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Abstract

Fast information transfer in neuronal systems rests on series of action potentials, the spike trains, conducted along axons. Methods
that compare spike trains are crucial for characterizing different neuronal coding schemes. In this paper we review recent results on
the notion of spiking randomness, and discuss its properties with respect to the rate and temporal coding schemes. This method is
compared with other widely used characteristics of spiking activity, namely the variability of interspike intervals, and it is shown that
randomness and variability provide two distinct views. We demonstrate that estimation of spiking randomness from simulated and
experimental data is capable of capturing characteristics that would otherwise be difficult to obtain with conventional methods.

Introduction

Neurons communicate via chemical and electrical synapses, in a
process known as synaptic transmission. The crucial event that
triggers synaptic transmission is the action potential (or spike), a pulse
of electrical discharge that travels along the axon excitable membrane.
The shapes and durations of individual spikes generated by a given
neuron are very similar, therefore it is generally assumed that the form
of the action potential is not important in information transmission.
The series of action potentials in time (spike trains) can be recorded by
placing an electrode close to or inside the soma or axon of a neuron.
Because individual spikes in a spike train are usually well separated,
the whole spike train can be described as a series of all-or-none point
events in time (Gerstner & Kistler, 2002). The lengths of interspike
intervals (ISIs) between two successive spikes in a spike train often
vary, apparently randomly, both within and across trials (Shadlen &
Newsome, 1998; Gerstner & Kistler, 2002; Stein et al., 2005). In order
to describe and analyse neuronal firing, statistical methods and
methods of probability theory and stochastic point processes have
been widely applied (Cox & Lewis, 1966; Moore et al., 1966;
Tuckwell, 1988; Kass et al., 2005).

One of the most fundamental questions in neuroscience has been the
problem of neuronal coding, i.e. the way information about stimuli is
represented in spike trains (Perkel & Bullock, 1968; Softky, 1995;
Strong et al., 1998). To answer this question, methods to compare
different spike trains are needed first (Rieke et al., 1997; Victor &
Purpura, 1997; Buracas & Albright, 1999; Paninski, 2003; Bhumbra
et al., 2004; Nemenman et al., 2004).

In the rate coding scheme information sent along the axon is
encoded in the number of spikes per observation time window (the
firing rate; Adrian, 1928). In most sensory systems, the firing rate
increases, generally non-linearly, with increasing stimulus intensity

(Kandel et al., 1991). Any information possibly encoded in the
temporal structure of the spike train is ignored. Consequently, rate
coding is inefficient but highly robust with respect to the ISI ‘noise’
(Stein et al., 2005). The question whether the temporal structure of
ISIs is due to unavoidable fluctuations in spike generation or whether
it represents an informative part of the neuronal signal is not yet fully
resolved (Shadlen & Newsome, 1994; Gerstner & Kistler, 2002; Stein
et al., 2005) and leads to the idea of temporal coding.
Temporal codes employ those features of the spiking activity that

cannot be described by the firing rate. For example, time to first spike
after the stimulus onset, characteristics based on the second and higher
statistical moments of the ISI probability distribution, or precisely
timed groups of spikes (temporal patterns) are candidates for temporal
codes (Rieke et al., 1997; Buracas & Albright, 1999; Gerstner &
Kistler, 2002). The possibility of information transmission by changes
in ISIs serial correlation has been reported in crayfish interneurons
(Wiersma & Adams, 1950; Sugano & Tsukada, 1978). For a classic
overview of temporal coding, see Perkel & Bullock (1968), for a more
recent discussion, see Abeles (1994), Rieke et al. (1997), Shadlen &
Newsome (1994); Stein et al. (2005) and Theunissen & Miller (1995).
It is worth denoting that both rate and temporal coding schemes
generally depend on the length of the observation window, and
therefore their precise separation may not be possible in general
(Gerstner & Kistler, 2002). However, if the firing is stationary the rate
does not depend on the observation window length, and thus both
coding schemes are well separated.
While the description of neuronal activity from the rate coding point

of view is relatively straightforward, the temporal coding allows an
infinite number of possibilities. Spike trains that are equivalent from
the rate coding perspective may turn out to be different under various
measures of their temporal structure. The purpose of this review is to
describe a measure of randomness of the neuronal activity. We discuss
properties of this measure with respect to rate and temporal coding
schemes, and its application to experimental data. We show that
spiking randomness is capable of capturing characteristics that would
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otherwise be difficult to obtain with conventional methods. The notion
of randomness is very different from that of variability, even though
these terms are sometimes interchanged. Furthermore, because the
definition of randomness is based on the concept of entropy
(Shannon & Weaver, 1998), the relation with other information-
theoretic quantities can be established.

Probabilistic description of neuronal activity

Spike train consists of times of spike occurrences s0, s1, …, sn. For the
purpose of further analysis it is advantageous to describe such spike
train equivalently by a set of n ISIs ti ¼ si – si–1, i ¼ 1, …, n.
Arguably the most important characteristics calculated from ti is the
estimate �t of the mean ISI,

�t ¼ 1

n

Xn

i¼1
ti: ð1Þ

Because
Pn

i¼1 ti ¼ sn � s0; the average �t is computed without
recourse to particular interval lengths and thus presents the lowest
level of ISI analysis (Moore et al., 1966). Other common parameters,
coefficient of variation and standard deviation of ISIs, require all
measurements, ti , and both rely on the estimate s2 of the ISI variance,

s2 ¼ 1

n� 1

Xn

i¼1
ðti ��tÞ2: ð2Þ

However, �t and s2 are meaningful only if the spiking activity is
stationary, i.e. if the major probability characteristics of the firing are
invariant in time (Cox & Lewis, 1966; Landolt & Correia, 1978).
Stationary neuronal firing is typically observed in the spontaneous
activity, or under constant stimulus conditions (Moore et al., 1966;
Tuckwell, 1988; Gerstner & Kistler, 2002).
The probabilistic description of the spiking results from the fact

that the positions of spikes cannot be predicted deterministically,
only the probability that a spike occurs can be given (Gerstner &
Kistler, 2002). By far the most common probabilistic descriptor is
the ISI probability density function f (t), where f (t) dt is the
probability that spike occurs in an interval [t, t + dt] (Moore et al.,
1966). The probability density function is usually estimated from the
data by means of histograms.
There are several functions completely equivalent to f (t) that

characterize the spiking activity (Cox & Lewis, 1966; Landolt &
Correia, 1978). The cumulative distribution function F(t),

F ðtÞ ¼
Z t

0
f ðzÞdz; ð3Þ

gives the probability that the ISI will have a length not greater than t.
F(t) is easily estimated from data by means of empirical cumulative
distribution function (Cox & Lewis, 1966; Duchamp-Viret et al.,
2005), which serves as a basis for some differential entropy estimators
(see Appendix B). The final probability descriptor we mention is the
hazard rate r(t),

rðtÞ ¼ f ðtÞ
1� F ðtÞ : ð4Þ

The hazard rate determines the probability r(t) dt of spike occurring
in a time interval (t, t + dt) under the condition that there was no firing

in [0, t]. The hazard rate characterizes the ‘imminency’ of spiking
(Tuckwell, 1988), and it has been traditionally employed in neuronal
data analysis (Adrian et al., 1964; Poggio & Viernstein, 1964; Moore
et al., 1966) to provide a different point of view from f (t) and F(t).
The mentioned descriptors, f (t), F(T ) and r(t), do not depend on the

ordering of ISIs, i.e. they completely describe the firing when ISIs are
mutually independent realizations of a positive random variable T,
with mean ISI E(T ) and variance Var(T ) estimated by Eqs (1) and (2).
Such firing is called the renewal process of ISIs (Cox & Lewis, 1966;
Gerstner & Kistler, 2002). The plausibility of renewal models under
steady-state stimulus conditions is supported by the observation that
after a spike is emitted, the membrane potential of the cell returns to its
(approximately) constant resting value (Stein, 1967; Landolt &
Correia, 1978; Tuckwell, 1988; Gerstner & Kistler, 2002). Sometimes,
however, there might be a dependency structure between the observed
ISIs (Longtin & Racicot, 1997; Lansky & Rodriguez, 1999; Sakai
et al., 1999; Ratnam & Nelson, 2000; Chacron et al., 2001; Lindner,
2004). The dependence may arise, for example, due to incomplete
resetting of the membrane potential after the spike is emitted, which is
experimentally observed especially in the distal parts of the neuron
(Abeles, 1982). Such a type of neuronal firing is not a renewal process,
although the ISI probability distribution is invariant in time (due to the
stationarity of spiking). Consequently, the mean ISI is constant in
time, and therefore E(T ) carries all the information from the rate
coding point of view, as E(T ) is inversely proportional to the (mean)
firing rate (Moore et al., 1966; Gerstner & Kistler, 2002). Basic
observation reveals, however, that even if the firing rates are the same,
the resulting spike trains can have very different appearances (Fig. 1).
See Appendix C for the description of models employed in the figure.

Spiking variability

One of the most frequently used characteristics of renewal neuronal
firing is the ISI variability. The variability may be measured simply
using the ISI variance, Var(T), but variance depends on the mean ISI.
Usually, it is required to characterize the spike train differences from
the temporal coding point of view, in other words to describe
properties that are distinct from the mean ISI. To achieve this the ISI
lengths are rate-normalized, i.e. individual ISIs are divided by the
mean ISI,

h ¼ T
EðT Þ ; ð5Þ

so we obtain a new dimensionless random variable h with mean
E(h) ¼ 1. Variance of h is equal to the coefficient of variation of the
original random variable T, Var(h) ¼ CV, where

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðT Þ

p
EðT Þ : ð6Þ

The main advantage of CV as a measure of spiking variability
(compared with variance) is that CV is dimensionless and its value
does not depend on the choice of units of ISIs (e.g. seconds or
milliseconds), and thus ISI probability distributions with different
means can be compared meaningfully (Softky & Koch, 1993).
Furthermore, the CV of ISIs is related to the variability coding
hypothesis (Perkel & Bullock, 1968). The coding characterized by CV

has been hypothesized to transmit information about light intensity in
adapted cells of the horseshoe crab (Ratliff et al., 1968). Changes in
the level of bursting activity, characterized by values CV > 1, are
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Fig. 1. Examples of different simulated spike trains. The mean ISI is E(T) ¼ 1 s in all cases, thus the spike trains (a–h) are equivalent in the rate coding scheme.
The temporal coding scheme must be used to classify the apparent differences. The ISI variability (measured by the coefficient of variation, CV) is not sufficient for
(b–e). The ISIs described by the exponential probability distribution (b) have many different lengths (i.e. they are ‘variable’), but the same variability is achieved for
a regular spiking disturbed by appropriately long pauses (c). Activity described by the Pareto distribution (d) has the same variability (CV ¼ 1), though it lacks
short ISIs. Finally, (e) contains the same individual ISIs as (b) but ordered in a particular way (Markov chain, first-order serial correlation q¼ 0.9). The measure that
describes the differences is randomness, g, defined as the ‘choice’ of possible ISIs when reconstructing the spike train ‘spike by spike’. Spike trains (f–h) were
simulated using the same random seed to make the visual comparison easier. The differences in randomness between cases (f) and (g) with equal CV are not as
apparent as in (b–e). The same level of randomness, in (g) and (h), is reached with different variability and results in different spike trains. Bursting activity (h) is
more variable than the exponential case (a), though its randomness is lower.
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reported to be the proper code for edge detection in certain units of the
visual cortex (Burns & Pritchard, 1964) and also in hippocampal place
cells (Fenton et al., 2002). The variability of ISIs generated by the
leaky integrate-and-fire model (Gerstner & Kistler, 2002; Burkitt,
2006) was recently a topic for a very extensive discussion initiated by
Softky & Koch (1993).
Nevertheless, E(T ) and CV are not sufficient to describe all possible

differences between spike trains (Fig. 1b–e, where E(T) ¼ 1 s and
CV ¼ 1). The spike trains described by the renewal processes of equal
variability may have ISI probability distributions that differ in higher
than second statistical moments. Additionally, CV does not account for
statistical dependency between ISIs (by definition), and thus spike
trains with the same marginal probability distributions of ISIs have the
same variability.
Instead of employing characteristics based on higher statistical

moments of the probability distributions involved and serial correla-
tion coefficients of the ISIs, we propose to measure the randomness of
the spiking activity. Spiking randomness accounts automatically for
differences in both marginal probability distributions and serial
dependence of ISIs.

Spiking randomness

The randomness of spiking can be defined as the measure of ‘choice’
of different ISI lengths that appear in the spike train and the measure
of ‘freedom’ in their serial ordering. A bigger choice of ISIs and more
freedom in their ordering results, intuitively, in greater randomness of
spiking. We first overview the concept of entropy (Shannon &Weaver,
1998), on which the measure of spiking randomness is based.
For a discrete random variable X with the set of possible states {x1,

x2, …, xn} and the corresponding probability mass function
pi ¼ Prob{X ¼ xi}, the entropy H(X ) is defined as (Shannon &
Weaver, 1998)

HðX Þ ¼ �
Xn

i¼1
pi ln pi: ð7Þ

The entropy H(X ) is positive or equal to zero with equality if only
one option is possible (no randomness). Maximum randomness
[maximum H(X )] is reached when all pi’s are the same. If the
logarithm base in Eq. (7) is 2, H(X ) can be interpreted as the average
length in bits of the shortest description of X (Cover & Thomas, 1991).
The entropy is a unique measure of randomness satisfying a set of
intuitive conditions (Shannon & Weaver, 1998; Jaynes & Bretthorst,
2003); however, it is applicable to discrete systems only.
The extension of Eq. (7) for continuous probability distributions is

impossible because the value of H(X ) diverges (Cover & Thomas,
1991). Therefore, the differential entropy h(T ) of the ISI probability
density function f (t) is defined as

hðT Þ ¼ �
Z 1
0

f ðtÞ ln f ðtÞdt: ð8Þ

Differential entropy h(T ) does not have all the properties and intuitive
interpretation of the entropy H(X ). The value of h(t) changes with
coordinate transforms, e.g. it depends on the time units of ISIs. The
probability density function f (t) has a physical dimension (it is a
derivative of probability with respect to time), therefore h(T ) has the
dimension of its logarithm, e.g. logarithm of a millisecond. These facts
show that the differential entropy cannot be used to quantify the
randomness of spiking activity. To overcome this problem, a

discretization method has been adopted in the literature (Rieke
et al., 1997; Strong et al., 1998), which converts the task back to Eq.
(7); however, the results depend on the discretization factor (Chacron
et al., 2001).
Here we proceed in a different way, avoiding the discretization.

We want the randomness to characterize the spike train differences
from the temporal coding point of view, in a similar way to CV.
Thus, Eq. (5) is employed to rate-normalize the ISI lengths, and the
spiking randomness g is defined as the differential entropy of the
random variable h. The following relation holds (Kostal et al.,
2007)

g ¼ hðT Þ � lnEðT Þ: ð9Þ

Before discussing the properties of g we mention another approach
to defining randomness. The exponential probability density function,
fexp(t), is given as

fexpðtÞ ¼ k expð�ktÞ; ð10Þ

where k > 0 is the inverse of its mean, k ¼ 1 ⁄ E(T ). An important
property of fexp(t) is that it achieves maximum differential entropy
among all ISI probability distributions with the same mean ISI
(Cover & Thomas, 1991). The exponential model fexp(t) represents
the ‘zero point’ on the differential entropy scale for all ISI
probability density functions with the same means. Kullback–
Leibler (KL) distance D( f, fexp), given by formula (Cover &
Thomas, 1991)

Dðf ; fexpÞ ¼
Z 1
0

f ðtÞ ln f ðtÞ
fexpðtÞdt

ð11Þ

measures the deviation between probability density functions f (t)
and fexp(t). Therefore, D( f, fexp) can be used to quantify the
randomness of the probability density function f (t), if f (t) has the
same mean as fexp(t) (Kostal & Lansky, 2006c). It can be shown
that g is related to D( f, fexp) by a simple formula (Kostal et al.,
2007)

g ¼ 1� Dðf ; fexpÞ ð12Þ

and thus both proposed measures of randomness, g and D( f, fexp), are
equivalent in their properties because their values differ only in a sign
and a constant. Equation (9) can be naturally extended to account for
non-renewal spiking activity (Kostal & Lansky, 2006a), see Appendix
A.
Finally, by employing the hazard rate from Eq. (4), we provide

an independent justification for maximum randomness of the
exponential distribution. Intuitively, the most random firing makes
the time to the first spike (since the last observed spike) most
unpredictable. In other words, the probability of first spike
occurring in [t, t + dt] must be independent of the elapsed time
t and, consequently, the hazard rate must be constant. (Any
dependence of r(t) on t would lead to increased predictability of
firing due to more probable first spike occurrence after certain
elapsed times.) The only ISI probability distribution with constant
r(t) is the exponential distribution defined in Eq. (10), then
r(t) ¼ 1 ⁄ k. Even though the randomness g can be determined
from r(t) (and not vice versa), we see two main advantages of g
over r(t) as a measure of randomness. First, r(t) is a function not a
number (contrary to g), and therefore comparison of randomness of
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different ISI distributions by means of r(t) is difficult (Kostal &
Lansky, 2006c). Second, while g in its general form accounts also
for non-renewal spiking activity, r(t) is used only in the renewal
case (Moore et al., 1966).

Properties of spiking randomness

Here we summarize the basic properties of the spiking randomness g,
and compare it with the properties of variability as measured by the
coefficient of variation CV.
• Due to rate-normalization of the ISI probability distribution, the
randomness g is a dimensionless quantity and does not depend on
coordinate transformations (Kostal et al., 2007). Consequently, g
allows to compare different stationary spiking activities in the same
way as CV.

• Maximum spiking randomness is generated only by the renewal
process with exponential probability distribution of ISIs (Poisson
process; Fig. 1a). Substituting Eq. (10) into Eq. (9) gives g ¼ 1.
Any non-renewal spiking activity with exponential marginal
probability distribution of ISIs must have g < 1, as less freedom in
serial ordering of ISIs results in smaller randomness (Kostal &
Lansky, 2006a).

• Coincidentally, both g ¼ 1 and CV ¼ 1 for exponential distribu-
tion. Many non-exponential probability distributions can have
CV ¼ 1, but their randomness is always g < 1. The equality g ¼ 1
completely characterizes the exponential distribution of ISIs.

• Equally variable spike trains may differ in their randomness.
However, the same spiking randomness may be achieved with
different spiking variabilities (Fig. 1g and h). Thus, randomness
provides an alternative rather than superior characteristic of
neuronal firing compared with variability (Kostal et al., 2007).

• CV is limited from below by CV ¼ 0 (regular spiking; Fig. 1a), but
there is no maximum spiking variability. Values CV > 1 are
characteristic of bursting activity (Fig. 1h). On the other hand, there
is no unique minimal randomness probability distribution, because
g ¼ )8 for any discrete random variable (Fig. 1a and c). However,
discrete probability distributions are not valid models of spiking
activity (ISI ‘noise’ is always present), and the fact that g may not
be finite is of little practical consequence (Kostal & Lansky, 2006a).

• Spiking randomness is an information-theoretic measure, related to
entropy and KL distance. The strength of information-theoretic
measures lies in their ability to reveal non-linear dependencies
(Cover & Thomas, 1991; Yamada et al., 1993; Rieke et al., 1997).
Recently, KL distance has been used in the field of neuronal coding
from the classification theory point of view (Johnson et al., 2001)
and as a predictor of purely rate coding models (Johnson & Glantz,
2004). Renormalized entropy (a special case of KL distance) has
been shown to provide additional information over traditional tools
in electroencephalographic (EEG) record analysis (Kopitzki et al.,
1998; Quiroga et al., 2000; Thakor & Tong, 2004).

Results on model spiking activity

Probabilistic models of stationary spiking activity may be divided into
two categories: statistical and biophysical. The statistical models are
described by probability density functions that are simple enough to
manipulate and adequately describe experimentally observed data, but
no other connection with neurophysiological reality is required. The
biophysical models, on the other hand, result from attempts to describe
the behaviour of real neurons at different levels of abstraction
(Tuckwell, 1988; Gerstner & Kistler, 2002). However, mathematical

expressions for biophysical models are rarely given in a closed form
and one has to rely on numerical approximations.
The analysis of several statistical and biophysical renewal process

models was performed in Kostal & Lansky (2006b,c) and Kostal et al.,
(2007). Here we present an overview of the main results. The
statistical models are represented by gamma and lognormal ISI
probability distributions, both are commonly used for experimental
data description (Levine, 1991; Mandl, 1992; Rospars et al., 1994;
McKeegan, 2002; Duchamp-Viret et al., 2005). The inverse Gaussian
distribution (Chhikara & Folks, 1989) results from a simple point
stochastic neuronal model (perfect integrator) where the approach of
the membrane potential towards the threshold is described by the
Wiener process with a positive drift (Berger et al., 1990; Levine,
1991). The inclusion of leakage current into this model results in the
more realistic diffusion leaky IF model (Tuckwell, 1988; Burkitt,
2006), where the membrane potential evolution is described by the
Ornstein–Uhlenbeck process. The parameters of the leaky IF model
determine two firing regimes, depending on the ratio n¼ S ⁄ (ls) of the
threshold membrane potential S to the neuronal input l and membrane
time constant s (Burkitt, 2006; Kostal et al., 2007). The subthreshold
regime is characterized by n> 1, supra-threshold by n< 1. The
gamma, lognormal and inverse Gaussian distributions are completely
characterized by E(T ) and CV, and therefore it is possible to calculate a
unique value of g for each value of CV [note that g is independent of
E(T)]. A similar calculation is possible for the leaky IF model once l,
s and S are known (determining the supra- or subthreshold regimes),
because the amount of input ‘noise’ r2 controls the actual value of CV

(Kostal et al., 2007). The following inference can be made based on
Fig. 2, where the randomness of each model is plotted against the
corresponding variability.
• The randomness–variability curves of the investigated models are
often U-shaped, with high randomness values distributed around
CV ¼ 1. The notable exceptions are the subthreshold regime of the
leaky IF model and the statistical Pareto model (not included;
Kostal & Lansky, 2006a).

Fig. 2. Randomness vs variability for some widely used renewal models of
neuronal activity. For CV ¼ 1, the gamma distribution becomes exponential
and thus g ¼ 1. The inverse Gaussian and lognormal models never become
exponential, their maximum randomness (minimal KL distance from the
exponential model with the same mean ISI) is not located at CV ¼ 1. The
behaviour of the leaky IF model in the supra-threshold case is similar to
the behaviour of inverse Gaussian and lognormal models. The subthreshold
activity exhibits the effect of coherence resonance (local decrease of CV for
g � 0.96). The dot shows that for CV ¼ 1.1 the randomness of the exponential
mixture model is lower than that of any other model considered here.
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• While small variability generally implies low randomness, high
variability in the firing may result in both low as well as high
randomness.

• It is well known that the lognormal, inverse Gaussian and leaky IF
supra-threshold ISI distributions never become exponential, but in
addition their maximum randomness (minimal KL distance from the
exponential model) is not located at CV ¼ 1.

• The behaviour of the leaky IF model in the supra-threshold regime
is comparable to the perfect integrator (inverse Gaussian model). In
the subthreshold regime, the effect of coherence resonance (Lindner
et al., 2002) is demonstrated by local decrease of CV for g � 0.96.
However, there is no corresponding local decrease in spiking
randomness, i.e. the coherence resonance for certain (high) values
of n is observable in CV but not in g. Though it is known that the
degree of coherence resonance depends on the measure employed
(Lindner et al., 2004), the apparent disappearance of the effect on
the g scale raises the question of what is the proper measure of ISI
coherence (Kostal et al., 2007).
Several statistical models of non-renewal spiking activity described

by first-order Markov chains (Cox & Lewis, 1966) were examined in
Kostal & Lansky (2006a). Markov structure in experimental data is
reported in the literature (Ratnam & Nelson, 2000), and even the first-
order case makes the existence of certain (short) sequences of ISIs
more probable than others (basic temporal pattern formation; Kostal &
Lansky, 2006a). Although the examined models were not used in data
analysis previously, the results show that the serial correlation
coefficient (Cox & Lewis, 1966) is a weak indicator of the true ISI
serial dependence. For example, the Lawrance and Lewis model with
exponential marginal probability distribution of ISIs (Lawrance &
Lewis, 1977) can achieve either randomness g ¼ 0.97 or g ¼ 0.82
for the same value of first-order serial correlation q¼ 0.17. It follows
that randomness g or mutual information between ISIs (Cover &
Thomas, 1991) should be employed when deciding on renewal or non-
renewal character of experimental data. However, estimation of these
information-theoretic quantities requires large amounts of data, which
are usually not available in experimental recordings. Finally, we note
that the maximum order of non-zero serial correlation coefficient does
not coincide with the dimension of the joint probability density
function describing the activity. For example, the first-order moving
average process is non-renewal, with all second- and higher-order
serial correlations equal to zero. However, joint probability density
function of two adjacent ISIs does not describe such process, as the
Markov property, Prob{Tn ¼ tn|Tn)1 ¼ tn–1, …, T1 ¼ t1} ¼
Prob{Tn ¼ tn|Tn–1 ¼ tn–1} (Cox & Lewis, 1966), does not hold in
this case.

Results on simulated and experimental data

Here we provide an example with practical consequences, showing
that estimates of randomness from two spike trains may differ
significantly, although their appearance is very similar (Fig. 1f and g)
and their histograms are almost identical.
Bursting neuronal activity consists of runs of short ISIs (bursts)

interspersed among comparatively longer ISIs. Bursting is usually
characterized by CV > 1 and it is often reported in experimental data
analysis. (Rospars et al., 1994; Bhumbra et al., 2004; Duchamp-Viret
et al., 2005). The bursting activity of neurons is usually described by a
mixture of two distributions, one for interburst ISIs and the other for
intraburst ISIs. A common model of bursting activity is given by a
probability density function of the mixture of two exponential (ME)
distributions (Smith & Smith, 1965; Tuckwell, 1988)

f ðtÞ ¼ pae�ax þ ð1� pÞbe�bx; ð13Þ

where p 2 (0, 1) and a > 0, b > 0, a „ b. The parameters a, b and p
are independent and, consequently, a whole range of different
randomness values can be achieved for a fixed mean ISI and
CV > 1 (Kostal & Lansky, 2006b). We compare two simulated spike
trains with E(T) ¼ 1 s, CV ¼ 1.1: the first generated by the gamma
model (Fig. 1f) and the second generated by the ME distribution
(Fig. 1g). The theoretical value of g for the gamma model in this case
is g ¼ 0.99. The parameters in Eq. (13) were set so that g ¼ 0.80 for
the ME model. Figure 2 shows that the randomness of the ME
distribution with variability CV ¼ 1.1 is the lowest of the considered
models with the same CV. The histograms of ISIs constructed from
n ¼ 200 spikes are, however, hardly distinguishable due to the
striking similarity of spike trains in Fig. 1f and g. The estimated CV

values are (mean ± standard deviation): ĈV ¼ 1.1 ± 0.06 (gamma)
and ĈV ¼ 1.104 ± 0.05 (ME). The estimates of randomness, ĝ
according to Eq. (B1) (see Appendix B) with /bias ¼ 0 and m ¼ 14,
averaged over several runs give ĝ ¼ 0.91 ± 0.05 (gamma) and

Fig. 3. Comparison of the mixture of exponentials (ME) and gamma models
with parameters E(T) ¼ 1 s and CV ¼ 1. The exponential model with
E(T) ¼ 1 s is also shown. Probability density functions (a) of ME and gamma
models are almost identical for times greater than 0.5 s. However, the
calculated spiking randomness g differs significantly (Fig. 2), which is
supported independently by comparing the hazard rates (b) of ME and gamma
models. The gamma model approaches the constant hazard rate quickly, and
therefore its spiking activity is more random than that described by the ME
model with monotonously decreasing hazard rate.
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ĝ ¼ 0.77 ± 0.06 (ME). The error of estimation is acceptable, because
even for 200 spikes the Vasicek’s estimator clearly marks the
difference in spiking randomness. Theoretical probability density
functions of the exponential, gamma and ME models (Fig. 3a) differ
for very short ISIs; however, histograms with wide-enough bins hide
this difference. A visual comparison of hazard rates, however,
provides an independent proof that the spiking randomness of the
ME model is indeed different from both the exponential and gamma
model (Fig. 3b). The hazard rate of the gamma model rapidly
approaches the constant value and thus confirms the small deviation in
randomness from the exponential distribution, contrary to the ME
distribution, which has a monotonously decreasing hazard rate. We
conclude that even though conventional analysis of two spike trains
reveals no difference, the spike trains may still differ in their
randomness and the difference is tractable even with a limited amount
of data. Values g ¼ 0.99 and g ¼ 0.80 may also characterize visually
different spike trains. This is confirmed by comparing Fig. 1f and h
with g ¼ 0.8 but different levels of variability. The bursting activity
described by the inverse Gaussian model contains more of both longer
and shorter ISIs than the less variable gamma model.

Duchamp-Viret et al. (2005) estimated the randomness from the
spontaneous activity recordings performed on olfactory receptor
neurons of freely breathing and tracheotomized rats. The recordings
were obtained under steady-state conditions, and it was shown that
in the majority of cases the firing can be considered renewal. It was
demonstrated that the spontaneous activity is less variable but more
random in the case of tracheotomized animals than in those freely
breathing. This effect is further enhanced if g is adjusted for
different spiking rates by considering instead the ratio g ⁄ E(T), i.e.
the ‘amount’ of randomness per time unit (Kostal & Lansky,
2006a).

Concluding remarks

Comparison of neuronal spiking activity under different conditions
plays a key role in resolving the question of neuronal coding. The
spiking activity of a neuron is usually not deterministic, therefore
ISI is described by means of probability distributions. We proposed
an information-theoretic measure of spiking randomness, g, which
can be related to the differential entropy or KL distance from the
maximum entropy distribution. Conceptually, the spiking random-
ness can be best compared with the more often used ISI variability
measured by the coefficient of variation, CV. However, the
properties of randomness and variability are different. Namely,
small variability generally implies low randomness, but high
variability of firing may not result in high level of randomness.
Simultaneously, the same level of randomness can be reached by
different values of variability, depending on the probabilistic model
of the spiking.
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Appendix A: randomness of non-renewal firing

In the stationary, but non-renewal, spiking activity, the successive ISIs
are realizations of identical, statistically dependent random variables
{Ti}, and the activity is fully described by the joint probability density
function f(t1, t2, …) of ISIs. For the mean ISI, E(T ), thus holds
E(T ) ¼ E(Ti) (Cox & Lewis, 1966). The appropriate generalization of
differential entropy h(T) is given by the differential entropy rate h(f )
(Cover & Thomas, 1991).

�hðf Þ ¼ � lim
n!1

1

n

Z 1
0

:::

Z 1
0

f ðt1; :::; tnÞ ln f ðt1; :::; tnÞdt1:::dtn: ðA1Þ

Equation (A1) provides the general form of differential entropy rate,
which can be significantly simplified for many cases of interest. For
example, neuronal firing that is described by the first-order Markov
chain (example in Fig. 1E) is fully characterized by the joint
probability density function f(t1, t2) of two adjacent ISIs (Cover &
Thomas, 1991). Equation (A1) then reads

�hðf Þ ¼ �
Z 1
0

Z 1
0

f ðt1; t2Þ ln f ðt2jt1Þdt1dt2; ðA2Þ

where f (t2|t1) ¼ f (t1, t2) ⁄ f (t1) is the conditional probability density
function (Cox & Lewis, 1966).
The joint probability density function f (t1, t2, …) describes also

a general, non-stationary neuronal activity. By observing the first
n spikes (from the stimulus onset) over many trials we may estimate
the n-dimensional probability density function f (t1, …, tn) that governs
the immediate response of a neuron (or a population of neurons).
Equation (A1) holds without the limit (for a finite n), and we may
formally put l ¼ 1

n

Pn
i¼1 EðTiÞinstead of E(T). The randomness of any

activity may be calculated according to Eq. (9); however, due to non-
stationarity the interpretation of g with respect to the rate coding
scheme becomes unclear.
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Appendix B: estimation of spiking randomness from data

The definition of randomness in Eq. (9) depends on the differential
entropy. The problem of differential entropy from data estimation is
well exploited in literature, see e.g. Beirlant et al. (1997) and
Tsybakov & van der Meulen (1994) for an overview of available
techniques. It is preferable to avoid estimations based on data binning
(histograms), because discretization affects the results greatly. The
support of ISI distributions is always positive, which makes the
application of kernel estimators problematic.

If the neuronal firing is described by the renewal process, our
experience shows that the simple and well-researched Vasicek’s
estimator (Vasicek, 1976) gives good results on a wide range of data
(Ebrahimi et al., 1992; Esteban et al., 2001; Miller & Fisher, 2003).
The Vasicek’s estimator is based on the empirical cumulative
distribution function. Given the n ranked ISIs {t[1] < t[2] < … <
t[n]}, the Vasicek’s estimator ĥ of differential entropy reads

ĥ ¼ 1

n

Xn

i¼1
ln

n
2m
ðt½iþm� � t½i�m�Þ

h i
þ ubias: ðB1Þ

The positive integer parameter m < n ⁄ 2 is set prior to computation,
and the two following conditions hold: t[i–m] ¼ t[1] for (i ) m) < 1and
x[i + m] ¼ x[n] for (i + m) > n. The particular values of m correspond-
ing to various values of n were determined by Ebrahimi et al. (1992).
The bias-correcting factor is

ubias ¼ ln
2m
n
� 1� 2m

n

� �
Wð2mÞ þWðnþ 1Þ � 2

n

Xm

i¼1
Wðiþ m� 1Þ;

ðB2Þ

Where WðzÞ ¼ d
dz lnCðzÞis the digamma function (Abramowitz &

Stegun, 1965). Our experience with simulated data shows that for
sample sizes n � 500 the error of estimation is relatively small
(Kostal & Lansky, 2006b), the positive bias with respect to true values
is not important for small samples (Ebrahimi et al., 1992; Esteban
et al., 2001), and the value of m may be approximated by an integer
closest to vn. The disadvantage of Vasicek’s estimator is that it cannot
be easily extended to non-renewal processes.

Non-renewal sustained neuronal activity is described by multidi-
mensional joint probability distributions, and so more elaborate
techniques have to be employed in differential entropy estimation.
One popular approach (Victor, 2002; Kraskov et al., 2004) is realized
by the Kozachenko–Leonenko binless estimator (Kozachenko &
Leonenko, 1987), which is asymptotically unbiased and consistent,
but the dimension of the problem must be known beforehand, and the
underlying probability density function must be continuous. If the
spiking is described by a d-dimensional probability density function,
each vector (tj, tj+1, …, tj–1+d) of consequent ISIs represents a point in
a d-dimensional space. If the observed spike train consists of N ISIs,
then the total n ¼ N ) d + 1 of such points may be obtained (if the
firing is stationary). The estimate ĥ then reads

ĥ ¼ d
n

Xn

i¼1
ln ki þ ln

ðn� 1Þ
ffiffiffiffiffi
pd
p

Cðd=2þ 1Þ

" #
þ c; ðB3Þ

where ki is the Euclidean distance of the i-th point to its nearest
neighbour, c ¼ �

R1
0 e�z ln zdz � 0:5772is the Euler–Mascheroni

constant, and G(z) is the gamma function (Abramowitz & Stegun,
1965). It must be stated, however, that ‘reasonable’ estimation of
differential entropy of non-renewal spiking activity usually requires
large amounts of data, often not available in experimental
recordings.

Appendix C: simulated spike trains

In this section we describe models of neuronal activity that were used
to create Fig. 1 and that are not discussed in the main text. We
employed the standard transformation method (Devroye, 1986) for
generating the ISIs from known probability density functions.
• ad c. The spike train contains ISIs of two possible lengths, h1 and

h2, distributed according to the Bernoulli distribution

ProbðT ¼ h1Þ ¼ 1� ProbðT ¼ h2Þ ¼ p; ðC1Þ

where p 2 [0, 1]. It holds

EðT Þ ¼ ph1 þ ð1� pÞh2; ðC2Þ

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞp

p
jh1 � h2j

ðh1 � h2Þp þ h2
: ðC3Þ

From E(T) ¼ 1 s, CV ¼ 1, and by choosing p ¼ 1 ⁄ 10 follows
h1 ¼ 4 s and h2 ¼ 2 ⁄ 3 s, which was used to generate the shown spike
train.
• ad d. The probability density function of the Pareto distribution is

f ðtÞ ¼ 0; t 2 ð0; bÞ
abat�a�1; t 2 ½b;1Þ

�
ðC4Þ

with parameters a > 2 and b > 0. The following relations hold:
CV ¼ 1 ⁄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2a
p

and E(T) ¼ ab ⁄ (a – 1).
• ad e. The first-order Markov chain was generated by the Downton
bivariate exponential model (Downton, 1970)

f ðt1; t2Þ ¼
a2

1� .
exp

aðt1 þ t2Þ
.� 1

� �
I0

2a
ffiffiffiffiffiffiffiffiffi
t1t2.
p

1� .

� �
; ðC5Þ

Where q 2 (0, 1) is the first-order serial correlation, a ¼ 1 ⁄ E(T) and
Im(z) is the modified Bessel function of the first kind (Abramowitz &
Stegun, 1965).
• ad f. Probability density function of the gamma distribution,
parameterized by l¼ E(T)and CV is

f ðtÞ ¼ 1

C2
Vl

� �1=C2
V

Cð1=C2
VÞt1=C2

V�1 exp � t
C2
Vl

� �
; ðC6Þ

where G(z) is the gamma function.
• ad h. Probability density function of the inverse Gaussian
distribution (Chhikara & Folks, 1989), parameterized by
l¼ E(T)and CV is

f ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2pC2

Vt3

r
exp � 1

2C2
Vl
ðt � lÞ2

t

" #
: ðC7Þ
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