CO905 08.02.2010

Stochastic Processes

Problem sheet 3

3.1 Consider the contact process $(\eta_t : t \ge 0)$ on the complete graph $\Lambda = \{1, \ldots, L\}$ (all sites connected) with state space $S = \{0, 1\}^L$ and transition rates

$$c(\eta, \eta^x) = \eta(x) + \lambda \left(1 - \eta(x)\right) \sum_{y \neq x} \eta(y) ,$$

where $\eta, \eta^x \in S$ are connected states such that $\eta^x(y) = \begin{cases} 1 - \eta(x) & , y = x \\ \eta(y) & , y \neq x \end{cases}$, (η with site x flipped).

- (a) Let $N(t) = \sum_{x \in \Lambda_L} \eta_t(x) \in \{0, \dots, L\}$ be the number of infected sites at time t. Show that $(N(t) : t \ge 0)$ is a Markov chain with state space $\{0, \dots, L\}$ by computing the transition rates c(n, m) for $n, m \in \{0, \dots, L\}$. Write down the master equation for the process.
- (b) Is the process (N(t) : t ≥ 0) irreducible, does it have absorbing states? What are the stationary distributions?
- (c) Assume that $\mathbb{E}(N(t)^k) = \mathbb{E}(N(t))^k$ for all $k \ge 1$. This is called a *mean-field assumption*, meaning basically that we replace the random variable N(t) by its expected value. Use this assumption and the master equation to derive the *mean-field rate equation* for $\rho(t) := \mathbb{E}(N(t))/L$,

$$\frac{d}{dt}\rho(t) = f(\rho(t)) = -\rho(t) + L\lambda(1-\rho(t))\rho(t) .$$

(d) Analyze this equation by finding the stable and unstable stationary points via $f(\rho^*) = 0$. What is the prediction for the stationary density ρ^* depending on λ ?

[11]

3.2 Consider the contact process on the lattice $\Lambda_L = \{1, \ldots, L\}$ with connections only between nearest neighbours and periodic boundary conditions as in Q2.2. Simulate the process for L = 200 with initial condition $\eta(x) = 1$ for all $x \in \Lambda$ and several values of $\lambda \in [1.6, 1.7]$. After an equilibration time $\tau_{equ} = 10^3$, use the ergodic theorem to sample from the stationary distribution of the observable $N(t) = \sum_{x \in \Lambda_L} \eta_t(x)$, i.e. over a time interval of length $\tau_{meas} = 10^3$ count the fraction of time N(t) spent in n for each $n \in \{0, \ldots, L\}$. Average this measurement over 100 realizations and plot your estimate of the stationary distribution for all values of λ in a single plot. Explain the form of the observed curves.

[10]

- **3.3** Let *B* be a standard Brownian motion in \mathbb{R} . Show the following:
 - (a) Scaling property: If $\lambda > 0$, then $B^{\lambda} := (\lambda^{-1/2} B_{\lambda t} : t \ge 0)$ is a standard Brownian motion.
 - (b) Define $B' = (B'_t : t \ge 0)$ by $B'_t = \begin{cases} t B_{1/t} &, t > 0 \\ 0 &, t = 0 \end{cases}$, then B' is a standard Brownian motion.

Hint: Use that a process $(X_t : t \ge 0)$ is a standard BM iff it has continuous paths, $X_t \sim N(0,t)$ and the right covariances, i.e. $\mathbb{E}(X_t X_s) = \min\{s,t\}.$

[4]