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Stochastic Models of Complex Systems

Hand-out 4
Poisson process, random sequential update, exponentials

Let X ∼ Poi(λ) be a Poisson random variable with intensity λ ≥ 0, i.e.

P(X = k) =
λk

k!
e−λ for all k ∈ N0 .

We have E(X) = λ, Var(X) = λ and the probability generating function of X is

GX(s) = E(sX) =
∞∑
k=0

sk
λk

k!
e−λ = eλ(s−1) .

Therefore, if Xi ∼ Poi(λi), i = 1, . . . , n are independent Poisson, then the sum is also Poisson,

S =
n∑
i=1

Xi ∼ Poi(λ1 + . . .+ λn) .

For α ∈ [0, 1], an α-thinning α ◦X of an integer random variable X ∈ N0 is defined as

α ◦X =
X∑
k=1

Zk with Zk ∼ Be(α) ∈ {0, 1} iid Bernoulli .

For Poisson variables we have

X ∼ Poi(λ), α ∈ [0, 1] ⇒ α ◦X ∼ Poi(αλ) .

This follows directly from computing the generating function

Gα◦X(s) = E
(
e
∑X

k=1 Zk
)

=
∞∑
n=0

λn

n!
e−λE(sZk)n = GX(GZ(s)) = eλα(s−1)

where we have used GZ(s) = 1− α+ αs = 1 + α(s− 1).

A Poisson process N = (Nt : t ≥ 0) ∼ PP (λ) with rate λ > 0 is a Markov chain with independent
stationary increments, and Nt ∼ Poi(λt) for all t ≥ 0. We know from lectures that the holding times
of the chain are independent Exp(λ) variables with mean 1/λ. The above properties for Poisson
random variables imply the following for processes:

• Adding Poisson processes.
Let N i ∼ PP (λi) be independent Poisson processes, and define their sum M = (Mt : t ≥ 0)
via Mt := N1

t + . . .+Nn
t for all t ≥ 0. Then M ∼ PP (λ1 + . . .+ λn) is a Poisson process.

• Thinning.
An α-thinning α ◦N of a Poisson process N ∼ PP (λ) is defined via (α ◦N)t = α ◦Nt for
all t ≥ 0, i.e. independently keep jumps with probability α. Then α ◦N ∼ PP (αλ) is again a
Poisson process.
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Random sequential update.

The properties of Poisson processes can be used to
set up an efficient sampling algorithm for stochas-
tic particle systems, often called random sequen-
tial update (an adaption of the ’Gillespie algo-
rithm’). Here we focus on a system with state
space S = {0, 1}Λ with lattice Λ and flip dynam-
ics, for example the contact process (see picture).

To resolve the full dynamics on site x ∈ Λ, the sampling rate should be rx = maxη∈S c(η, ηx)
determined by the fastest process. From the graphical construction the independent PPs on each site
add up, and the next possible event in the whole system happens at rate R =

∑
x∈Λ rx. By the

thinning property, the probability that it happens on site x is given by px = rx/R. This leads to the
following algorithm to construct a sample path for the particle system:
Pick η0 from the initial distribution and set t = 0. Then repeat iteratively:

(1) update the time counter by t+ = Exp(R),
(2) pick a site x with probability px,
(3) update (flip) site x with probability c(η, ηx)/rx.

For example, for the contact process on Λ = {1, . . . , L} with periodic boundary conditions and rates

c(η, ηx) = η(x) + λ
(
1− η(x)

)(
η(x− 1) + η(x+ 1)

)
we have rx = r = max{1, 2λ}, and thus px = 1/L choosing sites uniformly and R = rL.
For particle hopping like in exclusion processes an analogous construction works with the extra step
of choosing a target site between (2) and (3).

Simplified time counter.
Since R = O(L) is of order of the system size, the increments τi ∼ Exp(R) of the time counter are
of order 1/L. By the scaling property αExp(β) ∼ Exp(β/α) of exponential rv’s (check!), we have

τi ∼ Exp(R) ∼ 1
R
τ̃i with normalized τ̃i ∼ Exp(1) .

To simulate up to a time T = O(1) we therefore need of order RT = O(L) sampling increments τi.
The time counter of the simulation is then

t =
RT∑
i=1

τi =
1
R

RT∑
i=1

τ̃i = T +O(L−1/2)→ T as L→∞

by the law of large numbers. So if we just replace the increments τi by their mean 1/R, i.e. use

(1)’ update the time counter by t+ = 1/R

instead of the computationally more expensive (1), the error in t is of order L−1/2 by the central limit
theorem. This is often negligible for large L unless one is interested in very precise time statistics.

Further related properties of exponentials.
Let τ1, τ2, . . . be a sequence of independent Exp(λi) rv’s. Then

• min{τ1, . . . , τn} ∼ Exp(λ1 + . . .+ λn) (related to the sum of Poisson processes),

• If λi = λ are identical, and N ∼ Geo(p) is an independent geometric rv with mean 1/p, then

N∑
i=1

τi ∼ Exp(pλ) (related to the marginal waiting time on a site x) .

This can be proved by direct computation
(
P(min τi > t) =

∏
i P(τi > t)

)
and using generat-

ing/characteristic functions, respectively (try it!).


