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Stochastic models of complex systems

Problem sheet 1

1.1 Generators and eigenvalues
The analysis of linear dynamical systems shares a lot of the structure with Markov chains.

(a) Consider the harmonic oscillator φ : R→ R given by the equation

d2

dt2
φ(t) = φ̈(t) = −kφ with k > 0 .

Using the vector valued notation x(t) =
(φ(t)

φ̇(t)

)
write the system in the form

d

dt
x(t) = Mx(t) with M ∈ R2×2 .

Compute the eigenvalues λ1 and λ2 of M and find a solution of the form

φ(t) = a eλ1t + b eλ2t ,

fixing a, b ∈ R by the initial conditions φ(0) = 1, φ̇(0) = 0.

(b) Consider the Fibonacci numbers (Fn : n ∈ N0) defined by the recursion

Fn = Fn−1 + Fn−2 (n ≥ 2) with F0 = 0, F1 = 1 .

Write
(Fn+1

Fn

)
= M

(
Fn

Fn−1

)
as a discrete-time dynamical system with M ∈ R2×2.

Compute the eigenvalues of M and show that

Fn =
ηn − (1− η)n√

5
where η =

1 +
√

5
2

is the Golden ratio . [6]

(c)* Derive a recursion relation for the generating function G(s) =
∑

n Fns
n of the Fibonacci

numbers and solve it. Sketch G(s). For which s ≥ 0 is it well defined?

1.2 Branching processes
Let Z = (Zn : n ∈ N) be a branching process, defined recursively by

Z0 = 1 , Zn+1 = Xn
1 + . . .+Xn

Zn
for all n ≥ 0 ,

where the Xn
i ∈ N are iidrv’s denoting the offspring of individuum i in generation n.

(a) Consider a geometric offspring distribution Xn
i ∼ Geo(p), i.e.

pk = P(Xn
i = k) = p (1− p)k , p ∈ (0, 1) .

Compute the prob. generating functionG(s) =
∑

k pks
k as well as E(Xn

i ) and V ar(Xn
i ).

Sketch G(s) for (at least) three (wisely chosen) values of p and compute the probability
of extinction as a function of p.

(b) Consider a Poisson offspring distribution Xn
i ∼ Poi(λ), i.e.

pk = P(Xn
i = k) =

λk

k!
e−λ , λ > 0 .

Repeat the same analysis as in (a). [8]

www.warwick.ac.uk/~masgav/teaching/co905.html


(c)* For geometric offspring with p = 1/2, show that Gn(s) = n−(n−1)s
n+1−ns and compute

P(Zn = 0). If T is the (random) time of extinction, what is its distribution and its
expected value?

1.3 Toom’s model (A probabilistic cellular automaton)
Consider a fixed population of L individuals on a one-dimensional lattice Λ = {1, . . . , L}
with periodic boundary conditions. At time t = 0 each site i is occupied by a type X0(i) ∈
{1, . . . , N}, where N is the total number of types. Time is counted in discrete generations
t = 0, 1, . . ., and the lattice at odd times is shifted by 1/2. So in generation t+1 each individual
has two parents, from one of which it inherits the type. The type Xt+1(i+ 1/2) is determined
by Xt(i) and Xt(i+ 1) according to the following rules, for x 6= y ∈ {1, . . . , N}:

xx→ x , yy → y , xy, yx→
{
x , with prob. p̂xy
y , with prob. p̂yx = 1− p̂xy

.

For now we focus on p̂xy = 1/2 for all x, y, i.e. all types have the same ’fitness’.

(a) Simulate the dynamics of this process (e.g. using MATLAB) up to generation T in a
T × 2L matrix (with time growing upwards). Initialize the matrix with 0s, then fill the
even sites in the bottom row with initial condition X0(i) = i (i.e. a different type on each
site). Then occupy the odd sites in the next row according to the dynamics of the process
until all rows are filled.
Visualise the matrix using e.g. the MATLAB function ’image’.
(Make sure that the empty sites show up in white or a very light colour, you might have
to replace 0 by another (negative) value.)
You may use the suggested parameter values L = 100, T = 500 or any other that make
sense (it is a good idea to vary them to get a feeling for the model). Address the following
points, supported by appropriate visualisations:
- Explain the emerging patterns in a couple of sentences.
- What are the stationary distributions for the process Xt, i.e. what will happen when you
run the simulation long enough?
- How long will it roughly take to reach stationarity (depending on L)? Test your answer
using three values for L, e.g. 10, 50 and 100.

(b) Let Nt be the number of individuals of a given species at generation t. Show that (Nt :
t ∈ N) is actually a random walk, give the state space and the transition probabilities.
Is the walk irreducible? What are the stationary distributions?

Now consider only a few types, but with different fitnesses.

(c) Consider two types 1, 2 with p̂12 = q > 1/2, p̂21 = 1 − q (i.e. 1 is fitter than 2), with
initial condition X0(i) = 2 for all i except for a single site with type 1.
Produce a few visualisations (e.g. with L = 100, T = 100) for different values of q
including one where type 1 survives.
What are the stationary distributions for this asymmetric model?

(d)* Can you compute the survival probability of type 1?
(e) Consider three species with a ’cyclic’ interaction

p̂12 = p̂23 = p̂31 = q > 1/2 and p̂21 = p̂32 = p̂13 = 1− q < 1/2 .

Initialize the system with random types X0(i) ∼ U
(
{1, 2, 3}

)
for all i. Produce a couple

of visualisations (e.g. with L = 100, T = 500) for q = 0.6, 0.8 and 1, and explain the
patterns you see.

[14]


