
Biol Cybern (2008) 99:253–262
DOI 10.1007/s00422-008-0237-x

REVIEW

A review of the methods for signal estimation in stochastic diffusion
leaky integrate-and-fire neuronal models

Petr Lansky · Susanne Ditlevsen

Received: 29 January 2008 / Accepted: 24 April 2008 / Published online: 22 May 2008
© Springer-Verlag 2008

Abstract Parameters in diffusion neuronal models are
divided into two groups; intrinsic and input parameters.
Intrinsic parameters are related to the properties of the neu-
ronal membrane and are assumed to be known throughout
the paper. Input parameters characterize processes gener-
ated outside the neuron and methods for their estimation
are reviewed here. Two examples of the diffusion neuronal
model, which are based on the integrate-and-fire concept,
are investigated—the Ornstein–Uhlenbeck model as the most
common one and the Feller model as an illustration of state-
dependent behavior in modeling the neuronal input. Two
types of experimental data are assumed—intracellular
describing the membrane trajectories and extracellular result-
ing in knowledge of the interspike intervals. The literature
on estimation from the trajectories of the diffusion process
is extensive and thus the stress in this review is set on the
inference made from the interspike intervals.
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1 Introduction

The integrate-and-fire neuronal models are probably the most
common mathematical representations of a single neuron
(Brunel and van Rossum 2008). These models have many
variants and can even encompass other models which are not
obviously of this type. Recently Burkitt (2006) reviewed the
integrate-and-fire neuronal models and mathematical tech-
niques to analyze them. All relevant references related to the
history and treatment of the models can be found there. Our
attention is restricted to a subclass of the integrate-and-fire
models characterized by the terms stochastic, diffusion and
leaky.

The interspike intervals (ISIs) recorded from different neu-
ronal structures and under different experimental settings are
very variable even under stable conditions. It suggests pres-
ence of stochastic variation in neuronal activity. Taking into
account that the action potentials (spikes) from surround-
ing neurons are the input to the one under study, we may
assume that there is a random component, generally denoted
as noise, contained in the incoming signal. The other source
of noise can be the neuron itself where a random force, due
to the spontaneous opening and closing of ionic channels,
acts and is added to the signal. From a mathematical point of
view, an introduction of stochasticity into the description of
the neuron represents an increase of model complexity. On
the other hand, the random component of the neuronal activ-
ity can be considered a part of the signal transferred within
neurons. This seems plausible since coding of information
by randomness of ISIs is one possible variant of neuronal
coding (Kostal et al. 2007a,b).

The stochastic integrate-and-fire neuronal models describe
the membrane potential as a continuous-time stochastic
process. Stochastic diffusion processes play a specific role
in the theory of stochastic processes for their mathematical
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tractability and simultaneous applicability in many differ-
ent fields. They can be classified as continuous-time Markov
processes with continuous trajectories, and since the intro-
duction of the concept of integrate-and-fire neuronal model
(Gerstein and Mandelbrot 1964; Johannesma 1968), many
arguments have been given why this treatment of stochastic
integrate-and-fire models is appropriate.

There are many variants of integrate-and-fire neuronal
models (Burkitt 2006) and other generalizations were
recently introduced aiming to improve flexibility of the model
and its predictive power (Jolivet et al. 2006; Clopath et al.
2007). Leakage of the neuronal membrane, meaning that the
current flows through the membrane due to its passive prop-
erties, was one of the first specifications of the integrate-and-
fire neuron model. It is a crucial property and is inherent in
practically all variants of the model.

The most common model of the leaky integrate-and-fire
(LIF) type is the deterministic model, also known as the
Lapicque model or RC-circuit (Tuckwell 1988),

dx(t)

dt
= − x(t)− xr

τ
+ µ(t), x(0) = x0, (1)

where x(t) represents the cell membrane voltage, x0 is the
initial voltage after spike generation, µ(t) is an input signal,
and RC = τ > 0 is a time constant governing the sponta-
neous decay of the voltage back to a resting level xr . Here
R is the membrane resistance and C is the capacitance. The
solution of Eq. (1) includes an integral of the input signalµ(t)
with exponentially decaying effect, which is the reason for
calling the model by the name “leaky-integrator”. The signal
µ(t) appearing in (1) is a representation of an external signal
transformed into an internal generator potential, a quantity
having dimension of voltage per time. Due to the simplicity
of model (1), the action potential generation is not an inherent
part of the model like in more complex ones and the firing
threshold S has to be imposed, where S > x0. The model
neuron fires whenever the threshold is reached and then the
voltage x(t) is reset to its initial value. The reset following
the threshold crossing introduces a strong nonlinearity into
the model. For a constant input µ(t) = µ > S/τ , the neu-
ron fires regularly, whereas for µ ≤ S/τ , the model never
reaches the threshold S and the neuron remains silent. This
defines sub- and suprathreshold signal in model (1). Despite
it is an abstraction, the parameters S, xr , x0 and τ character-
ize the neuronal membrane, and µ(t) characterizes the input
signal.

Assume there is a random component contained in the
incoming signal. A phenomenological way to introduce sto-
chasticity into the deterministic leaky-integrator model is by
introducing additional noise terms in (1),

dXt =
(

− Xt − xr

τ
+ µ(t)

)
dt + σ(Xt , t) dFt

+a(Xt , t) dP+ + i(Xt , t) dP−, X0 = x0, (2)

where we use the notation X (t) = Xt , Ft represents a Wiener
process with generalized derivative a δ-correlated Gaussian
white noise with zero mean, and P+ and P− represent
Poisson processes corresponding to excitatory and inhibitory
synaptic inputs, respectively. The functionsσ(·), a(·) and i(·)
scale the noise terms. Similar to the deterministic model (1),
also in the stochastic integrate-and-fire models, the firing is
not an intrinsic part of the model and the firing threshold has
to be imposed. The stochastic process X describing the mem-
brane depolarization makes random excursions to the firing
threshold S. When the threshold is reached, a firing event
occurs and the membrane depolarization is reset. The ISIs
are identified with the first passage time T of X across S. In
numerous papers on stochastic LIF models, the properties of
the random variable T are studied and compared by various
methods with properties of ISIs.

Two interconnected problems, generally denoted as para-
meter identification, can be related to Eqs. (1) or (2). The
first problem is identification of the model parameters (S, x0,

xr , τ ). This can be done by indirect electrophysiological
methods, by deducing from the properties of other neurons,
or from measuring the membrane potential fluctuations. If
these parameters are known, one can check how well the
model predicts spiking activity under the condition of an
identical input with a real neuron (Jolivet et al. 2006, 2008;
Clopath et al. 2007). The second problem, reviewed in this
paper, is how to identify the signals impinging upon the neu-
ron under the condition of stationarity and thus search for
µ = µ(t) and a constant parameter σ scaling the amplitude
of the noise σ(t). Knowledge of these two parameters can be
used either to deduce an unknown signal arriving to a neu-
ron, or to check if an artifically delivered signal can be read
correctly.

To estimate the input signal, either data on the time-course
of the membrane depolarization or ISIs have to be available.
Obviously, from the trajectory of the membrane depolariza-
tion the length of the ISI can be deduced but not vice versa,
and thus the former data contain more information. The lit-
erature on parameter estimation in diffusion models based
on complete or partial knowledge of the trajectory is rather
extensive (Prakasa Rao 1999; Kutoyants 2003), irrespective
of the application field. On the other hand, we have failed
to find any other application in which the parameters of the
diffusion process are estimated from the knowledge of the
first-passage times and the results in the neuronal context are
quite limited. Therefore, we present only basic results on the
estimation from intracellular recordings and concentrate on
the problems arising in the procedures based on the ISIs. The
properties of the models which are relevant for the estimation
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procedures of the parameters are summarized in Sect. 2, and
in Sect. 3 the methods are presented. The methods for estima-
tion from ISI data have been widely verified and compared,
both through simulation of artificial data and on experimen-
tal neuronal data in Ditlevsen and Lansky (2005, 2006, 2007,
2008) and Ditlevsen and Ditlevsen (2008).

2 Model

Stochastic diffusion In diffusion neuronal models, the
changes in the membrane depolarization between two con-
secutive neuronal firings are represented by a scalar diffusion
process X = {Xt ; t ≥ 0} indexed by the time t , and given
by the Itô-type stochastic differential equation

dXt = ν(Xt , t) dt + σ(Xt , t) dWt , X0 = x0, (3)

where W = {Wt ; t ≥ 0} is a standard Wiener process and
ν(·) and σ 2(·) are real-valued functions (called the drift and
the infinitesimal variance) of their arguments satisfying cer-
tain regularity conditions to ensure the existence of a unique
solution to (3). The drift coefficient reflects the local aver-
age rate of displacement and local variability is represented
by the infinitesimal variance. We will write f (y, t |x) for the
transition density function, i.e., the probability density func-
tion for the process X to be at y after time interval t given
that the process was initially at x at time t = 0. For the theory
of diffusion processes, see, e.g., Karlin and Taylor (1981).

First-passage-time is Interspike interval An action potential
is produced when the membrane voltage X exceeds a voltage
threshold for the first time, for simplicity assumed to be equal
to a constant S > x0. Formally, the ISI is identified with the
first-passage time T of the threshold,

T = inf{t > 0 : Xt ≥ S}, (4)

with probability density function g(t |S, x0). It follows from
the model assumptions that for a time-homogeneous process
X containing either a Poissonian or white noise only, the
ISIs form a renewal process and the initial time following a
spike can always be identified with zero. In Fig. 1 the random
variable T is illustrated.

Renewal equation The renewal equation, also called Fortet’s
equation (Durbin 1971; Fortet 1943) relates the first-passage
time density to the transition density f (·) for x ≥ S,

f (x, t | x0) =
t∫

0

f (x, t − u | S)g(u | x0, S) du. (5)

time

X
(t

)

T T

S

x0

Fig. 1 Two realizations of the random variable T corresponding to two
sample paths of Xt (membrane potential against time, arbitrary units)

We write F(x, t − s | xs) = ∫ x f (v, t − s | xs) dv for the
corresponding transition distribution function. For details see
Ricciardi (1977).

First-passage time moments Assuming that the process X
has an invariant distribution π(x) = limt→∞ f (x, t |·), such
that if X0 ∼ π , then X is a stationary process with Xt ∼ π

for all t , then the following recursion formula for the first-
passage time moments can be obtained (Siegert 1951):

E[T n] = n

S∫
x0

2

σ 2(z)π(z)

⎛
⎝

z∫
−∞

π(y)E[T n−1] dy

⎞
⎠ dz. (6)

In particular, the mean is given by

E[T ] =
S∫

x0

2

σ 2(z)π(z)

⎛
⎝

z∫
−∞

π(y) dy

⎞
⎠ dz. (7)

2.1 Ornstein–Uhlenbeck

The most common diffusion model proposed for nerve mem-
brane behavior is the Ornstein–Uhlenbeck (OU) process. It
is defined by Eq. (3) with infinitesimal moments

ν(x) = − x

τ
+ µ, σ(x) = σ > 0, (8)

where τ > 0. Compared to Eqs. (1) or (2), it is seen that the
resting potential is transformed to zero and the firing thresh-
old and the reset value are relative to the resting level. This
transformation is applied throughout the rest of the paper.
The parameters appearing in (4) and (8) can be divided into
two groups: parameters characterizing the input,µ andσ , and
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intrinsic parameters, τ, x0 and S, which describe the neuron,
irrespective of the incoming signal (Tuckwell and Richter
1978). Note that compared with the deterministic LIF given
by Eq. (1), an additional input parameter σ appears in Eq. (8).
For a fixed time t , Xt given by (8) is a Gaussian random vari-
able with mean

E[Xt ] = x0e−t/τ + µτ(1 − e−t/τ ), (9)

which is the solution of the deterministic model (1) for a
constant input µ. The variance of X is

Var[Xt ] = σ 2τ

2
(1 − e−2t/τ ). (10)

Analogous to the deterministic LIF described in the Intro-
duction, two distinct firing regimes, usually called sub- and
suprathreshold, can be established for the OU model. In
suprathreshold regime, the asymptotic mean depolarization
µτ given by (9) is far above the firing threshold S and the ISIs
are relatively regular (deterministic firing—which means that
the neuron is active also in the absence of noise). In the
subthreshold regime, µτ � S and firing is caused only by
random fluctuations of the depolarization (stochastic or
Poissonian firing). The term “Poissonian firing” indicates that
when the threshold is far above the steady-state depolariza-
tion µτ (relative to σ ), the firing achieves characteristics of
a Poisson point process (Nobile et al. 1985; Wan and Tuck-
well 1982). For our purposes, let us denote the third regime,
when µτ ≈ S, as the threshold regime. Division of the fir-
ing regimes in three parts was already proposed in Wan and
Tuckwell (1982).

The properties of the random variable T including its
probability density function g(t | x0, S) = g(t) have been
extensively studied (Ricciardi and Sacerdote 1979; Nobile
et al. 1985; Ricciardi and Sato 1988; Ricciardi et al. 1999;
Alili et al. 2005; Aalen and Gjessing 2004; Ditlevsen 2007).
The distribution g(t) is only known for the specific situa-
tion µτ = S, where the first-passage time density of the
OU process across the boundary S is (Bulsara et al. 1996;
Ricciardi 1977):

g(t) = 2S exp(2t/τ)√
πτ 3σ 2(exp(2t/τ)− 1)

3
2

× exp

{
− S2

σ 2τ(exp(2t/τ)− 1)

}
. (11)

Note that the signal µ does not appear in this formula due to
the threshold condition.

When µτ 	= S approximation techniques have been
devised (Ricciardi et al. 1999), of which many are based
on the renewal equation (5). Also the Laplace transform of
T has been used to find characteristics of the first-passage
time distribution g(t). A representation for k < 0 is given by

E
[
ekT/τ

]
=

exp
(
(µτ)2

2τσ 2

)
Dk

(√
2µτ√
τσ

)

exp
(
(µτ−S)2

2τσ 2

)
Dk

(√
2(µτ−S)√
τσ

)

=
Hk

(
µτ√
τσ

)

Hk

(
(µτ−S)√

τσ

) , (12)

where Dk(·) and Hk(·) are parabolic cylinder and Hermite
functions, respectively (Borodin and Salminen 2002;
Lebedev 1972). Let λ(k) be the largest root of the kth Hermite
polynomial. By defining suitable martingales and applying
Doob’s Optional-Stopping Theorem, Eq. (12) can be
extended to k > 0 in the parameter subspace (µ, σ ) =
θ ∈ Θ(k) = {θ |µτ > S,

√
τσ 2 < (µτ − S)/λ(k)} to

ensure that E
[
ekT/τ

]
< ∞ (Ditlevsen 2007). Thus, we have

closed expressions for E[ekT/τ ], k = 1, 2, in suprathreshold
regime and with certain restrictions on the size of σ ,

E[eT/τ ] = µτ

µτ − S
, (13)

E[e2T/τ ] = 2(µτ)2 − τσ 2

2(µτ − S)2 − τσ 2 , (14)

if σ 2 < 2(µτ − S)2/τ (Ditlevsen and Lansky 2005). The
condition means that the asymptotic standard deviation of X
is smaller than the distance between the threshold and the
asymptotic mean of X , as follows from (9) and (10).

In Ricciardi and Sato (1988) moments of T were given,
the first two being

E[T ] = τ (φ1(η)− φ1(ξ)), (15)

E[T 2] = τ 2
(

2φ2
1(η)− φ2(η)− 2φ1(η)φ1(ξ)+ φ2(ξ)

)
,

(16)

where

ξ = −µτ
√

2/σ 2τ , η = (S − µτ)

√
2/σ 2τ (17)

and

φ1(z) = 1

2

∞∑
n=1

(
√

2z)n

n! Γ
(n

2

)
, (18)

φ2(z) = φ1(z)(ψ(n/2)− ψ(1)), (19)

and Γ (·) andψ(·) denote the gamma and the digamma func-
tion, respectively.

It is sometimes convenient to reformulate model (4) and
(8) to the equivalent dimensionless form

dYs = (−Ys + α) ds + β dWs, Y0 = 0, (20)
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where

s = t

τ
, Ys = Xt − x0

S − x0
, Ws = Wt√

τ
,

α = µτ

S − x0
, β = σ

√
τ

S − x0
, (21)

and T/τ = inf{s > 0 : Ys ≥ 1}. Note that the model now
operates on the timescale of s = t/τ , not on the original
measured timescale. All observed ISIs thus have to be trans-
formed by dividing by τ .

In strong suprathreshold regime, where α � 1 and β is
suitably small, i.e., the asymptotic mean of the membrane
depolarization is far above the threshold compared to the
asymptotic standard deviation, the time interval to cross the
threshold will be nearly regular, and the distribution of T
can be approximated by a Normal distribution, with mean
and variance

E[T ] ≈ log

(
α

α − 1

)
− β2

4

(
2α − 1

α2
(
(α − 1)2 − β2/2

)
)
,

(22)

Var[T ] ≈ β2

2

(
2α − 1

α2
(
(α − 1)2 − β2/2

)
)
. (23)

These moment approximations are valid if α > 1 and β <√
2(α−1) (Ditlevsen and Lansky 2005). As mentioned, Pois-

sonian behavior is induced in strong subthreshold regime,
α � 1, and the first-passage time density function can be
approximated by an exponential distribution with mean

E[T ] ≈ S − µτ

σ
√
πτ

exp

(
(S − µτ)2

σ 2τ

)
, (24)

(Nobile et al. 1985; Wan and Tuckwell 1982). In the region
α ∼ 1 we may approximate the distribution of T by the
known analytical result Eq. (11), valid for α = 1. Thus, the
behavior of the model is transparent in the entire parameter
space.

2.2 Models with state-dependent infinitesimal variance

The change of the membrane depolarization by a synaptic
input is independent of the actual value of X in the OU
model, which results in an unrestricted state-space. In reality,
the depolarization of the membrane caused by an excitatory
postsynaptic potential decreases with decreasing distance of
the membrane potential from the excitatory reversal poten-
tial, VE . In the same manner, the hyper-polarization caused
by inhibitory postsynaptic potential is smaller if the mem-
brane potential is closer to the inhibitory reversal potential,
VI . A modified Eq. (2) with Poissonian input only is known
as Stein’s model with reversal potentials and it is given by
the stochastic differential equation

dX∗
t = − X∗

t

τ ∗ dt + a(VE − X∗
t ) dP+

+ i(X∗
t − VI ) dP−, X∗

0 = 0, (25)

where VI < 0 < VE are constants, and constants −1 <

i < 0 < a < 1 reflect the fractional change of the mem-
brane potential in response to an input pulse. In model (25)
the jumps caused by the input are state-dependent and their
magnitudes decrease linearly as X∗ approaches the bound-
aries VI or VE . Hence, the process remains confined within
these two boundaries.

Mathematical treatment of model (25) is complicated and
therefore the diffusion variants have been examined (Han-
son and Tuckwell 1983). There is a whole class of diffusion
processes which can substitute model (25). All of them are
characterized by the infinitesimal mean

ν(x) = − x

τ ∗ + µ1(VE − x)+ µ2(x − VI )

= −
(

1

τ ∗ + µ1 − µ2

)
x + µ1VE − µ2VI (26)

but with different infinitesimal variances (Lansky and Lan-
ska 1987) (where µ2 < 0 < µ1 are constants). Here we
consider one of the variants of the diffusion model with the
infinitesimal variance

σ(x) = σ
√
(x − VI ), (27)

which stresses the relative importance of the inhibitory rever-
sal potential.

The effect of the inclusion of reversal potentials into the
diffusion models is apparent when comparing (26) or (27)
with (8). Figure 2 shows simulations of Xt in absence of a
threshold for the OU and the Feller process. For compari-
son, the same realization of the Wiener process is used in the
two simulations. The OU process is symmetrically distrib-
uted around the asymptotic depolarization, whereas the Feller
process is seen to stay above the inhibitory reversal poten-
tial and to reach larger values. From a qualitative point of
view the infinitesimal variance in the Feller process becomes
state-dependent, while the drift preserves its linearity. How-
ever, the interpretation of the drift term is entirely different.
There is still the constant “leakage term”, but now modified
by the input parameters µ1 − µ2.

By the linear transformation X = X∗ − VI the standard
form of the Feller process is obtained (Feller 1951),

dXt =
(

− Xt

τ
+ µ

)
dt + σ

√
Xt dWt , X0 = −VI , (28)

where τ = τ ∗/(1+ τ ∗(µ1 −µ2)) and µ = µ1VE − (1/τ ∗ +
µ1)VI . Note that τ ∗ can be compared to the intrinsic time
constant in (8), and that τ < τ ∗. In contrast to the OU model,
the leakage cannot be considered an intrinsic parameter but
depends on the input, and should thus be estimated. The ISI is
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VI

time

Fig. 2 Realizations of Xt (membrane potential against time, arbitrary
units) for the OU process (gray) and the Feller process (black) in absence
of a threshold. For comparison, the same realization of a Wiener process
was used in the two simulations. The dashed lines are the asymptotic
depolarizationµτ , which is equal for the two simulations, and the rever-
sal potential VI for the Feller process, respectively

now identified with the first-passage time T of the threshold
S − VI by the process X . Note by comparison of Eqs. (8)
and (28) that σ in (28) has not only different units, but also a
different interpretation. Whereas in (8) it is the amplitude of
the noise, in (28) it is only a proportion of the noise. Model
(28) is called the Cox–Ingersoll–Ross process in the financial
literature (Cox et al. 1985).

Sometimes it is convenient to reformulate model (28) to
the equivalent dimensionless form

dYs = (−Ys + α) ds + β√
α

√
Ys dWs, Y0 = −VI

S − VI
,

(29)

where

s = t

τ
, Ys = Xt

S − VI
, Ws = Wt√

τ
,

α = µτ

S − VI
, β = στ

√
µ

S − VI
, (30)

and T/τ = inf{s > 0 : Ys ≥ 1}. It is parameterized such that
(20) and (29) have the same asymptotic mean and variance
if α and β have the same values in the two models.

If 2(α/β)2 ≥ 1, or equivalently if 2µ/σ 2 ≥ 1, the process
stays positive, i.e., in Feller’s terminology the boundary at
zero is an entrance boundary defined as a boundary from
which the process can start but not return to (Karlin and
Taylor 1981, p. 234). Feller has shown that the transition
probability distribution is a non-central χ2-distribution with
ν = 4(α/β)2 degrees of freedom and with conditional mean

E(Ys) = α + (y0 − α)e−s (31)

and variance

Var(Ys) = β2

2
(1 − e−s)

[
1 +

(
2y0

α
− 1

)
e−s

]
. (32)

The distribution is Fχ2 [ a(s)y, ν, δ(s, y0)], where a(s) =
4α/(β2(1−e−s)) and δ(s, y0) = (4αy0/β

2)(e−s/(1−e−s))

is the non-centrality parameter, see, e.g., Cox et al. (1985). It
is easily seen that since δ → 0 when s → ∞, the asymptotic
distribution is a gamma distribution.

In Ditlevsen and Lansky (2006) it is shown that for the
model given by Eqs. (26) and (27)

E[eT/τ ] = µτ − x0

µτ − S
(33)

if µτ > S, and

E[e2T/τ ] = (µτ − x0)
2 + τσ 2(µτ/2 − x0)

(µτ − S)2 + τσ 2(µτ/2 − S)
(34)

if τσ 2(
√

1 + 2µ/σ 2 − 1)/2 < (µτ − S). Expressions for
the mean and variance of T were calculated in Giorno et al.
(1988) and Lansky et al. (1995):

E[T ] = S − x0

µ
+

∞∑
n=1

τ
(

Sn+1 − xn+1
0

)
(n + 1)

∏n
i=0(µτ + iτσ 2/2)

,

(35)

Var[T ] = 2E[T ]S
µ

+
∞∑

n=1

2τ E[T ] Sn+1

(n + 1)
∏n

i=1(µτ + iτσ 2/2)

−2τ 2
∞∑

n=0

(Sn+1 − xn+1
0 )

(∑n
j=1

1
j

)
(n + 1)

∏n
i=0(µτ + iτσ 2/2)

(36)

in the case 2µ ≥ σ 2. Define k = 2µ/σ 2, then the assumption
that 0 is entrance boundary implies k ≥ 1. The moments were
approximated in Ditlevsen and Lansky (2006)

E[T ] ≈ S − x0

µ
− τ

k
− S

(k + 1)µ

+ τ
(µτ

kS

)k
exp

{
kS

µτ

}
Γ

(
kS

µτ
; k

)
, (37)

Var[T ] ≈ 2E[T ]
(

E[T ] + x0

µ

)
+ τ S

µ

− τ 2
(µτ

kS

)k−1
exp

{
kS

µτ

}
Γ

(
kS

µτ
; k

)
, (38)

where Γ (x; p) = ∫ x
0 t p−1e−t dt is the incomplete Gamma

function.

3 Parameter estimation

3.1 Intracellular recordings

Estimation when discrete observations of the trajectory of X
given by (3) are available, can be done by the maximum likeli-
hood method if the transition density is known and tractable.
Assume X observed at equidistant time points i∆, where
i = 0, 1, . . . , n, for some ∆ > 0. Let Xi be the observation
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of X at time i∆. Using the Markov property of X yields the
likelihood function of the unknown parameter vector θ

L(θ) =
n∏

i=1

f (Xi ,∆|Xi−1; θ). (39)

The derivative of the log-likelihood yields the score func-
tions, providing the maximum likelihood estimators.

3.1.1 Ornstein–Uhlenbeck model

The maximum likelihood estimators of µ and σ in (8) are
given by the equations

µ̂ =
∑n

i=1(Xi − Xi−1e−∆/τ )
n(1 − e−∆/τ )τ

, (40)

σ̂ 2 = 2
∑n

i=1(Xi − µ̂τ − (Xi−1 − µ̂τ )e−∆/τ )2

n(1 − e−2∆/τ )τ
, (41)

see, e.g., Ditlevsen and Lansky (2008). In the case of high-
frequency data, i.e., when ∆ is small compared to τ , the
likelihood equations can be simplified using that e−∆/τ ≈
1 −∆/τ ,

µ̂ ≈ 1

∆n

n∑
i=1

(Xi − Xi−1(1 −∆/τ))

= (Xn − X0)

∆n
+ 1

τn

n∑
i=1

Xi−1, (42)

σ̂ 2 ≈ 1

∆n

n∑
i=1

(
Xi − Xi−1(1 −∆/τ)−∆µ̂

)2
. (43)

This is relevant in intracellular recordings, where∆ typically
is on the order of 0.1 ms and τ is on the order of 10 ms.

In the neuronal context, Lansky et al. (2006) used Eqs. (42)
and (43) on intracellular data, where they also applied a
moment method, with the estimators

µ̃ =
∑n

i=1 Xi − nX0

τ
∑n

i=1(1 − e−i∆/τ )
, (44)

σ̃ 2 = 1

∆n

n∑
i=1

(Xi − Xi−1)
2. (45)

In Picchini et al. (2008) maximum likelihood estimation was
used on a slightly extended model, where an additional vari-
ance parameter was introduced to model slow fluctuations
in µ.

3.1.2 Feller model

Even if the transition density for this model is known, the
expression is too complicated to make maximum likelihood
estimation feasible. A useful alternative is martingale estima-
tion functions. In Bibby and Sørensen (1996) the following
estimators are proposed

µ̂ =
∑n

i=1(Xi − Xi−1e−∆/τ )
nτh∆

, (46)

σ̂ 2 = 2
∑n

i=1 X−1
i−1

(
Xi − µ̂τh∆ − Xi−1e−∆/τ )2

∑n
i=1 X−1

i−1τ
(
µ̂τh2

∆ + 2Xi−1h∆e−∆/τ ) , (47)

where h∆ = (1−e−∆/τ ). Note that the estimator forµ is the
same as in the OU case (40), since they have the same drift.
Be aware, though, that the biological interpretation of the
parameters is different in the two models. As before, when
∆ is small compared to τ , also these likelihood equations
can be simplified using that e−∆/τ ≈ 1 −∆/τ and ignoring
terms of order ∆2,

µ̂ ≈ (Xn − X0)

∆n
+ 1

τn

n∑
i=1

Xi−1, (48)

σ̂ 2 ≈ 1

n∆

n∑
i=1

X−1
i−1

(
Xi − Xi−1(1 −∆/τ)− µ̂∆

)2
. (49)

Note that the simplified estimator for σ is similar to the sim-
plified estimator in the OU model (43), except that each term
in the sum is weighted by dividing by the state of the process.

3.2 Extracellular recordings

When first-passage times are the only data available, assume
the ISI observations to be n independent realizations of the
random variable T : ti , i = 1, . . . , n. In this case the attempts
to solve the estimation problem are rare. When intracellu-
lar data are available, one can also estimate the intrinsic
parameters, whereas for extracellular recordings, the mem-
brane time constant is difficult to determine and has to be
assumed, or otherwise estimated from other types of data.
Some references of estimation of input parameters from ISI
data are Brillinger (1988), Inoue et al. (1995), Shinomoto
et al. (1999), Rauch et al. (2003), Paninski et al. (2004),
Ditlevsen and Lansky (2005, 2006, 2007, 2008) and Ditlevsen
and Ditlevsen (2008). All of these methods are based either
on the moments, exponential moments, or the Fortet’s equa-
tion. Recently Mullowney and Iyengar (2008) investigated
the maximum likelihood method based on numerical inver-
sion of the Laplace transform given by Eq. (12).

3.2.1 Ornstein–Uhlenbeck model

The Moment method In Inoue et al. (1995) it is proposed
to equate the sample moments m1 = 1

n

∑n
i=1 ti and m2 =

1
n

∑n
i=1 t2

i with expressions (15) and (16), thus yielding esti-
mates of η and ξ , which provides estimates of µ and σ
through (17). However, Eqs. (18) and (19) are only useful
for numerical calculations whenever z ≥ 0 and |z| is small.
Otherwise approximations of (18) and (19) must be used.
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These expressions have to be evaluated at z = ξ and z = η.
Note that ξ indicates the distance between reset value (here
set to zero) and asymptotic mean, and η indicates the distance
between the threshold and the asymptotic mean measured in
units of the asymptotic standard deviation of the membrane
potential. Here η < 0 corresponds to suprathreshold regime,
and when |η| is large the model is far away from threshold
regime. Thus, this method works best in moderate subthresh-
old regime. In Inoue et al. (1995) tables are provided of the
estimated parameters as functions of the sample first moment
m1/τ and the sample coefficient of variation (CV). The tables
cover sample values of 0.5 ≤ m1/τ ≤ 50 and 0.1 ≤ CV ≤ 2,
and are calculated for τ = 5 ms and S − x0 = 15 mV. It is
straightforward to transform the estimates from the tables to
relevant values of the intrinsic parameters.

When η is large, the distribution of T is approximately
symmetric, and Eqs. (22) and (23) can be used to estimate
the input parameters. When η is small, the distribution is
approximately exponential. Note that the exponential distri-
bution is a one parameter distribution, and thus we can only
estimate µ and σ up to the parameter function η given in
(17). Assuming an exponential distribution yields the maxi-
mum likelihood estimating equation (Ditlevsen and Lansky
2005), see also Eq. (24)

η̂√
2π

exp

(
η̂2

2

)
= 1

n

n∑
i=1

ti . (50)

The Exponential moment method Straightforward estima-
tors of E[eT/τ ] and E[e2T/τ ] are obtained from the empirical
moments:

Z1 = Ê[eT/τ ] = 1

n

n∑
i=1

eti /τ , (51)

Z2 = Ê[e2T/τ ] = 1

n

n∑
i=1

e2ti /τ . (52)

Moment estimators of the parameters, assuming that the data
are in the allowed parameter region, are then obtained from
Eqs. (33) and (34)

µ̂ = SZ1

τ(Z1 − 1)
, (53)

σ̂ 2 = 2S2(Z2 − Z2
1)

τ (Z2 − 1)(Z1 − 1)2
, (54)

(Ditlevsen and Lansky 2005). Note that the asymptotic depo-
larization will always be estimated to be suprathreshold
(µ̂τ > S), and that 0 < σ̂ 2 < 2(µ̂τ − S)2/τ .

The Integral Equation method In Ditlevsen and Ditlevsen
(2008) it is proposed to apply the integral equation (5) in the
following way. Define θ = (α, β), where α and β are given
by Eq. (21). The probability

P[Xt > S | X0 = x0] = 1 − Fθ (S, t |x0) (55)

can alternatively be calculated by the transition integral

P[Xt > S|X0 = x0] =
t∫

0

gθ (u)(1 − Fθ (S, t − u|S)) du.

(56)

For fixed θ , the probability expressed by the right-hand side
of (55) is a function of t and can be calculated directly using
that the transition density is normal with mean and variance
given by Eqs. (9) and (10). For the same value of θ , the
probability expressed by the right-hand side of (56) can be
estimated at t from the sample by the average

1

n

n∑
i=1

(1 − Fθ (S, t − ti |S)) 1{ti ≤t}, (57)

where 1A is the indicator function of the set A, since it is the
expected value of

1T ∈[0,t] (1 − Fθ (S, t − T |S)) (58)

with respect to the distribution of T . A statistical error mea-
sure is then defined as the maximum over t of the distance
between (55) and (57), suitably normalized by dividing by
ω(θ) = supt>0(1 − Fθ (S, t |x0)) so that (55) will vary
between 0 and 1 for all θ . To find the maximum over t a
grid on the positive real line has to be chosen. A good choice
for fixed θ is the set {t ∈ R+ : (1 − Fθ (S, t |x0))/ω(θ) =
i/N , i = 1, . . . , N − 1} for some reasonably large number
N . The estimator of θ is finally obtained by minimizing this
error function over the parameter space.

Let Φ(·) be the normal cumulative distribution function.
Combining Eq. (55) and Eqs. (9) and (10) and applying the
transformations (20) and (21) we obtain

P[Ys > 1 | Y0 = 0] = Φ

(
α(1 − e−s)− 1√
1 − e−2s β/

√
2

)
, (59)

which we estimate from the sample using (57) by

1

n

n∑
i=1

Φ

⎛
⎝α − 1

β/
√

2

√
1 − e−(s−si )

1 + e−(s−si )

⎞
⎠ 1{si ≤s}, (60)

where si = ti/τ . The normalizing constant is given byΦ[(α−
1)/(β/

√
2)] for α ≥ 0 and Φ[−√

1 − 2α/(β/
√

2)] for α <
0. Then α̂ and β̂ can be transformed to estimates of µ and σ
through (21).

3.3 Feller model

The Exponential moment method Using the empirical
moments (51) and (52) and Eqs. (33) and (34) we obtain
the estimators
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µ̂ = SZ1

τ(Z1 − 1)
, (61)

σ̂ 2 = 2S2(Z2 − Z2
1)

τ (Z2 − 1)(Z1 − 1)2
, (62)

assuming that the data are generated from the model operat-
ing in the allowed parameter region (Ditlevsen and Lansky
2006).

The Integral Equation method The integral equation (5)
becomes

1 − Fχ2 [a(s), ν, δ(s, y0)]

=
s∫

0

f (u)
(
1 − Fχ2 [a(s − u), ν, δ(s − u, 1)]) du, (63)

a(s) = 4α/(β2(1−e−s)), degrees of freedom ν = 4(α/β)2,
non-centrality parameter δ(s, y0) = (4αy0/β

2)[e−s

/(1−e−s)], and normalizing constant (1−Fχ2 [4α/β2, ν, 0]).

4 Discussion

We have reviewed a range of methods for the estimation
of parameters in stochastic diffusion neuronal models. The
methods based on knowledge of the trajectories (intracel-
lular recordings) are fairly developed and applied in many
other fields. They are ignored in neuroscience probably due
to the fact that when this type of data are available, then
the researchers aim at more complex, biophysical models
and do not expect to gain too much information from a sim-
ple model. Nevertheless, it might be interesting to judge the
implications of reducing a biophysical model not only the-
oretically, as already done, but also in experimental condi-
tions. References on estimation of input parameters from ISI
data in stochastic diffusion neuronal models are few, espe-
cially when compared to the number of papers devoted to
theoretical studies on these models. This is also in striking
contrast with the enormous number of experiments in which
ISIs have been collected. Here one can see wide possibilities
not only in comparing the data with the models, but first of
all in characterizing the data in a novel way. In addition to the
traditional description of ISIs by the firing frequency, spiking
variability and randomness, the methods offer quantification
of the neuronal input and of the noise imposed on it. This
can be an alternative when describing different regimens of
neuronal activity.

The methods reviewed in this article should only be
applied if the model assumptions are satisfied, i.e., the
membrane potential fluctuations are well described by
model (3) with specified drift and infinitesimal variance.
Often, especially during stimulation, the assumption of time
homogeneity of these two functions are violated and the

data are not stationary. We have not studied the effect of the
violation of the model assumptions on the quality of the esti-
mates and it remains an open question. On the other hand, it is
not required that the ISIs are collected continuously, as long
as there are good reasons to believe that the model is valid
in separate time windows. The data can then be taken from
several neurons or several repetitions of the activity from
the same neuron, analogous to Pawlas et al. (2008). Finally,
the problem of noise with a specific temporal structure can
appear, but that has not been solved up to now.
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