## Stochastic Models of Complex Systems

## Problem sheet 3

3.1 The voter model $\left(\eta_{t}: t \geq 0\right)$ on a general lattice $\Lambda$ with state space $S=\{0,1\}^{L}$ is given by jump rates

$$
c\left(\eta, \eta^{x}\right)=\sum_{y \in \Lambda} p_{x, y}(\eta(x)(1-\eta(y))+\eta(y)(1-\eta(x)))
$$

with $p_{x, y} \geq 0$. In the following we consider the one-dimensional case $\Lambda_{L}=\{1, \ldots, L\}$ with periodic boundary conditions, where only nearest neighbours influence each other with rate 1 .
(a) Write down the generator $\mathcal{L} f$ acting on test functions $f: S \rightarrow \mathbb{R}$ for this process. Discuss whether the process is ergodic, and give all stationary distributions.
(b) Let $N(\eta)=\sum_{x \in \Lambda} \eta_{x}$ be the number of individuals with opinion 1 and denote by $\rho(t)=$ $\frac{1}{L} \mathbb{E}_{\pi(t)}(N(t))$ their average fraction at time $t$. Use that

$$
\frac{d}{d t} \rho(t)=\frac{1}{L} \mathbb{E}_{\pi(t)}(\mathcal{L} N)
$$

to show that $\rho(t)=\rho(0)$ for all $t \geq 0$.
Therefore, for an initial condition with $\rho(0)=1 / 2$, what is the limit of $\pi(t)$ as $t \rightarrow \infty$ ?
(c) Let $f_{n}(\eta)=\delta_{n, N(\eta)}$ which is 1 if $N(\eta)=n$ and 0 otherwise. Use the mean-field assumption

$$
\mathbb{E}_{\pi(t)}\left(\eta(x)(1-\eta(y)) \delta_{n, N(\eta)}\right)=\frac{n}{L}\left(1-\frac{n}{L}\right) p_{n}(t),
$$

and the same method as in (b) to derive the Master equation for $p_{n}(t)=\mathbb{P}\left(N\left(\eta_{t}\right)=n\right)$
$\frac{d}{d t} p_{n}(t)=2(n-1)\left(1-\frac{n-1}{L}\right) p_{n-1}(t)+2(n+1)\left(1-\frac{n+1}{L}\right) p_{n+1}(t)-4 n\left(1-\frac{n}{L}\right) p_{n}(t)$
for $n=1, \ldots, L-1$. How does the equation look for $n=0, L$ ?
(d) In the limit of large system size, consider the (random) fraction $X_{t}=N\left(\eta_{t}\right) / L \in[0,1]$ of individuals with opinion 1 . For the process $\left(X_{t}: t \geq 0\right)$ the density is then given by $f(t, x)=\lim _{L \rightarrow \infty} L p_{n}(t)$. Under a proper time rescaling $s=t / L^{\alpha}$ (give the value of $\alpha$ ) derive the Fokker-Planck equation

$$
\frac{\partial}{\partial s} f(s, x)=2 \frac{\partial^{2}}{\partial x^{2}}(x(1-x) f(s, x))
$$

from the Master equation in the limit $L \rightarrow \infty$.
Hint: Write $g\left(t, x \pm \frac{1}{L}\right):=\frac{n \pm 1}{L}\left(1-\frac{n \pm 1}{L}\right) L p_{n \pm 1}(t)$ in the Master equation and do a Taylor expansion around $x=n / L$ up to second order.
(e)* $\left(X_{s}: s \geq 0\right)$ as given in (d) is also called a Wright-Fisher diffusion.

Show from the Fokker-Planck equation that $\mathbb{E}\left(X_{s}\right)=\mathbb{E}\left(X_{0}\right)$ for all $s>0$ and discuss the limit of $X_{s}$ as $s \rightarrow \infty$, similarly to (b).
3.2 Let $X=\left(X_{n}: n \in \mathbb{N}\right)$ be a simple random walk on $\mathbb{Z}$ with transition probabilities

$$
p_{i, i+1}=1 / 2+\epsilon, \quad p_{i, i-1}=1 / 2-\epsilon \quad \text { for all } i \in \mathbb{Z}
$$

Rescale time $t=\Delta t n$ and derive the Fokker-Planck equation for an appropriate scaling of space and $\epsilon$, analogous to the derivation of Section 2.1. What is the right scaling of the asymmetry $\epsilon(\Delta t)$ to get a limit with non-zero drift and diffusion?
3.3 (a) Let $\xi \sim N(0,1)$ be a Gaussian random variable with mean 0 and variance 1 . Then consider the continuous time stochastic process $X_{t}=\sqrt{t} \xi$. Show that $X_{t} \sim N(0, t)$.
Is $X$ a Brownian motion? (Justify your answer.)
(b) Let $B$ and $\tilde{B}$ be a two independent standard Brownian motions in $\mathbb{R}$ and $\rho \in[-1,1]$ a constant. Then consider the process $X_{t}=\rho B_{t}+\sqrt{1-\rho^{2}} \tilde{B}_{t}$.
Show that $X$ is again a standard Brownian motion. (Hint: use covariances)
(c)* Let $B$ be a Brownian motion. What is the distribution of $B_{s}+B_{t}$ for $0 \leq s \leq t$ ?
(d)* Scaling property: Let $B$ be a standard Brownian motion in $\mathbb{R}^{d}$. Show that for $\lambda>0$, $B_{\lambda}=\left(\lambda^{-1 / 2} B_{\lambda t}: t \geq 0\right)$ is a standard Brownian motion in $\mathbb{R}^{d}$.
3.4 Consider the contact process $\left(\eta_{t}: t \geq 0\right)$ as defined in Q 2.2 , but now on the one-dimensional lattice $\Lambda_{L}=\{1, \ldots, L\}$ with connections only between nearest neighbours and periodic boundary conditions.
The critical value $\lambda_{c}$ is defined such that the infection on the infinite lattice $\Lambda=\mathbb{Z}$ started from the fully infected lattice dies out for $\lambda<\lambda_{c}$, and survives for $\lambda>\lambda_{c}$. It is known numerically up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.
(a) Simulate the process with initial condition $\eta(x)=1$ for all $x \in \Lambda$ and several values of $\lambda \in[1,2]$. Plot the number of infected individuals $N_{t}=\sum_{x \in \Lambda_{L}} \eta_{t}(x)$ as a function of time averaging over 100 realizations in a double-logarithmic plot.
What is the expected behaviour of $N_{t}$ depending on $\lambda$ for times up to order $L$ ?
For a given system size $L$, find the window of interest choosing $\lambda=1,1.2, \ldots, 1.8,2$ and then use increments 0.01 for $\lambda$ to find an estimate of the critical value $\lambda_{c}(L) \in[1,2]$.
Repeat this for different lattice sizes, e.g. $L=64,128,256,512$, and plot your estimates of $\lambda_{c}(L)$ against $1 / L$. Extrapolate to $1 / L \rightarrow 0$ to get an estimate of $\lambda_{c}=\lambda_{c}(\infty)$.
This approach is called finite size scaling, in order to correct for finite size effects which influence the critical value.
(b) Simulate the process for $L=128$ with initial condition $\eta(x)=1$ for all $x \in \Lambda$ and several (at least 3) values of $\lambda$ around $\lambda_{c}(L)$. After an equilibration time $\tau_{\text {equ }}=L$, sample from the distribution of the number of infections $N_{t}=\sum_{x \in \Lambda_{L}} \eta_{t}(x)$, i.e. over a time interval of length $\tau_{\text {meas }}=L$ count the fraction of time $N_{t}$ spent in $n$ for each $n \in\{0, \ldots, L\}$. Average this measurement over 100 realizations and plot your estimate of the distribution for all values of $\lambda$ in a single plot (it might be a good idea to use a log-scale on the y axis). Explain the form of the observed curves.
(c)* Repeat the analysis of (a) on the fully connected graph $\Lambda_{L}$, and compare your estimate of $\lambda_{c}$ with the mean-field prediction from Q2.2.

