Stochastic Processes

Problem sheet 1

1.1 A dice is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the state space and the transition matrix.
(a) The largest number X_{n} shown up to the nth roll.
(b) The number N_{n} of sixes in n rolls.
(c) At time n, the time B_{n} since the most recent six.
(d)* At time n, the time C_{n} until the next six.
1.2 (a) Consider a simple symmetric random walk on $\{1, \ldots, L\}$ with

- periodic boundary conditions, i.e. $p_{L, L-1}=p_{L, 1}=p_{1, L}=p_{1,2}=1 / 2$,
- closed boundary conditions, i.e. $p_{L, L-1}=p_{L, L}=p_{1,1}=p_{1,2}=1 / 2$,
- reflecting boundary conditions, i.e. $p_{L, L-1}=p_{1,2}=1$,
- absorbing boundary conditions, i.e. $p_{L, L}=p_{1,1}=1$.
(All transition probabilities which are not specified above are 0 .)
In each case, sketch the transition matrix $P=\left(p_{i j}\right)_{i j}$ of the process, decide whether the process is irreducible, and give at least one stationary distribution π^{*}.
(Hint: Use detailed balance.)
(b)* Consider a symmetric connected graph (G, E) without loops and double edges. A simple random walk on (G, E) has transition probabilities $p_{i, j}=e_{i, j} / c_{i}$, where c_{i} is the number of outgoing edges in vertex i, and $e_{i, j} \in\{0,1\}$ denotes the presence of an edge (i, j).
Find a formula for the stationary distribution π^{*}.
Does your formula also hold on a non-symmetric, strongly connected graph?
1.3 Let $Z=\left(Z_{n}: n \in \mathbb{N}\right)$ be a branching process, defined recursively by

$$
Z_{0}=1, \quad Z_{n+1}=X_{1}^{n}+\ldots+X_{Z_{n}}^{n} \quad \text { for all } n \geq 0
$$

where the $X_{i}^{n} \in \mathbb{N}$ are iidrv's denoting the offspring of individuum i in generation n.
(a) Consider a geometric offspring distribution $X_{i}^{n} \sim \operatorname{Geo}(p)$, i.e.

$$
p_{k}=\mathbb{P}\left(X_{i}^{n}=k\right)=p(1-p)^{k}, \quad p \in(0,1) .
$$

Compute the prob. generating function $G(s)=\sum_{k} p_{k} s^{k}$ as well as $\mathbb{E}\left(X_{i}^{n}\right)$ and $\operatorname{Var}\left(X_{i}^{n}\right)$. Sketch $G(s)$ for (at least) three (wisely chosen) values of p and compute the probability of extinction as a function of p.
(b) Consider a Poisson offspring distribution $X_{i}^{n} \sim \operatorname{Poi}(\lambda)$, i.e.

$$
\begin{equation*}
p_{k}=\mathbb{P}\left(X_{i}^{n}=k\right)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad \lambda>0 \tag{11}
\end{equation*}
$$

Repeat the same analysis as in (a).
(c)* For geometric offspring with $p=1 / 2$, show that $G_{n}(s)=\frac{n-(n-1) s}{n+1-n s}$ and compute $\mathbb{P}\left(Z_{n}=0\right)$. If T is the (random) time of extinction, what is its distribution and its expected value?

