www.warwick.ac.uk/~masgav/teaching/co905.html
Stefan Grosskinsky

CO905 20.01.2010

Stochastic Processes

Problem sheet 1

- **1.1** A dice is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the state space and the transition matrix.
 - (a) The largest number X_n shown up to the *n*th roll.
 - (b) The number N_n of sixes in n rolls.
 - (c) At time n, the time B_n since the most recent six.
 - (d)* At time n, the time C_n until the next six.
- **1.2** (a) Consider a simple symmetric random walk on $\{1, \ldots, L\}$ with
 - periodic boundary conditions, i.e. $p_{L,L-1} = p_{L,1} = p_{1,L} = p_{1,2} = 1/2$,
 - closed boundary conditions, i.e. $p_{L,L-1} = p_{L,L} = p_{1,1} = p_{1,2} = 1/2$,
 - reflecting boundary conditions, i.e. $p_{L,L-1} = p_{1,2} = 1$,
 - absorbing boundary conditions, i.e. $p_{L,L} = p_{1,1} = 1$.
 - (All transition probabilities which are not specified above are 0.)
 - In each case, sketch the transition matrix $P = (p_{ij})_{ij}$ of the process, decide whether the process is irreducible, and give at least one stationary distribution π^* . (Hint: Use detailed balance.) [8]
 - (b)* Consider a symmetric connected graph (G, E) without loops and double edges. A simple random walk on (G, E) has transition probabilities $p_{i,j} = e_{i,j}/c_i$, where c_i is the number of outgoing edges in vertex i, and $e_{i,j} \in \{0, 1\}$ denotes the presence of an edge (i, j). Find a formula for the stationary distribution π^* .

Does your formula also hold on a non-symmetric, strongly connected graph?

1.3 Let $Z = (Z_n : n \in \mathbb{N})$ be a branching process, defined recursively by

 $Z_0 = 1$, $Z_{n+1} = X_1^n + \ldots + X_{Z_n}^n$ for all $n \ge 0$,

where the $X_i^n \in \mathbb{N}$ are iddrv's denoting the offspring of individuum *i* in generation *n*.

(a) Consider a geometric offspring distribution $X_i^n \sim Geo(p)$, i.e.

 $p_k = \mathbb{P}(X_i^n = k) = p (1-p)^k, \quad p \in (0,1).$

Compute the prob. generating function $G(s) = \sum_k p_k s^k$ as well as $\mathbb{E}(X_i^n)$ and $Var(X_i^n)$. Sketch G(s) for (at least) three (wisely chosen) values of p and compute the probability of extinction as a function of p.

(b) Consider a Poisson offspring distribution $X_i^n \sim Poi(\lambda)$, i.e.

$$p_k = \mathbb{P}(X_i^n = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \lambda > 0.$$

Repeat the same analysis as in (a).

- [11]
- (c)* For geometric offspring with p = 1/2, show that $G_n(s) = \frac{n-(n-1)s}{n+1-ns}$ and compute $\mathbb{P}(Z_n = 0)$. If T is the (random) time of extinction, what is its distribution and its expected value?

[6]