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Stochastic Models of Complex Systems

Problem sheet 3

3.1 The voter model (ηt : t ≥ 0) on a general lattice Λ with state space S = {0, 1}L is given by
jump rates

c(η, ηx) =
∑
y∈Λ

px,y

(
η(x)

(
1− η(y)

)
+ η(y)

(
1− η(x)

))
with px,y ≥ 0. In the following we consider the one-dimensional case ΛL = {1, . . . , L} with
periodic boundary conditions, where only nearest neighbours influence each other with rate 1.

(a) Write down the generator Lf acting on test functions f : S → R for this process.
Discuss whether the process is ergodic, and give all stationary distributions.

(b) Let N(η) =
∑

x∈Λ ηx be the number of individuals with opinion 1 and denote by ρ(t) =
1
LEπ(t)

(
N(t)

)
their average fraction at time t. Use that

d

dt
ρ(t) =

1
L

Eπ(t)(LN)

to show that ρ(t) = ρ(0) for all t ≥ 0.
Therefore, for an initial condition with ρ(0) = 1/2, what is the limit of π(t) as t→∞?

(c) Let fn(η) = δn,N(η) which is 1 if N(η) = n and 0 otherwise. Use the mean-field
assumption

Eπ(t)

(
η(x)

(
1− η(y)

)
δn,N(η)

)
=
n

L

(
1− n

L

)
pn(t) ,

and the same method as in (b) to derive the Master equation for pn(t) = P
(
N(ηt) = n

)
d

dt
pn(t) = 2(n−1)

(
1−n−1

L

)
pn−1(t) + 2(n+1)

(
1−n+1

L

)
pn+1(t)− 4n

(
1−n

L

)
pn(t)

for n = 1, . . . , L− 1. How does the equation look for n = 0, L?

(d) In the limit of large system size, consider the (random) fraction Xt = N(ηt)/L ∈ [0, 1]
of individuals with opinion 1. For the process (Xt : t ≥ 0) the density is then given by
f(t, x) = limL→∞ Lpn(t). Under a proper time rescaling s = t/Lα (give the value of α)
derive the Fokker-Planck equation

∂

∂s
f(s, x) = 2

∂2

∂x2

(
x(1− x)f(s, x)

)
from the Master equation in the limit L→∞.
Hint: Write g(t, x± 1

L) := n±1
L (1− n±1

L )Lpn±1(t) in the Master equation and do a Taylor
expansion around x = n/L up to second order.

[10]

(e)* (Xs : s ≥ 0) as given in (d) is also called a Wright-Fisher diffusion.
Show from the Fokker-Planck equation that E(Xs) = E(X0) for all s > 0 and discuss
the limit of Xs as s→∞, similarly to (b).
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3.2 Let X = (Xn : n ∈ N) be a simple random walk on Z with transition probabilities

pi,i+1 = 1/2 + ε , pi,i−1 = 1/2− ε for all i ∈ Z .

Rescale time t = ∆t n and derive the Fokker-Planck equation for an appropriate scaling of
space and ε, analogous to the derivation of Section 2.1. What is the right scaling of the asym-
metry ε(∆t) to get a limit with non-zero drift and diffusion?

[4]

3.3 (a) Let ξ ∼ N(0, 1) be a Gaussian random variable with mean 0 and variance 1. Then
consider the continuous time stochastic process Xt =

√
tξ. Show that Xt ∼ N(0, t).

Is X a Brownian motion? (Justify your answer.)

(b) Let B and B̃ be a two independent standard Brownian motions in R and ρ ∈ [−1, 1] a
constant. Then consider the process Xt = ρBt +

√
1− ρ2B̃t.

Show that X is again a standard Brownian motion. (Hint: use covariances)
[4]

(c)* Let B be a Brownian motion. What is the distribution of Bs +Bt for 0 ≤ s ≤ t?
(d)* Scaling property: Let B be a standard Brownian motion in Rd. Show that for λ > 0,

Bλ =
(
λ−1/2Bλt : t ≥ 0

)
is a standard Brownian motion in Rd.

3.4 Consider the contact process (ηt : t ≥ 0) as defined in Q2.2, but now on the one-dimensional
lattice ΛL = {1, . . . , L}with connections only between nearest neighbours and periodic bound-
ary conditions.
The critical value λc is defined such that the infection on the infinite lattice Λ = Z started from
the fully infected lattice dies out for λ < λc, and survives for λ > λc. It is known numerically
up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.

(a) Simulate the process with initial condition η(x) = 1 for all x ∈ Λ and several values of
λ ∈ [1, 2]. Plot the number of infected individuals Nt =

∑
x∈ΛL

ηt(x) as a function of
time averaging over 100 realizations in a double-logarithmic plot.
What is the expected behaviour of Nt depending on λ for times up to order L?
For a given system size L, find the window of interest choosing λ = 1, 1.2, . . . , 1.8, 2 and
then use increments 0.01 for λ to find an estimate of the critical value λc(L) ∈ [1, 2].
Repeat this for different lattice sizes, e.g. L = 64, 128, 256, 512, and plot your estimates
of λc(L) against 1/L. Extrapolate to 1/L→ 0 to get an estimate of λc = λc(∞).
This approach is called finite size scaling, in order to correct for finite size effects which
influence the critical value. [12]

(b) Simulate the process forL = 128 with initial condition η(x) = 1 for all x ∈ Λ and several
(at least 3) values of λ around λc(L). After an equilibration time τequ = L, sample from
the distribution of the number of infections Nt =

∑
x∈ΛL

ηt(x), i.e. over a time interval
of length τmeas = L count the fraction of time Nt spent in n for each n ∈ {0, . . . , L}.
Average this measurement over 100 realizations and plot your estimate of the distribution
for all values of λ in a single plot (it might be a good idea to use a log-scale on the y axis).
Explain the form of the observed curves. [6]

(c)* Repeat the analysis of (a) on the fully connected graph ΛL, and compare your estimate of
λc with the mean-field prediction from Q2.2.


