Stochastic Models of Complex Systems

Problem sheet 3

3.1 The voter model $(\eta_t : t \ge 0)$ on a general lattice Λ with state space $S = \{0, 1\}^L$ is given by jump rates

$$c(\eta, \eta^x) = \sum_{y \in \Lambda} p_{x,y} \Big(\eta(x) \big(1 - \eta(y) \big) + \eta(y) \big(1 - \eta(x) \big) \Big)$$

with $p_{x,y} \ge 0$. In the following we consider the one-dimensional case $\Lambda_L = \{1, \ldots, L\}$ with periodic boundary conditions, where only nearest neighbours influence each other with rate 1.

- (a) Write down the generator $\mathcal{L}f$ acting on test functions $f: S \to \mathbb{R}$ for this process. Discuss whether the process is ergodic, and give all stationary distributions.
- (b) Let $N(\eta) = \sum_{x \in \Lambda} \eta_x$ be the number of individuals with opinion 1 and denote by $\rho(t) = \frac{1}{L} \mathbb{E}_{\pi(t)}(N(t))$ their average fraction at time t. Use that

$$\frac{d}{dt}\rho(t) = \frac{1}{L} \mathbb{E}_{\pi(t)}(\mathcal{L}N)$$

to show that $\rho(t) = \rho(0)$ for all $t \ge 0$.

Therefore, for an initial condition with ρ(0) = 1/2, what is the limit of π(t) as t → ∞?
(c) Let f_n(η) = δ_{n,N(η)} which is 1 if N(η) = n and 0 otherwise. Use the mean-field assumption

$$\mathbb{E}_{\pi(t)}\Big(\eta(x)\big(1-\eta(y)\big)\delta_{n,N(\eta)}\Big) = \frac{n}{L}\Big(1-\frac{n}{L}\Big)p_n(t) ,$$

and the same method as in (b) to derive the Master equation for $p_n(t) = \mathbb{P}(N(\eta_t) = n)$

$$\frac{d}{dt}p_n(t) = 2(n-1)\left(1 - \frac{n-1}{L}\right)p_{n-1}(t) + 2(n+1)\left(1 - \frac{n+1}{L}\right)p_{n+1}(t) - 4n\left(1 - \frac{n}{L}\right)p_n(t)$$

for n = 1, ..., L - 1. How does the equation look for n = 0, L?

(d) In the limit of large system size, consider the (random) fraction $X_t = N(\eta_t)/L \in [0, 1]$ of individuals with opinion 1. For the process $(X_t : t \ge 0)$ the density is then given by $f(t, x) = \lim_{L \to \infty} Lp_n(t)$. Under a proper time rescaling $s = t/L^{\alpha}$ (give the value of α) derive the Fokker-Planck equation

$$\frac{\partial}{\partial s}f(s,x) = 2\frac{\partial^2}{\partial x^2}\Big(x(1-x)f(s,x)\Big)$$

from the Master equation in the limit $L \to \infty$. Hint: Write $g(t, x \pm \frac{1}{L}) := \frac{n \pm 1}{L} (1 - \frac{n \pm 1}{L}) L p_{n \pm 1}(t)$ in the Master equation and do a Taylor expansion around x = n/L up to second order.

[10]

(e)* $(X_s : s \ge 0)$ as given in (d) is also called a Wright-Fisher diffusion. Show from the Fokker-Planck equation that $\mathbb{E}(X_s) = \mathbb{E}(X_0)$ for all s > 0 and discuss the limit of X_s as $s \to \infty$, similarly to (b). **3.2** Let $X = (X_n : n \in \mathbb{N})$ be a simple random walk on \mathbb{Z} with transition probabilities

$$p_{i,i+1} = 1/2 + \epsilon$$
, $p_{i,i-1} = 1/2 - \epsilon$ for all $i \in \mathbb{Z}$.

Rescale time $t = \Delta t n$ and derive the Fokker-Planck equation for an appropriate scaling of space and ϵ , analogous to the derivation of Section 2.1. What is the right scaling of the asymmetry $\epsilon(\Delta t)$ to get a limit with non-zero drift and diffusion?

- **3.3** (a) Let $\xi \sim N(0,1)$ be a Gaussian random variable with mean 0 and variance 1. Then consider the continuous time stochastic process $X_t = \sqrt{t}\xi$. Show that $X_t \sim N(0,t)$. Is X a Brownian motion? (Justify your answer.)
 - (b) Let B and B̃ be a two independent standard Brownian motions in ℝ and ρ ∈ [-1, 1] a constant. Then consider the process X_t = ρB_t + √1 − ρ² B̃_t. Show that X is again a standard Brownian motion. (Hint: use covariances)
 - (c)* Let B be a Brownian motion. What is the distribution of $B_s + B_t$ for $0 \le s \le t$?
 - (d)* Scaling property: Let B be a standard Brownian motion in \mathbb{R}^d . Show that for $\lambda > 0$, $B_{\lambda} = (\lambda^{-1/2} B_{\lambda t} : t \ge 0)$ is a standard Brownian motion in \mathbb{R}^d .
- **3.4** Consider the contact process $(\eta_t : t \ge 0)$ as defined in Q2.2, but now on the one-dimensional lattice $\Lambda_L = \{1, \ldots, L\}$ with connections only between nearest neighbours and periodic boundary conditions.

The critical value λ_c is defined such that the infection on the infinite lattice $\Lambda = \mathbb{Z}$ started from the fully infected lattice dies out for $\lambda < \lambda_c$, and survives for $\lambda > \lambda_c$. It is known numerically up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.

- (a) Simulate the process with initial condition η(x) = 1 for all x ∈ Λ and several values of λ ∈ [1,2]. Plot the number of infected individuals N_t = ∑_{x∈ΛL} η_t(x) as a function of time averaging over 100 realizations in a double-logarithmic plot. What is the expected behaviour of N_t depending on λ for times up to order L? For a given system size L, find the window of interest choosing λ = 1, 1.2, ..., 1.8, 2 and then use increments 0.01 for λ to find an estimate of the critical value λ_c(L) ∈ [1,2]. Repeat this for different lattice sizes, e.g. L = 64, 128, 256, 512, and plot your estimates of λ_c(L) against 1/L. Extrapolate to 1/L → 0 to get an estimate of λ_c = λ_c(∞). This approach is called **finite size scaling**, in order to correct for **finite size effects** which influence the critical value. [12]
- (b) Simulate the process for L = 128 with initial condition η(x) = 1 for all x ∈ Λ and several (at least 3) values of λ around λ_c(L). After an equilibration time τ_{equ} = L, sample from the distribution of the number of infections N_t = ∑_{x∈ΛL} η_t(x), i.e. over a time interval of length τ_{meas} = L count the fraction of time N_t spent in n for each n ∈ {0,..., L}. Average this measurement over 100 realizations and plot your estimate of the distribution for all values of λ in a single plot (it might be a good idea to use a log-scale on the y axis). Explain the form of the observed curves.
- (c)* Repeat the analysis of (a) on the fully connected graph Λ_L , and compare your estimate of λ_c with the mean-field prediction from Q2.2.