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Stochastic Models of Complex Systems

Problem sheet 3

3.1 The voter model (1; : t > 0) on a general lattice A with state space S = {0, 1} is given by
jump rates
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with p, , > 0. In the following we consider the one-dimensional case Ay, = {1,..., L} with
periodic boundary conditions, where only nearest neighbours influence each other with rate 1.

(a) Write down the generator L f acting on test functions f : .S — R for this process.
Discuss whether the process is ergodic, and give all stationary distributions.

(b) Let N (1) = >_,ca 72 be the number of individuals with opinion 1 and denote by p(t) =
%Eﬁ(t) (N(t)) their average fraction at time ¢. Use that
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to show that p(t) = p(0) forall t > 0.
Therefore, for an initial condition with p(0) = 1/2, what is the limit of 7(¢) as t — co?

(c) Let fn(n) = 0p n(y Which is 1if N(n) = n and 0 otherwise. Use the mean-field
assumption

Erq) (77(96)(1 - n(y))%,zv(n)) = %(1 - %)pn(t) ,

and the same method as in (b) to derive the Master equation for p, (t) = P(N (1) = n)
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forn=1,...,L — 1. How does the equation look for n = 0, L?

(d) In the limit of large system size, consider the (random) fraction X; = N(n;)/L € [0,1]
of individuals with opinion 1. For the process (X; : t > 0) the density is then given by
f(t,x) = limy .~ Lp,(t). Under a proper time rescaling s = ¢/ L% (give the value of «)
derive the Fokker-Planck equation

2
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from the Master equation in the limit L — oo.
Hint: Write g(t, £ 1) := 25 (1 - 2EL) 5, 1 () in the Master equation and do a Taylor
expansion around x = n/ L up to second order.
[10]

(e)* (Xs:s>0)as given in (d) is also called a Wright-Fisher diffusion.
Show from the Fokker-Planck equation that E(X,) = E(X) for all s > 0 and discuss
the limit of X as s — oo, similarly to (b).
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3.2 Let X = (X, : n € N) be a simple random walk on Z with transition probabilities
Diit1 =1/2+¢€, pii-1=1/2—¢€ foralliecZ.

Rescale time ¢ = Atn and derive the Fokker-Planck equation for an appropriate scaling of
space and ¢, analogous to the derivation of Section 2.1. What is the right scaling of the asym-
metry €(At) to get a limit with non-zero drift and diffusion?

[4]

33 (a) Let £ ~ N(0,1) be a Gaussian random variable with mean 0 and variance 1. Then
consider the continuous time stochastic process X; = v/££. Show that X; ~ N(0, ).
Is X a Brownian motion? (Justify your answer.)

(b) Let B and B be a two independent standard Brownian motions in R and p € [—1,1] a
constant. Then consider the process X; = pB; + /1 — pQBt.
Show that X is again a standard Brownian motion. (Hint: use covariances)
(4]
(c)* Let B be a Brownian motion. What is the distribution of By + B; for 0 < s < ¢?

(d)* Scaling property: Let B be a standard Brownian motion in R%. Show that for A > 0,
By = ()\_I/QBM 1t > 0) is a standard Brownian motion in R,

3.4 Consider the contact process (1; : t > 0) as defined in Q2.2, but now on the one-dimensional
lattice A;, = {1, ..., L} with connections only between nearest neighbours and periodic bound-
ary conditions.

The critical value \. is defined such that the infection on the infinite lattice A = 7Z started from
the fully infected lattice dies out for A < A, and survives for A > A.. It is known numerically
up to several digits, depends on the dimension, and lies in the interval [1, 2] in our case.

(a) Simulate the process with initial condition n(z) = 1 for all z € A and several values of
A € [1,2]. Plot the number of infected individuals Ny = n:(z) as a function of
time averaging over 100 realizations in a double-logarithmic plot.

What is the expected behaviour of /V; depending on A for times up to order L?

For a given system size L, find the window of interest choosing A = 1,1.2,...,1.8,2 and
then use increments 0.01 for A to find an estimate of the critical value \.(L) € [1,2].
Repeat this for different lattice sizes, e.g. L = 64,128,256, 512, and plot your estimates
of Ac(L) against 1/L. Extrapolate to 1/L — 0 to get an estimate of Ao = A.(00).

This approach is called finite size scaling, in order to correct for finite size effects which
influence the critical value. [12]

(b) Simulate the process for L = 128 with initial condition 7(z) = 1 forall x € A and several
(at least 3) values of A around \.(L). After an equilibration time 7.4, = L, sample from
the distribution of the number of infections Ny = 3 Al n(z), i.e. over a time interval
of length 7,cqs = L count the fraction of time N spent in n for each n € {0,...,L}.
Average this measurement over 100 realizations and plot your estimate of the distribution
for all values of A in a single plot (it might be a good idea to use a log-scale on the y axis).
Explain the form of the observed curves. [6]

(c)* Repeat the analysis of (a) on the fully connected graph A, and compare your estimate of
A with the mean-field prediction from Q2.2.



