0 ≤ t1 ≤ t2 with densities using the Markov property,

P
(
Xt1 ≤ x1, Xt2 ≤ x2

)
=

∫ x2

−∞

∫ x1

−∞

∫ ∞

−∞
f(0, x) f(t1, y|0, x) f(t2, z|t1, y) dx dy dz .

2

Example.

In contrast to Markov chains, for continuous state space the fdds do not determine the process
uniquely. Two processes with the same fdds are calledversionsof each other, and their sample
paths can have very different properties. This fact cannot be ignored, since it is very important
when studying properties such as first-passage times (first random time to enter a given set).

In the previous section we saw that the sample paths of BM are continuous. Many interesting
phenomena cannot be modeled with continuous processes alone, but one usually concentrates on
the following class of processes.

Definition 2.3 A real-valued, continuous-time processX is calledcàdlàg if its sample paths are
right continuous (continuèa droite) and have left limits (limitèa gauche), i.e.

lim
s↘t

Xs(ω) = Xt(ω) and lim
s↗t

Xs(ω) exists , for allω ∈ Ω, t ∈ [0,∞) . (2.23)

For example continuous-time Markov chains (e.g. the Poisson process) are defined as càdl̀ag.
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2.3 Brownian motion and the heat equation

We are looking for an evolution equation for the transition densities, analogous to the forward
equation (or master equation) for Markov chains. First we will derive it for Brownian motion as
scaling limit from the simple random walk.

Let (Xn : n ∈ N) be a simple random walk. Then the distribution at timen is given by
π(n + 1) = π(n) P , which can be written in the following incremental form

π(n + 1)− π(n) = π(n)(P − Id) , (2.24)

whereP − Id is proportional to the discrete Laplacian∆,

P − Id =


... ... ...

1
2 −1 1

2
... ... ...

 =
1
2


... ... ...

1 −2 1
... ... ...

 =
1
2
∆ . (2.25)

In the previous section we saw that under the scalingt = ∆t n, x = (∆t)αk with α = 1/2 ,

(∆t)αX[t/∆t] → Bt converges to Brownian motion as∆t → 0. Therefore the mass function
πk(n) should converge to the pdff(t, x) of Bt, i.e.

lim
∆t→0

1
(∆t)α

πx/(∆t)α(t/∆t) = f(t, x) = (2πt)−1/2 exp
(
− x2/(2t)

)
. (2.26)

where1/(∆t)α is the volume element to turn the probabilityπk(n) into a density.

Plugging the scaling into the discrete-time Master equation (2.24), we can derive a differential
equation forf . We assume that for largen, k (i.e. small∆t), πk(n) is approximately given by

πk(n)/(∆t)α ' f
(
n∆t, k(∆t)α

)
= f(t, x) . (2.27)

Then we get by Taylor expansion

πk±1(n)/(∆t)α ' f(t, x)± (∆t)α ∂

∂x
f(t, x) +

(∆t)2α

2
∂2

∂x2
f(t, x) + O

(
(∆t)3α

)
πk(n + 1)/(∆t)α ' f(t, x) + ∆t

∂

∂t
f(t, x) + O

(
(∆t)2

)
. (2.28)

Thus ifα = 1/2 (otherwise the limit is again degenrate),

∂

∂t
f(t, x) = lim

∆t→0

πk(n + 1)− πk(n)
(∆t)3/2

= lim
∆t→0

1
2(∆t)3/2

(
πk−1(n)− 2πk(n) + πk+1(n)

)
=

= lim
∆t→0

(∆t)2α

2∆t

∂2

∂x2
f(t, x) + O

(
(∆t)3α−1

)
=

1
2

∂2

∂x2
f(t, x) . (2.29)
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So since standard BM starts in the origin, its pdf fulfills

∂

∂t
f(t, x) =

1
2

∂2

∂x2
f(t, x) with initial condition f(0, x) = δ0(x) . (2.30)

This PDE is the so-calledheat equationwhich has been well studied and indeed (2.26) is its unique
solution.

Note that with the implicit initial conditionf(t, x) = f(t, x|0, 0) in terms of transition densi-
ties. An analogous derivation conditioned onBs = y gives the same equation forf(t, x|s, y) with
the more general initial conditionf(s, x|s, y) = δy(x).

Indeed, as we have seen beforeBt ∼ N(0, t−s) for t ≥ s, and therefore the transition density
is given by

f(t, x|s, y) =
(
2π(t− s)

)−1/2 exp
(
− (x− y)2

2(t− s)

)
. (2.31)

f(t, x|s, y) is also called theheat kernel, since it is the fundamental solution to that PDE (2.30).
That means that for every intial distributionf(0, y) we have

f(t, x) =
∫

R
f(t, x|0, y) f(0, y) dy . (2.32)

We can also derive (2.30) from the forward equationddtP (t) = P (t) G or the master equation
(1.44) of a continuous-time Markov chain, by rescaling only space asx = εk with ε → 0. In these
derivations the exact structure of the generatorG or P − Id is not important and this equation
holds for a whole class of processes, including e.g. symmetric jumps with finite range.

2.4 Diffusion processes and Fokker-Planck equations

Definition 2.4 A Markov processX is called adiffusion process, if it has continuous sample paths
and

E
(
Xt+h −Xt

∣∣ Xt = x
)

= a(t, x) h + o(h) ,

E
(
(Xt+h −Xt)2

∣∣ Xt = x
)

= b(t, x) h + o(h) , (2.33)

for some functionsa(t, x) (drift coefficient) andb(t, x) (diffusion coefficient).

The distributional properties are uniquely characterized by the drift and the diffusion coefficient.
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Theorem 2.8 LetX be a diffusion process with drifta(t, x) and diffusion coefficientb(t, x). Then
the transition densityf = f(t, x|s, y) exists and satisfies the(forward) Fokker-Planck equation
(or forward equation)

∂f

∂t
= − ∂

∂x

(
a(t, x) f

)
+

1
2

∂2

∂x2

(
b(t, x) f

)
(2.34)

for all 0 ≤ s ≤ t, x, y ∈ R.

Proof. by Taylor expansion similar to Section 2.3

Examples.

Stationary pdfsf∗(x) of a time-homogeneous diffusion process with constant drifta(x) and
diffusion b(x) are given by stationary solutions to (2.34), i.e.

0 = − ∂

∂x

(
a(x) f∗(x)

)
+

1
2

∂2

∂x2

(
b(x) f∗(x)

)
. (2.35)
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Examples.

In general, integrating (2.35) and denoting the derivative by′ we get under mild regularity
assumptions ona(x) andb(x) (e.g. boundedness)

0 = −
∫ x

−∞

(
a(y) f∗(y)

)′
dy +

1
2

∫ x

−∞

(
b(y) f∗(y)

)′′
dy =

= −a(x) f∗(x) +
1
2
(
b(x) f∗(x)

)′ (+const.) (2.36)

This is a first order linear differential equation and differentiating with the product rule we get

f∗′(x) =
2a(x)− b′(x)

b(x)
f∗(x) . (2.37)

So the solution is

f∗(x) = f∗(0) exp
( ∫ x

0

2a(y)− b′(y)
b(y)

dy
)

(2.38)

wheref∗(0) is fixed by normalization
∫

R f∗(x) dx = 1.

Diffusion processes can be generalized to higher dimensions.X in Rd is called a diffusion
process if in addition to the continuity property analogous to Definition2.4

E
(
Xt+h −Xt

∣∣Xt = x
)

= a(t,x) h + o(h) ,

E
(
(Xt+h −Xt)(Xt+h −Xt)T

∣∣Xt = x
)

= b(t,x) h + o(h) , (2.39)
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with drift vectora(t, x) ∈ Rd and diffusion matrixb ∈ Rd×d, where

bij = E
(
(Xi

t+h −Xi
t)(X

j
t+h −Xj

t )
∣∣Xt = x

)
. (2.40)

This is the covariance matrix of the increments of the process. The Fokker-Planck equation for
f = f(t,x) is now given by

∂f

∂t
= −

d∑
i=1

∂

∂xi

(
ai(t,x) f

)
+

1
2

d∑
i,j=1

∂2

∂xi∂xj

(
bij(t,x) f

)
= L∗f . (2.41)

where the right-hand side defines a linear operatorL∗ on the set of functionsf : Rd → R. L∗ is
called the(adjoint) generatorof the processX and is the analogous quantity of the generator of a
continuous-time Markov chain.

Defining theprobability currentJ(f) with i-th component

Ji(x, f) := ai(x) f − 1
2

d∑
j=1

∂

∂xj

(
bij(x) f

)
, (2.42)

the Fokker-Planck equation (2.41) can be written as acontinuity equation

∂f(t,x)
∂t

+∇x · J
(
x, f(t,x)

)
= 0. (2.43)

Integrating this equation over a domainA ⊆ Rd and using integration by parts like above we get

∂

∂t

∫
A

f(t,x) ddx = −
∫

A
∇x · J

(
x, f(t,x)

)
ddx = −

∫
∂A

J
(
x, f(t,x)

)
· dS . (2.44)

The second identity follows fromStokes’ theorem(also calledGauss’ integration theorem).

If A = Rd or the system isclosedin A thenJ
(
x, f(t,x)

)
= 0 for all x ∈ ∂A. So the

right-hand side of (2.44) vanishes and the total probability is conserved, i.e.

P(Xt ∈ A) =
∫

A
f(t,x) ddx = 1 . (2.45)
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An important class of diffusion processes with direct connections to statistical mechanics are
noise-perturbed gradient flows.

Definition 2.5 Let X be a diffusion process with time-independent drifta(x) and diffusionb(x).
V : Rd → R is called apotential for X, if a(x) = −∇V (x). If bij(x) = b δij we call X a
(noise-perturbed)gradient flow.

The Fokker-Planck equation of a gradient flow is given by

∂f(t,x)
∂t

= ∇ ·
(
(∇V (x)) f(t,x)

)
+

b

2
∆f(t,x) . (2.46)

Examples.

Proposition 2.9 Assume thatV : Rd → R is smooth and that

Z :=
∫

Rd

e−2V (x)/b ddx < ∞ . (2.47)

Then the diffusion processX with generator (??) is ergodic. The unique stationary distribution is
theGibbs distributionwith density

f∗(x) =
1
Z

e−2V (x)/b , (2.48)

and the normalization factorZ is calledpartition function.

Proof. We have from (2.48) ∇f∗ = −2
b (∇V ) f∗ and thus

b

2
∆f∗ =

b

2
∇ · (∇f∗) = −∇ ·

(
(∇V ) f∗

)
. (2.49)

Substituting this in (2.46) the right-hand side vanishesL∗f∗ = 0, andf∗ is stationary.
Uniqueness and ergodicity follow from the fact gradient flows fulfill general conditions such that
the Fokker-Planck equation (2.46) has a unique (time-dependent) solution. 2
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Examples.

Further remarks (non-examinable)

• f = f(t, x|s, y) is also the solution to the so-calledbackward Fokker-Planck equation

∂f

∂s
= −a(s, y)

∂f

∂y
− 1

2
b(s, y)

∂2f

∂y2
(2.50)

which can be derived from the backward equation of a continuous time MC.

• Let g : Rd → R be an observable, such asg(Xt) = ‖Xt‖22. Then the expected value

ḡ(t) := E
(
g(Xt)

)
=

∫
Rd

g(x) f(t,x) ddx (2.51)

obeys the following evolution equation,

d

dt
ḡ(t) =

∫
Rd

g(x)
∂f(t,x)

∂t
ddx =

∫
Rd

g(x) (L∗f)(t,x) ddx =

=
∫

Rd

(Lg)(x) f(t,x) ddx = Lg(t) = E
(
(Lg)(Xt)

)
. (2.52)

This follows by partial integration, since for eachi = 1, . . . , d∫
Rd

g(x)
∂

∂xi

(
ai(t,x) f(t,x)

)
ddx = −

∫
Rd

( ∂

∂xi
g(x)

)
ai(t,x) f(t,x)ddx , (2.53)
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becausef(t,x) → 0 as|x| → ∞ so there are no boundary terms. For the diffusion part this
can be done twice and leads to

L =
d∑

i=1

ai(t,x)
∂

∂xi
+

1
2

d∑
i,j=1

bij(t,x)
∂2

∂xi∂xj
. (2.54)

This operator is called thegeneratorof the processX and describes the expected time
evolution of observables. Note that this also determines the right-hand side of the backward
Fokker-Planck equation (2.50). It is technically more convenient thanL∗ and therefore
diffusion processes are often characterized by defining their generator.

• For time-independent drifta(x) and diffusionb(x) existence and uniqueness of theinitial
value problem

∂f(t,x)
∂t

= (L∗f)(t,x) , f(0,x) = f0(x) , (2.55)

is well understood under the assumption ofuniform ellipticity, i.e.

ξ b(x) ξT =
d∑

i,j=1

bij(x) ξi ξj ≥ α‖ξ‖22 for someα > 0 and allξ ∈ Rd . (2.56)

Theorem 2.10 Under the assumption (2.56) and the growth conditions

f0(x) ≤ Ceα‖x‖22 ,
∣∣∣∂ai(x)

∂xi

∣∣∣ ≤ C1

(
1 + ‖x‖22

)
,

∣∣∣∂2bij(x)
∂xi∂xj

∣∣∣ ≤ C2

(
1 + ‖x‖22

)
(2.57)

for some constantsC,C1, C2 > 0, the initial value problem (2.55) has a uniqueclassical
C1,2

(
(0,∞), Rd

)
solution.
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3 Some stochastic calculus

3.1 Diffusion processes and SDEs

Diffusion processes can be described also by stochastic differential equations. LetX be a diffusion
process inR with drift a(t, x) and diffusion coefficientb(t, x) = σ2(t, x) given by

E
(
Xt+h −Xt

∣∣ Xt = x
)

= a(t, x) h + o(h) ,

E
(
(Xt+h −Xt)2

∣∣ Xt = x
)

= σ2(t, x) h + o(h) . (3.1)

In general for a random variableY with meanµ and varianceσ2 we can write

Y = µ + σξ where ξ =
X − µ

σ
. (3.2)

Also the increments of the processX at time t are random variables with mean and variance
depending onXt and given by

E
(
Xt+h −Xt

∣∣ Xt

)
= a(t, Xt) h + o(h) ,

var
(
Xt+h −Xt

∣∣ Xt

)
= σ2(t, Xt) h− a(t, Xt)2 h2 + o(h) = σ2(t, Xt) h + o(h) . (3.3)

Therefore withξt,t+h =
(
Xt+h −Xt − a(t, Xt)

)
/
√

σ2(t, Xt) h we get

Xt+h −Xt = a(t, Xt) h + σ(t, Xt)
√

h ξt,t+h + o(h) . (3.4)

Then

E(
√

h ξt,t+h) = 0 and var(
√

h ξt,t+h) = h , (3.5)

which looks an awful lot like the increment of a Brownian motion. Indeed, if the processX has
independent increments also theξt,t+h are independent and

ξt,t+h =
n∑

k=1

ξt+(k−1)/n,t+k/n (3.6)

can be written as a sum of arbitrarily many independent random variables with mean0 and variance
1. Therefore

√
h ξt,t+h ∼ N(0, h) are Gaussian and can thus be interpreted as increments of a

Brownian motion. Now we can write

Xt+h −Xt = a(t, Xt) h + σ(t, Xt)(Bt+h −Bt) + o(h) for a BM B . (3.7)

Deviding byh we get in the limith → 0

dXt

dt
= a(t, Xt) + σ(t, Xt)

dBt

dt
. (3.8)

This is a differential equation for each path ofX, i.e. for fixedω ∈ Ω. But paths of a BM are not
differentiable and therefore (3.8) is often written as

dXt = a(t, Xt) dt + σ(t, Xt) dBt . (3.9)

Definition 3.1 (3.9) is called astochastic differential equation (SDE)with drift a(t, x) anddiffu-
sionσ(t, x). Alternatively, physicists often write

dXt

dt
= a(t, Xt) + σ(t, Xt) ηt , (3.10)

and call this aLangevin equation, whereηt = dBt/dt is calledwhite noise.
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The (non-existing) derivativeηt = dBt/dt can be understood as a normalized random force
term onX uncorrelated in time. Formally it is given by a Gaussian process with mean0 and
covarianceδ(t− s) Id, which makes sense if integrated over time.

As for ordinary differential equations, it is often better to look at the integrated version of
(3.9), since it requires less regularity assumptions.

Definition 3.2 A continuous processX = (Xt : t ≥ 0) is asolutionof the SDE (3.9) with initial
conditionX0 = x0 if

Xt = x0 +
∫ t

0
a(s,Xs) ds +

∫ t

0
σ(s,Xs) dBs (3.11)

holds with probability1 for all t ≥ 0 (or t ∈ [0, T ]). The solution is calledunique, if any two
solutionsX1 andX2 satisfy

P
(
X1

t = X2
t for all t ≥ 0

)
= 1

(
or t ∈ [0, T ] resp.

)
. (3.12)

So in order to solve SDEs we have to make sense of the twostochastic integralsin (3.11).
Let X = (Xt : t ≥ 0) andY = (Yt : t ≥ 0) be two continuous processes.

We partition the time interval[0, t] such that

0 = t0 < t1 < . . . < tn = t with tk − tk−1 → 0 for all k = 1, . . . , n, asn →∞ .(3.13)

Then we would like to approximate the stochastic integralI = (It : t ≥ 0) by

In
t =

n∑
k=1

Ytk−1
(Xtk −Xtk−1

) → It =
∫ t

0
Ys dXs asn →∞ . (3.14)

This is a (particular) Riemann sum approximation of the integrals in (3.11), the simple choice
Xt = t yields the first, andXt = Bt the second. The general question we investigate in the
following is, for which processesX andY the approximations converge and in what sense they
converge. Answers turn out to be quite different for the two integrals. But it turns out that the
choice of the time partition is not crucial, so we can arbitrarily choosetk = k/n to fix ideas.
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3.2 Stochastic integration and It̂o calculus

Proposition 3.1 For the integratorXt = t and continuous integrandY the limit in (3.14) exists
pointwise and we can define

It(ω) =
∫ t

0
Ys(ω) ds := lim

n→∞
In
t (ω) = lim

n→∞

1
n

n∑
k=1

Ytk−1
(ω) . (3.15)

Proof. Usual convergence for the Riemann sum approximations holds for each fixedω since he
total variation ofXt = t is finite, i.e.

n∑
k=1

∣∣Xtk(ω)−Xtk−1
(ω)

∣∣ = t < ∞ for all t ≥ 0 . (3.16)

Examples.

Theorem 3.2 It ô integral
LetY be a continuous process andX = B a standard BM. If

E
( ∫ t

0
Y 2

s ds

)
< ∞ (3.17)

for somet ≥ 0, then

It =
∫ t

0
Ys dBs := lim

n→∞
In
t = lim

n→∞

n∑
k=1

Ytk−1
(Btk −Btk−1

) (3.18)

exists in theL2-sense, i.e. for alls ≤ t, E
(
(In

s − Is)2
)
→ 0 .

If (3.17) holds for allt ≥ 0, thenI = (It : t ≥ 0) is a continuous process withE(It) = 0 and is
called the(stochastic) It̂o integralof Y w.r.t. B.

Proof. see e.g. Rogers and Williams
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How do we calculate It̂o integrals? Let’s start with a simple example.

We see that for the Itô integral withα = 0 we get∫ t

t0

Bs dBs =
1
2
(
(B2

t −B2
t0)− (t− t0)

)
. (3.19)

Another common choice are centred intermediate points withα = 1/2. Here we get

S

∫ t

t0

Bs dBs =
1
2
(B2

t −B2
t0) , (3.20)

and this integral is called theStratonovich integral. The advantage of this choice is that it obeys
the usual rules of calculus and arises naturally in approximations of Brownian motion by smooth
processes (see later). But now dependence ofYτk

and the incrementXtk − Xtk−1
is more com-

plicated, leading to several technical difficulties compared to Itô. Therefore the preferred choice
is usually the It̂o integral, and from this one can recover the Stratonovich version by a simple
transformation. The unexpected term(t − t0) in (3.19) has to be there, since the result should
be a martingale. These additional terms can be easily understood by the rules ofItô calculus,
introduced below.

It is often convenient to use the following intuitive differential notation,

It = It0 +
∫ t

t0

Ys dXs ⇔ dIt = Yt dXt . (3.21)

For example for the integral (3.19) this gives Bt dBt = 1
2(dB2

t − dt) , leading to the rule

d(B2
t ) = 2Bt dBt + dt . (3.22)
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This is basically a modifiedchain rulefor Itô calculus. The meaning of the termdt becomes clear
if we compute an increment by hand:

Comparing with the chain rule (3.22) we get

(dBt)2 = dt or more generally (σdBt)2 = σ2dt . (3.23)

In usual calculus higher order terms are of negligible ordero(dt), but for BM they have to be taken
into account.

Non-examinable remarks:
With considerable technical effort, the Itô integral can be generalized to non-continuous processes.
But there is a particularly important class of integrators for which this can be done quite easily.

Def. Let N = (Nt : t ≥ 0) ∼ PP (λ) andZ1, Z2, . . . a sequence of iidrv’s withE
(
|Zk|

)
< ∞

and distribution functionF . Then

Q = (Qt : t ≥ 0) with Qt =
Nt∑

k=1

Zk (3.24)

is called acompound Poisson processor jump process. For a, σ ∈ R andB a standard BM a
process of the form

Xt = X0 + a t + σBt + Qt with stationary, independent increments (3.25)

is called aLévy process. X is completely determined by theLévy triple(a, σ2, λF ).

Lévy processes are the simplest generalization of Brownian motion to non-continuous processes
with jumps. By definitiont 7→ Qt(ω) is piecewise constant for eachω, so the integral can be
computed directly. The condition of stationary, independent increments implies thatF cannot be
arbitrary, but has to be aninfinitely divisible law. Examples are Gaussians orα-stable laws.
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3.3 Diffusion processes and It̂o’s formula

Let X be a solution of the SDE

dXt = a(t, Xt) dt + σ(t, Xt) dBt . (3.26)

The following very useful result summarizes our findings in Section 3.2 and gives an explicit
formula for time evolution of an observableg(Xt).

Theorem 3.3 It ô’s formula
LetX be a solution of (3.26) andg ∈ C2(R, R). Then

dg(Xt) = g′(Xt) dXt +
1
2
g′′(Xt) σ2 dt , (3.27)

or in the (extended) integrated version

g(Xt) = g(X0) +
∫ t

0
g′(Xs) σ(s,Xs)dBs

+
∫ t

0

(
g′(Xs) a(s,Xs) + 1

2g′′(Xs) σ2(s,Xs)
)
ds . (3.28)

Proof. Taylor expansion with terms up to orderdt, using (3.23) and the It̂o chain rule (3.22).

Examples.

In detail Itô’s formula says in incremental form

dg(Xt) = g′(Xt) dXt +
1
2

g′′(Xt) (dXt)2 =

= g′(Xt)
(
a(t, Xt) dt + σ(t, Xt) dBt

)
+

1
2

g′′(Xt)σ2(t, Xt) dt . (3.29)
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Let f(t, x) be the pdf of the processX introduced in Section 2. Taking the expectation on both
sides, we get by partial integration

d

dt
E

(
g(Xt)

)
=

∫
R

g(x)
∂

∂t
f(t, x) dx =

=
∫

R

(
g′(x) a(t, x) +

1
2
g′′(x)σ2(t, x)

)
f(t, x) dx =

=
∫

R
g(x)

(
− ∂

∂x

(
a(t, x) f(t, x)

)
+

1
2

∂2

∂x2

(
σ2(t, x) f(t, x)

))
dx , (3.30)

since boundary terms and the expected value of the Itô integral vanishes (it is a martingale). This
holds for arbitrary functionsg, and therefore we must have

∂

∂t
f(t, x) = − ∂

∂x

(
a(t, x) f(t, x)

)
+

1
2

∂2

∂x2

(
σ2(t, x) f(t, x)

)
= L∗f(t, x) . (3.31)

Thusf(t, x) fulfilles the Fokker-Planck equation with adjoint generatorL∗ introduced in (2.41)
andX is a diffusion process with drifta(t, x) and diffusionσ2(t, x). In Section 3.1 we have
derived the opposite statement, so let us summarize both of them.

Proposition 3.4 X is a diffusion process as defined in Def.2.4 if and only if it is a solution of the
SDE (3.26) with σ2(t, x) = b(t, x).
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Non-examinable remarks.
Remember that the generatorL introduced in (2.54) is given by

L = a(t, x)
∂

∂x
+

1
2
σ2(t, x)

∂2

∂x2
, (3.32)

and describes the time evolution of expected values of observables (2.52). UsingL we can rewrite
Itô’s formula

g(Xt) = g(X0) +
∫ t

0
(Lg)(s,Xs) ds +

∫ t

0
σ(s,Xs) dBs . (3.33)

So we see that the time evolution ofg(Xt) is given by the generator part plus fluctuations in terms
of an Itô integral, which is a martingale with vanishing expected value.
Another interesting question is, how many solutions to the SDE (3.26) there are. For time-
independent drift and diffusion there is a general theorem about existence and uniqueness for
SDEs.

Theorem 3.5 Suppose thata : R → R andσ : R → R are Lipschitz-continuous, i.e.∣∣a(x)− a(y)
∣∣ ≤ K|x− y| for someK > 0 and allx, y ∈ R . (3.34)

Then (for each probability spaceΩ and BMB) there exists a unique solution to the SDE

dXt = a(Xt) dt + σ(Xt) dBt (3.35)

for any initial conditionX0 = x0 ∈ R.

Proof. analogous to ordinary differential equations using the contraction mapping theorem and
Gronwall’s Lemma.

There are more elaborate notions of ’solutions’ to SDEs in a weak and strong sense, which
we did not discuss. A proper understanding of these involves a substantial amount of measure
theory. It̂o’s formula and the existence and uniqueness theorem can be extended to higher space
dimensions. There is also a Stratonovich interpretation of SDEs which is directly connected to the
Itô version given here. Both can be found in Gardiner, Section 4.3.
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